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Abstract – The optimization of differentially private deep learning models in medical data analysis using efficient hyper-parameter 
tuning is still a challenging task. In this context, we address the fundamental issue of balancing privacy guarantees with model utility by 
simultaneously optimizing model parameters and privacy parameters across two primary medical datasets, with additional validation 
on PathMNIST. Our framework encompasses both tabular data (Wisconsin Breast Cancer dataset) and medical imaging (BreastMNIST 
and PathMNIST), implementing four distinct optimization approaches: Grid Search, Random Search, Bayesian Optimization, and 
Bat Algorithm. Through extensive experimentation, we demonstrate a promising performance: achieving 93.62% accuracy with 
strong privacy guarantees (ε = 0.5) for tabular data, and 74.91% accuracy for medical imaging, with the Bat Algorithm discovering 
an unprecedented privacy level (ε = 0.293). Further validation on PathMNIST histopathology images demonstrated the framework's 
scalability, achieving 44.71% accuracy with privacy guarantees (ε = 2.603). Our comparative analysis reveals that different medical 
data types require distinct optimization strategies, with Bayesian Optimization excelling in tabular data applications and Random 
Search providing efficient solutions for image processing. The experiments with PathMNIST histopathology images provided valuable 
insights into the framework's behavior with complex medical data, revealing configuration-dependent performance variations and 
computational trade-offs. Our framework incorporates Pareto analysis and visualization techniques to enable systematic exploration of 
privacy-utility trade-offs, while early stopping mechanisms optimize privacy budget utilization. This comprehensive approach, validated 
across diverse medical imaging complexities and data modalities, establishes practical guidelines for implementing privacy-preserving 
machine learning in healthcare settings while highlighting the importance of balanced optimization strategies and computational 
efficiency in secure and efficient medical data analysis.
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1.  INTRODUCTION

The rapid digital transformation of healthcare has led 
to an unprecedented accumulation of sensitive medi-
cal data, from structured tabular data to complex medi-
cal imaging [1]. While this data surge offers immense 
opportunities for advancing medical research and im-
proving diagnostic accuracy through machine learn-

ing, it also introduces a critical challenge: balancing 
data utility and privacy protection [2]. This challenge 
is particularly acute in healthcare, where advancing 
research and safeguarding patient confidentiality must 
coexist. Consequently, there is an urgent need for ro-
bust privacy-preserving mechanisms that do not com-
promise the analytical capabilities of machine learning 
models.
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Among privacy protection approaches, differential 
privacy (DP) stands out for its mathematically sound 
privacy assurances [3, 4]. Within deep learning applica-
tions, differentially private stochastic gradient descent 
(DP-SGD) has become the predominant DP implemen-
tation method [5]. This approach combines two key 
mechanisms: gradient clipping and noise addition to 
ensure privacy protection during model training [5]. The 
process involves first limiting individual gradients by 
clipping them to maintain a specific ℓ2 norm threshold, 
followed by incorporating Gaussian noise into the aver-
aged gradient before model parameter updates [5, 6]. 
By implementing these modifications, DP-SGD achieves 
bounded sensitivity for each training update, thus es-
tablishing privacy guarantees through controlled noise 
introduction into the learning process [5, 7].

However, optimizing hyper-parameters in differen-
tially private models is inherently more complex than 
in non-private settings. Private hyperparameter opti-
mization requires tuning additional parameters, includ-
ing the clipping norm and noise scale, which are highly 
sensitive and make the process intricate and demanding 
[8]. Earlier studies have focused on fine-tuning privacy 
parameters to match non-private model performance or 
achieving acceptable performance levels while ensuring 
privacy assurances [8]. Despite these efforts, significant 
gaps remain in optimizing hyperparameters for differen-
tially private deep learning models.

Traditional HP.O methods, such as grid search (G.S) 
and random search (R.S), are non-adaptive, evaluating 
hyperparameters from fixed or randomly generated sets 
[9]. While simple to apply, they are computationally in-
tensive and poorly suited for high-dimensional search 
spaces, especially when additional privacy parameters 
(e.g., noise multiplier, clipping norm) must be tuned 
[9]. While adaptive methods like Bayesian optimization 
(B.O) use a probabilistic model to link hyperparameters 
to performance metrics and have become the preferred 
choice over non-adaptive methods due to their superior 
performance and scalability [10, 11], they often struggle 
to dynamically adjust privacy parameters during train-
ing, which is critical for balancing utility and privacy in 
real-time applications [10, 11]. Furthermore, existing ap-
proaches lack the ability to effectively navigate the com-
plex trade-offs between exploration and exploitation in 
private HPO, limiting their scalability and performance in 
privacy-sensitive domains like healthcare [9]. These limi-
tations underscore the need for innovative optimization 
techniques that can handle the unique challenges of 
differentially private deep learning. Inspired by its adap-
tive exploration and exploitation capabilities, we pro-
pose the Bat Algorithm as a novel solution for dynamic 
parameter tuning, addressing these gaps and enabling 
more efficient and scalable privacy-preserving models.

Recent advancements have demonstrated the effec-
tiveness of swarm intelligence algorithms, such as the Bat 
Algorithm, in navigating complex search spaces [12]. In-
spired by bats' echolocation and social behaviors, the Bat 

Algorithm dynamically adjusts search patterns to iden-
tify optimal hyper-parameters. Its ability to balance local 
and global search capabilities and adaptive frequency 
tuning makes it particularly well-suited for fine-tuning 
hyper-parameters in complex scenarios [12]. In differen-
tially private deep learning, where privacy parameters like 
noise multiplier and clipping norm are critical, the Bat Al-
gorithm offers a promising approach for dynamic param-
eter tuning. This leads to a compelling research question: 
Can the Bat Algorithm be integrated to dynamically adjust 
privacy parameters during training, further improving the ef-
ficiency of differentially private model optimization?

In this work, we address the challenge of HPO in dif-
ferentially private deep learning by focusing on four 
explicit hyperparameters (learning rate, batch size, pri-
vacy budget, and maximum gradient norm) and two 
implicit ones (noise multiplier, and training epochs via 
early stopping). Our contributions are fourfold:

1. Novel Application of the Bat Algorithm: We pro-
pose and evaluate the Bat Algorithm for HP.O in 
differentially private deep learning, marking its first 
application in this domain.

2. Comprehensive Comparison: We systematically 
compare the Bat Algorithm against baseline meth-
ods (G.S, R.S, and B.O), providing consistent and re-
producible results.

3. Real-World Validation: We validate our approach on 
real-world medical datasets (Breast Cancer Wisconsin, 
BreastMnist), demonstrating its practical applicability 
in privacy-sensitive healthcare applications.

4. Generalizability and Scalability: To further dem-
onstrate the generalizability, feasibility, and scal-
ability of our framework, we extend our evaluation 
to the PathMNIST dataset, which is more complex 
in terms of both data structure (histopathology 
images) and model architecture (ResNet-50). This 
extension rigorously tests the applicability of our 
framework to larger and more complex datasets, 
further validating its potential for real-world de-
ployment in privacy-sensitive medical applications.

The remainder of this paper is organized as follows: 
Section 2 outlines the methodology and experimental 
setup, Section 3 presents results and analysis, Section 4 
discusses findings, and Section 5 concludes with impli-
cations and future research directions.

2. RELATED WORK

The intersection of differential privacy and deep 
learning has been an active area of research, particu-
larly in optimizing the balance between privacy guar-
antees and model utility.

2.1. DIFFERENTIAL PRIVACy IN MACHINE 
 LEARNING 

Recent advancements in Differential privacy (DP) have 
significantly expanded theoretical foundations and 
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practical applications of privacy-preserving techniques. 
Kulynych et al. [13] introduced an attack-aware noise 
calibration framework that moves beyond traditional 
ε-based approaches, demonstrating improved model 
accuracy while maintaining strong privacy guarantees. 
Complementing this work, Lu [14] established crucial 
relationships between noise addition strategies in sto-
chastic gradient descent (SGD) and their impact on the 
model performance. In the domain of privacy budget 
management, Thantharate et al. [15] developed a sys-
tematic approach for tracking cumulative privacy loss 
across iterative training processes, enabling more pre-
cise control over privacy budgets in multi-stage learning 
scenarios. Pan Ke et al. [16], systematically investigate 
differentially private deep learning, addressing privacy 
attacks and preservation with a novel taxonomy. De-
spite these efforts, optimizing the privacy-utility trade-
off continues to pose substantial challenges.

2.2. PRIVACy-UTILITy TRADE-OFFS AND 
 OPTIMIzATION 

Transfer learning approaches have shown promising 
results in medical image diagnosis. Battula and Chan-
dana. [17] demonstrated 99.68% accuracy for cervical 
cancer classification using an optimized SE-ResNet152 
model, highlighting the potential of architecture optimi-
zation in healthcare applications. The growing need for 
privacy preservation, however, necessitates approaches 
that balance such high performance with robust privacy 
guarantees. The progress in privacy-preserving machine 
learning has significantly enhanced our understanding of 
the privacy-utility trade-off paradigm. Kumar et al. [18] in-
troduced a novel geometric approach using kernel-based 
methods in Reproducing Kernel Hilbert Spaces (RKHS), 
effectively reducing accuracy loss while mitigating mem-
bership inference risks in sensitive applications. Based on 
this foundation, Ficiu et al. [19] developed PFairDP, em-
ploying Bayesian optimization to identify Pareto-optimal 
points balancing fairness, privacy, and utility. Significant 
contributions to federated learning frameworks have 
emerged, with with Avent et al. [20] presenting a Bayesian 
optimization methodology to efficiently characterize the 
privacy-utility trade-off of differentially private algorithms 
using empirical utility measurements, while Koskela et al. 
[21] propose a method to enhance differentially private 
machine learning by tuning hyperparameters on a ran-
dom data subset and extrapolating optimal values, reduc-
ing both privacy leakage and computational cost. Arous 
et al. [22], demonstrated choice strategies of model pa-
rameters (e.g., activation functions) that can significantly 
impact the privacy utility balance without compromising 
either aspect.

2.3. HyPER-PARAMETER OPTIMIzATION IN 
 DIFFERENTIALLy PRIVATE DEEP 
 LEARNING (DPDL)

Numerous approaches have been proposed to ad-
dress the challenge of hyper-parameter optimization in 

DP. Galli et al. [23] offer foundational insights by dynam-
ically optimizing the clipping threshold in differentially 
private learning, showing that traditional grid search 
methods incur excessive privacy costs, while Wang et 
al. [24] developed DP-HyPO, an adaptive framework le-
veraging Gaussian process-based optimization.

Significant algorithmic contributions include evolu-
tionary approaches for exploring hyperparameter spac-
es, Bayesian optimization for probabilistic performance 
modeling, and enhanced Particle Swarm Optimization 
(EPSO) as Gao et al. [25] demonstrated for optimizing 
learning rates while minimizing noise impact. Bu et al. 
[26] introduced a novel book-keeping technique that 
improves computational costs while maintaining ac-
curacy, making private optimization comparable to 
standard training. Tobaben [27] provides foundational 
insights by analyzing hyperparameter and architec-
tural impacts on the privacy-utility trade-off in DPDL, 
revealing grid search’s inefficiencies with private data.

2.4. META-HEURISTIC APPROACHES AND 
 PARETO OPTIMIzATION

The work by Ramalingam et al. [28] and Banerjee et 
al. [29] has demonstrated the effectiveness of genetic 
algorithms, particle swarm optimization, and ant colony 
optimization in navigating vast solution spaces. These ap-
proaches have shown a particular promise in healthcare 
applications, with Singh et al. [30] successfully applying 
them to enhance feature selection for disease diagnosis 
while maintaining privacy constraints. The Pareto optimi-
zation aspect of these methods, as explored by Harkare 
et al. [31],is crucial in balancing multiple competing ob-
jectives, such as model accuracy, privacy guarantees, and 
computational efficiency. Thakur et al. [32] further extend-
ed these concepts to resource-constrained environments, 
demonstrating significant improvements in operational 
efficiency while maintaining solution diversity.

Table 1. Overview of Key Related Work

Research Area Key Contributions Reference

Differential 
Privacy

Attack-aware noise calibration 
beyond ε-based approaches [13]

Noise addition strategies in 
SGD [14]

Privacy-Utility 
Trade-offs and 
optimization

SE-ResNet152 optimization 
using DHO algorithm for 

medical image classification
[17]

Subset-based hyperparameter 
tuning for privacy-utility 

optimization
[21]

Hyper-
parameter 

Optimization 
in DPDL

DP-HyPO adaptive framework [24]

EPSO for learning rate 
optimization [25]

Systematic optimization 
strategy comparison [26]

Meta-heuristic 
Approaches

Genetic and particle swarm 
optimization analysis [28]

Healthcare feature selection 
optimization [29]
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3. PROBLEM FORMULATION 

Our problem formulation establishes a unified 
framework for optimizing the privacy-utility trade-off 
in differentially private deep learning models. We have 
defined an objective function that balances model ac-
curacy and privacy guarantees and formulated the op-
timization problem for four distinct approaches: Grid 
Search, Random Search [33], Bayesian Optimization 
[34], and Bat Algorithm [35]. Each method navigates 
the hyperparameter space Θ in its unique way, aiming 
to find the optimal configuration θ ∗ that maximizes 
our objective function f(ε(θ), A(θ)).

3.1. DIFFERENTIAL PRIVACy FRAMEWORK 

A randomized algorithm M : D → R with domain D 
and range R is (ε, δ)- differentially private if for all S ⊆ R 
and for all adjacent datasets D, D′ ∈ D [36]:

P[M(D) ∈ S] ≤ exp(ε) · P[M(D') ∈ S] + δ (1)

where: - ε is the privacy budget - δ is the failure prob-
ability.

3.2. DP-OPTIMIzATION COMPONENTS

3.2.1. Hyperparameter Space

Let θ = (lr, bs, nm, C) be the hyperparameter vec-
tor where: - lr: learning rate - bs: batch size - nm: noise 
multiplier - C: gradient clipping threshold The feasible 
space Θ is defined by:

Θ = {θ | lrmin≤ lr ≤ lrmax,
bsmin ≤ bs ≤ bsmax,
tεmin ≤ tε ≤ tεmax,

Cmin ≤ C ≤ Cmax

(2)

3.2.2. Privacy-Utility Metric

For any configuration θ: - A(θ): model accuracy - ε(θ): 
achieved privacy budget

3.2.3. Objective Function

The privacy-utility trade-off is quantified by:

where α, β are weighting parameters.

3.3. OPTIMIzATION PROBLEM

3.3.1. Primary Objective

Our goal is to find the optimal hyperparameter con-
figuration θ ∗ that maximizes f(ε(θ), A(θ)), the optimiza-
tion problem can be formally stated as:

3.3.2. Pareto Optimality

To comprehensively analyze the trade-off between 
privacy and utility, we introduce the concept of Pareto 

optimality. The Pareto frontier P represents the set of 
non-dominated solutions where it’s impossible to im-
prove either privacy or utility without degrading the 
other. Formally, we define P as:

P={(ε, A) ∈ S|∄ (ε', A') ∈ S:(ε'< ε∧ A'≥A) ∨ (ε'≤ ε∧A'>A)} (4)

3.4. SOLUTION APPROACHES

To solve this optimization problem, and To find θ* , 
we employ and compare four approaches distinct ap-
proaches: 

1. Grid Search: Exhaustive search over a predefined 
hyper-parameter space,

(5)

2. Random Search: Randomly sampling configura-
tions from the hyperparameter space [33]

(6)

3. Bayesian Optimization: Sequential model-based 
optimization using Gaussian Processes [34],

(7)

4. Bat Algorithm: A nature-inspired meta-heuristic 
optimization algorithm [35],

(8)

Where ΘX represents the search space explored by 
method X. Each method aims to efficiently navigate 
the hyperparameter space to find the configuration 
that maximizes our objective function, thus achieving 
the best privacy-utility trade-off for our differentially 
private deep learning model.

3.5. IMPLEMENTATION CONTExT

The optimization is implemented using the Opacus 
privacy engine, which: 1. Computes per-sample gra-
dients 2. Clips gradients to bound sensitivity 3. Adds 
calibrated Gaussian noise 4. Tracks privacy budget con-
sumption The DP optimizer update step is:

(9)

Where g̃t is the differentially private gradient:

(10)

where g̃t is the privatized gradient, B is the batch size, C 
is the clipping threshold, and σt is the dynamically ad-
justed noise multiplier at step t.

4. METHODOLOGy

This section presents our comprehensive method-
ology for optimizing the privacy-utility trade-off in 
differentially private deep learning. Our framework 
encompasses model architectures, differential privacy 
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implementation, hyperparameter optimization tech-
niques, and evaluation procedures. Beyond establish-
ing the foundational approach, we extend our inves-
tigation to assess the framework's generalizability by 
incorporating the PathMNIST dataset — a complex col-
lection of histopathology images that presents more 
challenging scenarios compared to the BreastMNIST 
and Breast Cancer Wisconsin datasets. This extension, 
implemented through a privacy-adapted ResNet-50 
architecture with DP-Optimizer, enables us to evalu-
ate our optimization framework's scalability and fea-
sibility on larger, more complex models. Through this 
comprehensive approach, we aim to provide a clear, 
reproducible framework for comparing optimization 
strategies in privacy-preserving deep learning, while 
demonstrating its applicability across varying levels of 
task complexity.

4.1. ExPERIMENTAL FRAMEWORK OVERVIEW

Our experimental framework was implemented on 
the Google Colab Pro+ platform, leveraging TPU v2-8 
accelerators that provide 8 cores with up to 180 tera-
flops of computation power and 64 GB of high-band-
width memory (HBM). This infrastructure choice was 
crucial for handling the computational overhead. The 
summary of the setting parameters is shown in Table 2.

Table 2. Experimental Framework Specifications

Component Specification

Platform Google Colab Pro+

Hardware TPU v2-8 (8 cores, 180 teraflops)

Memory 64 GB HBM

Framework Python 3 + PyTorch

Cross-Validation 3-fold

Early Stopping with patience monitoring

Optimizer ADAM

Loss function CrossEntropy

4.2. DATASETS AND PREPROCESSING

4.2.1. Breast Cancer Wisconsin Dataset

The Wisconsin Breast Cancer Dataset (UCI Reposi-
tory) contains 569 samples with 30 features and binary 
classification (malignant/benign). Data was prepro-
cessed and split into training (301), validation (85), and 
test (183) sets, then converted to PyTorch tensors for 
model training.

4.3.1. Model architecture

Multi-Layer Perceptron architecture comprises In-
put(30) → Linear(20) → Linear(10) → Linear(10) → Lin-
ear(10) → Linear(5) → Output(2) with ReLU activations 
between layers. The architecture employs gradual di-
mension reduction to prevent overfitting on the breast 
cancer Wisconsin classification task.

4.3.2. Medical Image Datasets

The BreastMNIST and PathMNIST datasets (MedMNIST 
v2.2.3) represent distinct medical imaging modalities 
while sharing standardized preprocessing requirements. 
Both datasets undergo similar technical preprocessing 
steps, with images normalized (µ=0.5, σ=0.5) and format-
ted to 28×28 pixel RGB resolution for deep learning com-
patibility. However, they differ significantly in their mo-
dalities and clinical applications. BreastMNIST focuses on 
breast imaging diagnostics, containing 780 medical im-
ages distributed across training (546), validation (78), and 
test (156) sets for binary classification tasks. In contrast, 
PathMNIST encompasses histopathological imaging, 
presenting a larger collection of 107,180 microscopic tis-
sue images from colon pathology. These are divided into 
training (89,996), validation (10,004), and test (7,180) sets, 
supporting a more complex nine-class classification chal-
lenge that reflects the diverse cellular patterns and tissue 
characteristics encountered in pathological analysis.

4.3.3. ResNet Architectures

Our implementation utilizes modified ResNet ar-
chitectures (ResNet-18 and ResNet-50) with specific 
privacy-focused adaptations for medical image clas-
sification. Both models share fundamental privacy-
preserving modifications, replacing BatchNorm layers 
with GroupNorm (32 groups) to comply with Opacus's 
privacy requirements, as BatchNorm operations can 
leak private information across training examples. The 
architectures maintain pre-trained backbones in frozen 
evaluation mode while incorporating trainable classifi-
cation heads. The key distinction lies in their complex-
ity and target tasks: ResNet-18 is configured for binary 
classification of breast images, and ResNet-50, being 
deeper and more complex, handles the nine-class 
histopathology classification task for PathMNIST. Both 
architectures preserve privacy guarantees through 
GroupNorm's channel-based normalization approach 
and ensure efficient feature extraction through their 
frozen pre trained backbones, demonstrating adapt-
ability to different medical imaging modalities while 
maintaining privacy-preserving characteristics.

4.3.4. Training Configuration

Our training framework implements model-specific 
configurations to ensure optimal convergence while 
managing computational resources effectively. The 
MLP architecture employs a maximum of 500 epochs 
with a patience value of 250, while the ResNet-18 train-
ing is configured with 20 maximum epochs and a pa-
tience threshold of 12. For the PathMNIST experiments 
using the Bat Algorithm, we established two distinct 
configurations as detailed in Table 3, where both main-
tain a population size of 2 bats but differ in their con-
vergence parameters: Configuration 1 uses 14 epochs 
with early stopping at 10, while Configuration 2 em-
ploys 15 epochs with early stopping at 13. 
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Across all models, we implemented early stopping 
monitoring validation accuracy to prevent overfitting 
and ensure optimal convergence. These parameter ad-
justments, particularly for the PathMNIST experiments, 
were essential to complete the optimization process 
while managing computational constraints.

Table 3. Bat Algorithm Optimization Parameters: 
Two Configurations for PathMNIST classification

1st Configuration 2nd Configuration

Optimization Parameters
Population Size 2 bats 2 bats

Max-iterations 14 (convergence at 11) 4 (convergence at 2)

Epochs 15 15

Early Stopping 
Patience 10 13

4.4. DIFFERENTIAL PRIVACy 
 IMPLEMENTATION

Table 4. Differential Privacy Components

Component Implementation
Library Opacus

Engine PrivacyEngine

Delta (δ) Fixed at 10-4

Privacy Mechanism Gradient clipping + Gaussian noise

Differential privacy is implemented via Opacus Pri-
vacy Engine with two key components:

Table 5. Hyperparameter Space Definition

Parameter Discrete Values Continuous Range Notes

Learning Rate {0.001, 0.01, 0.1} [0.001, 0.1] Three orders of magnitude

Batch Size {16, 32, 64, 128, 512} [16, 512] Powers of 2

Max Gradient Norm {1.2, 5.6} [1.2, 5.6] Conservative range

Privacy Budget (ε) {0.5, 1.0, 8.0} [0.2, 8.0] Strict to relaxed privacy

Privacy Delta (δ) Fixed at 10-4 Standard failure probability

1. Privacy Engine Operation:

•	 Per-sample gradient computation
•	 Gradient clipping for sensitivity bounds
•	 Calibrated Gaussian noise addition
•	 Privacy budget tracking
2. Dynamic Privacy Management:

•	 Target epsilon (εtarget) specification
•	 Dynamic noise multiplier (σ) adjustment
•	 Automated noise calibration
•	 Privacy parameter reporting

The engine adjusts the noise multiplier during train-
ing to balance target epsilon and model utility, follow-
ing equation (10).

4.5. HyPERPARAMETER SPACE   

Our hyperparameter optimization space was careful-
ly defined to accommodate both discrete and continu-
ous optimization methods as shown in Table 5:

4.5.1. Parameter Adjustment Mechanisms

Parameter adjustment mechanisms for continuous 
optimization include reflection methods that handle 
out-of-bounds values through boundary reflection, 
and value adjustment processes that discretize batch 
sizes, enforce integer constraints, clip boundary values, 
and prevent negative values.

4.6. OPTIMIzATION FRAMEWORK

The optimization framework is designed to system-
atically achieve an optimal privacy-accuracy balance in 
Differentially Private Deep Learning (DPDL) models. It 
comprises three key phases: initialization, optimization, 
and Pareto analysis. Fig.1 illustrates the comprehensive 
workflow, while Fig.2 provides a detailed flowchart of 
the optimization methods. This framework establishes 
a robust foundation for achieving optimal privacy-utili-
ty trade-offs through systematic parameter tuning and 
multi-objective optimization.

4.6.1. Objective Function

For the objective function defined in equation (3), we 
set α = β = 0.5 to ensure equal importance between 
privacy preservation (ε) and model accuracy (A), thus 
achieving a balanced privacy-utility optimization with-
out favoring either aspect.

4.6.2. Hyperparameter Tuning Methods

To identify the optimal hyperparameter configura-
tions, we employ four distinct methods G.S, R.S, B.O, 
and B.A. Each method is described below:

a) Grid Search (G.S): 
 Deterministic Exploration

G.S operates as an exhaustive search method, sys-
tematically evaluating every possible combination of 
hyperparameters within a predefined discrete space. 
By exploring the entire search space, G.S identifies the 
optimal configuration that effectively balances the pri-
vacy-utility trade-off. This method ensures a thorough 
and methodical approach to hyperparameter tuning, 
albeit at a higher computational cost.

b) Random Search (R.S): 
 Stochastic Exploration
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R.S samples hyperparameter configurations from 
a uniform distribution U (ΘRS) over a predefined dis-
crete search space ΘRS. It evaluates a fixed number of 
configurations (N), typically covering approximately 
25% of the parameter space. By focusing on a subset 
of the search space, R.S efficiently approximates the 
optimal solution while significantly reducing com-
putational overhead compared to exhaustive meth-
ods like G.S. 

c) Bayesian Optimization (B.O):  
 Sequential Model-Based Optimization

Bayesian Optimization employs a Gaussian Process 
(GP) as a surrogate model to approximate the objec-
tive function f (ε(θ), A(θ)). The process begins with 10 
warm-up points, randomly sampled to initialize the 
GP model. At each iteration, the next hyperparameter 
configuration is selected by maximizing the Expected 
Improvement (EI):

(11)

Where D={(θi, fi)}
t
i=1 represents the set of observations 

up to iteration t. This approach sequentially refines the 
GP model, guiding the search toward regions of the 
hyperparameter space that are most likely to improve 
performance.

Through this iterative process, equation (11) guides 
us toward the optimal solution represented in equa-
tion (7). At each step t:

•	 The GP model is updated using all previous obser-
vations D

•	 EI(θ|D) estimates where the next evaluation might 
most improve upon our current best solution

•	 This sequential refinement helps us approximate 
the optimal hyper-parameters θ*

BO
* that maximize 

our objective function f (ε(θ), A(θ))

Fig. 1. Flowchart of Hyperparameter Optimization with Gradient Perturbation for Privacy-Accuracy Balance 
in DPDL
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Fig. 2. Flowchart of each Optimization Method

B.O. effectively balances exploration and exploita-
tion, making it highly efficient for high-dimensional 
spaces. 

•	 Nature-inspired metaheuristic for hyperparameter 
tuning: The Bat Algorithm is a swarm intelligence-
based optimization method that mimics the echolo-
cation behavior of bats to navigate the hyperparam-
eter space. It combines global exploration and local 
exploitation by iteratively updating the position xi 
and velocity vi of each bat i. The algorithm is guided 
by frequency fi, loudness Ai, and pulse emission rate 
ri, which are dynamically adjusted to balance explo-
ration and exploitation. Algorithm 1 provides the 
complete pseudocode for the Bat Algorithm, illus-
trating its iterative parameter updates for balanced 
local and global search space exploration. 

Algorithm 1 
Bat Algorithm for Hyperparameter Tuning

1: Initialize Parameters:
2: Population size: N = 10 bats
3: Dimensions: D = 4 parameters
4: Frequency range: [fmin, fmax] = [0, 10]
5: Loudness: Ai = 1.0 (initial)
6: Pulse emission rate: ri = ri

0 (initial)
7: Alpha (α): 0.9
8: Gamma (γ): 0.9
9: Maximum iterations: Tmax (dataset-specific)
10: Initialize Population:

11: Randomly initialize positions xi and velocities vi 

  for each bat i.
12: Evaluate Initial Fitness:
13: Compute fitness f (xi) for each bat i.
14: Identify the global best solution xbest.
15: Main Loop (for t=1 to Tmax):
16: for each bat i do
17: Generate frequency fi:
18: fi=fmin+(fmax-fmin )·β, β∈[0,1]
19: Update velocity vi:
20: vi

t+1=vi
t+(xi

t-xbest) · fi 
21: Update position xi:
22: xi

t+1=xi
t+vi

t+1

23: if rand>ri then
24: Perform local search:
25: xnew=xold+ε·At, ε∈[-1,1]
26: end if
27: Evaluate fitness f (xi

t+1).
28: if rand <Ai and f (xi

t+1) < f xbest) then
29: Update xbest = xi

t+1.
30: end if
31: Update loudness Ai and pulse emission rate ri:
32: Ai

t+1= α · Ai
t

33: ri
t+1= ri

0 · [1 - exp(-γ · t)]
34: end for
35: Return Optimal Solution:
36: Output the global best solution xbest.



385Volume 16, Number 5, 2025

4.7.  PARETO ANALySIS 

Our Pareto efficiency analysis identifies the optimal 
trade-off between privacy preservation (ε) and model 
accuracy (A) across all optimization methods. The anal-
ysis involves two key steps:

1. Pareto Front Identification 

•	 We use a non-dominated sorting algorithm to 
identify the Pareto front, comprising solutions that 
are not dominated by any other configuration in 
terms of ε and A.

•	 Optimization occurs in a two-dimensional space, 
where each point represents a unique (ε, A) com-
bination.

•	 Pair-wise dominance comparisons determine 
dominance: a solution (ε1, A1) dominates (ε2, A2) if 
ε1 ≤ ε2 and A1 ≥ A2, with at least one strict inequality.

2. Optimal Point Selection

•	 The optimal Pareto point is selected from the set of 
non-dominated solutions (P), satisfying the domi-
nance relation in Equation (4).

•	 If the global best solution matches the Pareto point 
for a method, it indicates the method’s superior-
ity in achieving the best non-dominated trade-off. 
This highlights the method’s robustness, efficiency, 
and practical applicability for privacy-preserving 
machine learning tasks while providing a basis for 
method comparison and future research.

5. COMPREHENSIVE ANALySIS OF RESULTS

Based on our experimental evaluation across multiple 
datasets and optimization methods, we present a de-
tailed analysis of the performance metrics, hyperparam-
eter configurations, computational resources utilized, 
and comparative assessment of optimization strategies 
in our framework. Our analysis includes a comprehen-
sive performance evaluation across key metrics, a de-
tailed examination of how hyperparameters influence 

outcomes, a specific analysis of the PathMNIST dataset’s 
performance, an assessment of resource utilization pat-
terns, and a comparative investigation of the strengths 
and limitations of different methods across various data-
sets and optimization objectives.

5.1. PERFORMANCE METRICS ANALySIS

We begin our analysis by examining the performance 
metrics detailed in Table 6, focusing on accuracy, pri-
vacy preservation, and computational efficiency across 
all optimization methods and datasets. This analy-
sis provides insights into how each method balances 
these critical performance dimensions.

The Grid Search method demonstrated consistent 
performance across datasets, achieving an accuracy 
of 93.40% on the Breast Cancer Wisconsin dataset and 
74.18% on BreastMNIST. Maintaining a privacy bud-
get (ε) of 0.500 required substantial computational 
resources, particularly evident in the 4,000.33 seconds 
processing time for the Wisconsin dataset.

Random Search exhibited comparable accuracy met-
rics, reaching 92.53% on the Wisconsin dataset and 
74.91% on BreastMNIST. Notably, it achieved these results 
with varying privacy budgets - 0.500 for Wisconsin and 
1.000 for BreastMNIST. The method showed improved 
time efficiency compared to Grid Search, completing the 
Wisconsin dataset analysis in 2,749.65 seconds.

Bayesian Optimization achieved the highest accuracy 
on the Wisconsin dataset at 93.62%, while maintaining 
a privacy budget of 0.501. The method demonstrated 
consistent performance on BreastMNIST with 73.99% 
accuracy. Its computational requirements were signifi-
cant, requiring 17,828.72 seconds for the Wisconsin da-
taset, though with reduced memory usage of 787.75 MB.

The Bat Algorithm showed distinct characteristics, 
achieving Pareto optimality on both datasets. While its ac-
curacy was slightly lower (93.18% for Wisconsin, 73.08% 
for BreastMNIST), it demonstrated efficient privacy pres-
ervation with ε values of 2.258 and 0.293 respectively.

Table 6. Performance Metrics Across Datasets and Optimization Methods

Dataset Method Privacy (ε) Accuracy (%) Fitness (f) Time (s) Memory (MB) Pareto Optimal?

Breast cancer 
Wisconsin

Grid Search 0.500 93.40 0.1840 4,000.33 1,064.83 Yes

Random Search 0.500 92.53 0.1834 2,749.65 845.08 No

Bayesian Opt. 0.501 93.62 0.1840 17,828.72 787.75 No

Bat Algorithm 2.258 93.18 0.0470 14,562.20 1,103.16 Yes

BreastMNIST

Grid Search 0.500 74.18 0.1699 12,931.66 1,796.29 Yes

Random Search 1.000 74.91 0.1697 6,499.74 1,555.48 Yes

Bayesian Opt. 0.500 73.99 0.1697 38,076.04 1,322.85 Yes

Bat Algorithm 0.293 73.08 0.1887 10,132.33 4,348.25 Yes
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Table 7. Best Hyperparameter Configurations for Each Method.

5.3. PATHMNIST-SPECIFIC PERFORMANCE 
 ANALySIS

As detailed in Table 8, our focused analysis of the 
PathMNIST dataset provides additional insights into 
the optimization framework's capability to handle 
complex medical imaging data and adapt configura-
tions for improved performance. The results demon-
strate significant variations between configurations 
and their impact on multiple performance dimensions.

Table 8. Results on the PathMNIST dataset

1st Configuration 2nd Configuration

Global Best Solution

Learning Rate (lr) 0.03106 0.01760

Batch Size 128 512

Max-Grad-Norm (C) 2.179 1.732

TargetEpsilon(ε) 0.508 2.603

Performance Metrics

Objective Function 0.1435 0.0328

GlobalBest Accuracy 39.97% 44.71%

Global Best Epsilon 0.508 2.603

Time (S) 18,238.194 13,678.6455

Memory (MB) 8,479.0875 7,522.4725

Pareto Optimal? No Yes

The PathMNIST dataset results revealed significant 
improvements between configurations. The global best 
accuracy increased from 39.97% to 44.71%, accompa-
nied by changes in the learning rate from 0.03106 to 
0.01760. The second configuration achieved Pareto 
optimality while reducing memory requirements from 
8,479.0875 MB to 7,522.4725 MB.

The objective function improved from 0.1435 to 
0.0328, indicating enhanced optimization perfor-
mance. The global best epsilon value increased from 
0.508 to 2.603, suggesting a different privacy-utility 
trade-off in the optimal configuration. Execution time 
increased from 8,238.194 seconds to 13,678.6455 sec-
onds, demonstrating the computational cost of achiev-
ing improved performance metrics.

5.4. RESOURCE UTILIzATION ASSESSMENT

Understanding the computational demands of each 
optimization method is crucial for practical implemen-
tation. Our analysis of resource utilization reveals sig-
nificant variations in memory and time requirements 
across methods and datasets.

Memory requirements varied significantly across 
methods and datasets. For the Wisconsin dataset, Grid 

5.2. HyPERPARAMETER CONFIGURATION 
 ANALySIS

To understand the factors driving performance dif-
ferences, we examine the optimal hyper-parameter 
configurations identified by each method across data-
sets, as presented in Table 7. This analysis reveals key 
patterns in parameter selection and their impact on 
optimization outcomes.

The optimal learning rates varied significantly across 
methods. Grid Search performed best with smaller 
learning rates (0.01), while the Bat Algorithm required 
higher rates (0.0965 for Wisconsin). Batch sizes showed 

a clear pattern, with most optimal configurations favor-
ing larger batches (512) for the Wisconsin dataset and 
varying sizes for BreastMNIST. Privacy budgets dem-
onstrated method-specific patterns. Random Search 
and Grid Search maintained consistent budgets (0.500), 
while the Bat Algorithm and Bayesian Optimization 
showed more variation. The max gradient norm values re-
mained relatively stable across methods for BreastMNIST 
but showed greater variation in the Wisconsin dataset.  
Training epochs exhibited method-specific patterns, 
with Grid Search requiring 273 epochs for optimal per-
formance on the Wisconsin dataset, while BreastMNIST 
achieved optimal results with significantly fewer ep-
ochs (12-14) across all methods.

Dataset Method Learning 
Rate (lr)

Batch 
Size(bs)

Privacy 
Budget 
(εterget)

Max Grad 
Norm (C)

Noise 
Multiplier (σ)

Training 
Epochs

Final 
Accuracy(%)

Breast cancer 
Wisconsin

Grid Search 0.01 32 0.500 1.2 42.5 273 93.40

Random Search 0.1 512 0.500 5.6 135.0 252 92.53

Bayesian Opt. 0.018 128 0.501 3.118 77.5 265 93.62

Bat Algorithm 0.0965 512 2.258 3.388 95.5 248 93.18

BreastMNIST

Grid Search 0.1 32 0.500 1.2 6.25 12 74.18

Random Search 0.1 64 1.000 1.2 8.75 12 74.91

Bayesian Opt. 0.1 128 0.500 4.906 12.19 15 73.99

Bat Algorithm 0.0429 512 0.293 3.114 18.5 14 73.08
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Search utilized 1,064.83 MB, while the Bat Algorithm 
required 1,103.16 MB. BreastMNIST showed higher 
memory requirements overall, with the Bat Algorithm 
consuming 4,348.25 MB.

Execution times demonstrated substantial variation, 
ranging from 2,749.65 seconds for Random Search to 
17,828.72 seconds for Bayesian Optimization on the 
Wisconsin dataset. BreastMNIST generally required 
longer processing times, with Grid Search taking 
12,931.66 seconds and Bayesian Optimization requir-
ing 38,076.04 seconds.

The fitness values across methods remained rela-
tively consistent within each dataset, suggesting that 
different optimization approaches converged to simi-
larly optimal solutions despite varying computational 
requirements and privacy-utility trade-offs.

5.5. COMPARATIVE ANALySIS

To synthesize our findings, we examine the relative 
strengths and limitations of each optimization method 
across datasets, highlighting key trade-offs and opera-
tional considerations.

Our comparative analysis reveals distinctive patterns 
across optimization methods and datasets, highlight-
ing the inherent trade-offs between privacy, accuracy, 
and computational efficiency. On the Wisconsin data-
set, Grid Search and Bayesian Optimization achieved 
comparable accuracy levels (93.40% and 93.62% re-
spectively) while maintaining similar privacy budgets 
(0.500 and 0.501). However, Bayesian Optimization 
required approximately 4.5 times more computational 
time, suggesting a significant efficiency trade-off for 
marginal accuracy improvement.

The BreastMNIST dataset results demonstrate differ-
ent optimization dynamics. Random Search emerged as 
the top performer with 74.91% accuracy, albeit requiring 
a higher privacy budget (ε = 1.000) compared to other 
methods. This illustrates the inherent tension between 
privacy preservation and model performance. Grid 
Search achieved comparable accuracy (74.18%) with half 
the privacy budget (ε = 0.500), representing a potentially 
more balanced solution for privacy-sensitive applications.

The Bat Algorithm's performance presents an inter-
esting case study in multi-objective optimization. De-
spite achieving lower accuracy scores on both datasets, 
it consistently achieved Pareto optimality, suggesting 
superior performance in balancing multiple compet-
ing objectives. Its moderate memory requirements 
(1,103.16 MB for Wisconsin, 4,348.25 MB for Breast-
MNIST) and execution times position it as a practical 
choice for resource-constrained environments.

A cross-dataset comparison reveals that optimization 
methods demonstrate dataset-specific strengths. While 
Grid Search exhibited stable performance across both 
datasets, Random Search showed higher variability, per-
forming notably better on the BreastMNIST dataset. This 

suggests that dataset characteristics significantly influ-
ence the effectiveness of different optimization strategies.

5.6. ExTENDED ANALySIS WITH  
 VISUALIzATION RESULTS

This analysis presents a comprehensive visualization-
based examination of our optimization results across 
three distinct datasets: Wisconsin Breast Cancer, Breast-
MNIST, and PathMNIST. Our visualization framework 
employs two key components: privacy-accuracy trade-
off plots with fitness value indicators, and convergence 
plots showing the evolution of fitness values over it-
erations. This dual visualization approach enables us to 
understand both the final solution space and the opti-
mization trajectory for each method.

5.6.1. Breast Cancer Wisconsin Dataset

The Breast Cancer Wisconsin Dataset optimization 
results reveal distinct patterns across the four optimi-
zation methods, showcasing various approaches to 
balancing privacy and accuracy.

Grid Search and Random Search (Fig. 3a, 3b) demon-
strate similar exploration patterns, characterized by dis-
crete, well-defined sampling points. The privacy-accuracy 
trade-off plots show concentrated exploration in specific 
regions, with Grid Search providing more systematic cov-
erage while Random Search offers more scattered distri-
bution. Both methods achieve relatively quick conver-
gence as shown in their fitness evolution plots, reaching 
stable fitness values early in the optimization process.

Bayesian Optimization (Fig. 3c) exhibits a more so-
phisticated exploration strategy, with dense sampling 
in promising regions of the solution space. The priva-
cy-accuracy plot reveals a continuous distribution of 
points, suggesting a more thorough exploration of the 
trade-off space. The convergence plot shows rapid ini-
tial improvement followed by consistent refinement, 
indicating efficient optimization behavior.

The Bat Algorithm (Fig. 3d) demonstrates a unique 
exploration pattern, with initial broad coverage fol-
lowed by concentrated sampling in high-performing 
regions. The privacy-accuracy plot shows clusters of 
solutions, particularly in areas of favorable trade-offs. 
The fitness evolution plot reveals a distinctive stepped 
pattern, suggesting periodic improvements in solution 
quality as the algorithm explores the search space.

Regarding optimal solutions, all methods success-
fully identified configurations that balance privacy 
and accuracy, with the Bayesian Optimization and Bat 
Algorithm showing a particularly effective exploration 
of the solution space near the Pareto frontier. The con-
vergence behavior suggests that while Grid Search and 
Random Search reach stable solutions quickly, Bayes-
ian Optimization and the Bat Algorithm continue to 
refine their solutions throughout the optimization pro-
cess, potentially discovering more nuanced trade-offs.



5.6.2. BreastMNIST Dataset

The optimization results for the BreastMNIST data-
set reveal distinctive characteristics and performance 
patterns across the four optimization methods, with 
notable differences from the Wisconsin Breast Cancer 
dataset analysis.

Grid Search (Fig. 4a) shows a structured exploration 
pattern with evenly distributed sampling points across 
the privacy-accuracy space. The convergence plot dis-
plays a step-like pattern, indicating discrete improve-
ments in fitness values at specific intervals. This sug-
gests that the method systematically identified better 
solutions through its predefined search grid.

Random Search (Fig. 4b) demonstrates a more scat-
tered distribution of solutions, yet maintains coverage 
across the solution space. The fitness evolution plot 
shows rapid initial improvement followed by sustained 
performance, suggesting early discovery of promising 
regions in the search space.

Bayesian Optimization (Fig. 4c) exhibits a more nu-
anced exploration strategy, with concentrated sampling 
in regions of higher fitness values. The privacy-accuracy 
trade-off plot reveals clusters of solutions in promis-
ing areas, indicating the algorithm's ability to adapt its 
search based on previous results. The convergence plot 
shows progressive improvement, with  multiple optimi-
zation stages visible in the fitness trajectory.

The Bat Algorithm (Fig. 4d) presents a unique ex-
ploration pattern characterized by focused sampling 
in specific regions of the solution space. The conver-
gence plot demonstrates consistent performance 
throughout the optimization process, suggesting 
stable exploration of the search space. 

However, the distribution of solutions appears more 
concentrated compared to other methods, indicating 
a potentially more focused search strategy. Compared 
to the Wisconsin dataset results, the BreastMNIST op-
timization exhibits different convergence patterns 

(b)

(d)

Fig. 3. Optimization Results for Wisconsin Breast Cancer Dataset: (a) Grid Search, (b) Random Search, (c) Bayes-
ian Optimization, and (d) Bat Algorithm. The top row shows privacy-accuracy trade-off plots with color indicating 

fitness values. The bottom row shows the evolution of the best fitness value over iterations.

(a)

(c)
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Fig. 4. Optimization Results for BreastMNIST Dataset: (a) Grid Search, (b) Random Search, (c) Bayesian 
Optimization, and (d) Bat Algorithm. The top row shows privacy-accuracy trade-off plots with color 

indicating fitness values. The bottom row shows the evolution of the best fitness value over iterations.

(d)(c)

(b)(a)

and solution distributions, likely due to the increased 
complexity and distinct characteristics of the dataset. 
This highlights the importance of algorithm selection 
based on specific dataset characteristics and optimi-
zation objectives.

5.6.3. PathMNIST Dataset

 5.6.3.1. Configuration 1 

The optimization results for Configuration 1 of the Bat 
Algorithm on the PathMNIST dataset, as shown in Fig. 5, 
demonstrate interesting characteristics in both solution 
distribution and convergence behavior.

The privacy-accuracy trade-off plot reveals two dis-
tinct clusters of solutions. The first cluster appears con-
centrated in the lower epsilon range (around 0.5-1.0) 
with accuracy values between 0.38 and 0.42. The sec-
ond, smaller cluster is positioned at a higher epsilon 
value (approximately 4.0) with improved accuracy val-

ues of approximately 0.44-0.45. This bimodal distribu-
tion suggests the algorithm identified two potentially 
promising regions in the solution space.

The fitness evolution plot demonstrates remarkably 
rapid convergence, reaching near-optimal fitness val-
ues within the first two iterations. After this initial sharp 
improvement, the fitness value stabilizes and maintains 
consistency throughout the remaining iterations, reach-
ing a final best fitness value of approximately 0.14350. 
This quick convergence pattern indicates that Configu-
ration 1 efficiently identified a promising solution early 
in the optimization process.

The iteration markers in the trade-off plot show that 
later iterations (represented by different colors) fo-
cused exploration around these two identified regions, 
particularly the higher-accuracy cluster. This behavior 
suggests that the algorithm effectively balanced the 
exploration of the solution space with the exploitation 
of promising areas.
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Fig. 5. The optimization results for Configuration 1 of the Bat Algorithm on the PathMNIST dataset

 5.6.3.2. Configuration 2

The optimization results for Configuration 1 and 2 il-
lustrated in Fig. 5 and 6, of the Bat Algorithm on the 
PathMNIST dataset reveal interesting patterns when 
accounting for their different maximum iteration set-
tings (14 and 2 iterations, respectively).

The privacy-accuracy trade-off plots show distinct ex-
ploration patterns. Configuration 1, with its longer op-
timization period of 14 iterations, demonstrates a more 
refined clustering of solutions, particularly around two 
key regions: one at lower epsilon values (0.5-1.0) and 
another at higher values (approximately 4.0). This ex-
tended iteration period allowed for more thorough ex-
ploration and refinement of promising areas.

Configuration 2, limited to 2 iterations, shows a more 
dispersed distribution of solutions across the epsi-
lon range (1-8). While this might initially appear as a 
broader exploration, it's important to note that this 
distribution is the result of significantly fewer optimiza-
tion steps rather than a fundamentally different search 
strategy.

The fitness evolution plots for both configurations 
show improvement from their initial values, but the ap-
parent differences in their convergence patterns must 
be interpreted within the context of their different it-
eration limits. Configuration 1's longer optimization 
period provides a more complete picture of the algo-
rithm's convergence behavior, while Configuration 2's 
shorter run offers only an initial glimpse of the optimi-
zation trajectory.

Given the identical starting conditions and popula-
tion size, the primary differentiating factor between 
these configurations is the maximum iteration count. 
This suggests that Configuration 1's more refined so-
lution clusters and stable convergence pattern are pri-
marily the result of having more iterations to optimize, 
rather than fundamental differences in the algorithm's 
behavior or efficiency.

This analysis highlights the importance of consider-
ing optimization duration when evaluating algorithm 
performance, as the number of iterations directly im-
pacts the algorithm's ability to refine its solutions and 
explore the solution space effectively.
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Fig. 6. The optimization results for Configuration 2 of the Bat Algorithm on the PathMNIST dataset

6. DISCUSSION

The comprehensive analysis of our privacy-preserv-
ing optimization framework reveals significant insights 
into the performance, computational feasibility,  and 
practical implications of different optimization ap-
proaches in medical image analysis. This discussion 
examines the critical aspects of our findings while con-
textualizing them within broader theoretical and prac-
tical frameworks.

Critical Analysis of Performance Trade-offs

Our results demonstrate complex interrelationships 
between privacy preservation, model accuracy, and 
computational efficiency across optimization methods. 
The Bayesian Optimization method's superior accuracy 
(93.62% on the Wisconsin dataset) while maintaining 
a strict privacy budget (ε = 0.501) constitutes a break-
through in balancing these competing objectives. How-
ever, this performance comes at a substantial computa-
tional cost, requiring 17,828.72 seconds of processing 
time - approximately 6.5 times longer than Random 
Search. This trade-off exemplifies the fundamental ten-

sion between optimization quality and computational 
efficiency in privacy-preserving machine learning.

The Bat Algorithm's achievement of Pareto optimality 
across datasets, even with reduced absolute accuracy, 
suggests a more nuanced approach to multi-objective 
optimization. Its ability to maintain competitive accura-
cy (93.18% for Wisconsin) while achieving varying priva-
cy budgets (ε = 2.258 and 0.293) demonstrates adaptive 
capability in managing privacy-utility trade-offs. This 
performance characteristic is particularly relevant for ap-
plications where balanced optimization across multiple 
objectives outweighs maximizing individual metrics.

Computational Feasibility and Resource 
 Requirements

The substantial variation in computational require-
ments across methods necessitates careful consider-
ation of deployment scenarios. Grid Search's consistent 
but resource-intensive approach (4,000.33 seconds for 
Wisconsin) contrasts with Random Search's more effi-
cient execution (2,749.65 seconds), suggesting differ-
ent optimal use cases based on available computation-
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al resources. Memory utilization patterns, ranging from 
787.75 MB for Bayesian Optimization to 4,348.25 MB for 
the Bat Algorithm on BreastMNIST, indicate potential 
scalability challenges for larger datasets.

Our analysis reveals that computational overhead 
scales non-linearly with dataset complexity, particular-
ly evident in the BreastMNIST results where processing 
times increased by factors of 2-3 compared to the Wis-
consin dataset. This scaling behavior suggests poten-
tial limitations for enterprise-scale implementations, 
particularly in resource-constrained environments.

Method-Specific Performance Analysis

The distinctive performance patterns of each optimi-
zation method provide insights into their operational 
characteristics. Despite higher computational costs, 
Bayesian Optimization's superior accuracy reflects its 
sophisticated exploration-exploitation balance, which 
is particularly effective in complex parameter spaces. 
The Bat Algorithm's consistent achievement of Pareto 
optimality demonstrates its effectiveness in navigating 
multi-objective optimization landscapes, though at the 
cost of absolute accuracy.

Grid Search's stable performance across datasets 
(93.40% and 74.18% accuracy) suggests reliability 
in finding good solutions, albeit with limited ability 
to adapt to specific dataset characteristics. Random 
Search's competitive performance (92.53% and 74.91% 
accuracy) with reduced computational overhead, in-
dicates its viability as a practical alternative under re-
source-limited conditions.

Scalability and Real-world Applications

The PathMNIST results provide crucial insights into 
scalability challenges, with accuracy dropping to 
44.71% despite increased computational resources. 
This performance degradation highlights potential 
limitations in scaling current approaches to more com-
plex medical imaging tasks. The observed increase in 
memory requirements (7,522.4725 MB) and execution 
time (13,678.6455 seconds) suggests that practical im-
plementations may require significant computational 
infrastructure.

Architecture and Implementation Considerations

Hyperparameter sensitivity analysis reveals distinct 
patterns across methods, with optimal learning rates 
varying from 0.01 (Grid Search) to 0.0965 (Bat Algo-
rithm). This variation suggests method-specific stability 
characteristics that must be considered during imple-
mentation. The consistent preference for larger batch 
sizes (512) in the Wisconsin dataset indicates potential 
optimization opportunities through batch processing 
strategies.

Comparative Analysis of Solution Quality

Visualization results demonstrate distinct conver-
gence patterns across methods. The Bat Algorithm's 
stepped convergence pattern suggests periodic im-

provements in solution quality, while Bayesian Optimi-
zation shows more gradual refinement. These patterns 
offer insights into the exploration-exploitation dynam-
ics of each method, with implications for selecting op-
timization strategies.

Limitations and Practical Constraints

Current framework limitations include substantial 
computational requirements for complex datasets and 
potential scalability challenges. The observed trade-
offs between privacy preservation and model perfor-
mance suggest inherent constraints that may limit ap-
plicability in highly privacy-sensitive scenarios. Memo-
ry requirements for complex datasets indicate poten-
tial deployment challenges in resource-constrained 
environments.

Future Research Directions and Improvements

Future work should focus on improving computa-
tional efficiency through techniques such as parallel 
processing and adaptive sampling strategies. Investi-
gation of hybrid optimization approaches combining 
the efficiency of Random Search with the accuracy of 
Bayesian Optimization could address current limitations. 
Developing more sophisticated privacy preservation 
mechanisms while maintaining computational feasibil-
ity represents another promising research direction.

Broader Implications and Impact

Our findings have significant implications for privacy-
preserving machine learning in medical imaging. The 
demonstrated feasibility of maintaining privacy while 
achieving competitive accuracy suggests potential ap-
plications across various medical domains. However, 
the computational requirements and performance 
trade-offs identified indicate the need for careful con-
sideration of implementation strategies in clinical set-
tings.

The framework's ability to balance privacy preser-
vation with model performance contributes to the 
broader field of privacy-preserving machine learning 
while highlighting important considerations for practi-
cal deployment. These insights inform future develop-
ment of privacy-preserving optimization strategies and 
their application in sensitive medical imaging contexts.

7. CONCLUSION

This study has demonstrated the effectiveness of pri-
vacy-preserving deep learning optimization for medi-
cal data classification through a comprehensive evalu-
ation of four distinct optimization approaches, achiev-
ing significant results across different data modalities 
(93.62% accuracy for tabular data and 74.91% for im-
age data) while maintaining robust privacy guarantees. 
Notably, the Bat Algorithm achieved an unprecedent-
ed privacy level (ε = 0.293) for medical image analysis 
while our framework's strength lies in its holistic ap-
proach to optimization, simultaneously fine-tuning 
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both model hyperparameters and privacy parameters 
through an objective function that effectively balances 
the privacy-utility trade-off. Our investigation revealed 
that different medical data modalities require special-
ized optimization strategies, with Bayesian Optimiza-
tion excelling in tabular data applications and Random 
Search providing efficient solutions for image data pro-
cessing, as demonstrated by the successful application 
of PathMNIST's complex histopathology images using 
ResNet-50 architecture. 

Looking forward, several promising research direc-
tions emerge, including developing distributed learn-
ing approaches for improved computational efficiency, 
integrating federated learning techniques, extending 
applications to diverse medical data modalities, in-
vestigating advanced model architectures, and imple-
menting transfer learning strategies to enhance model 
generalization across different medical domains. Ad-
ditionally, future work should address the ethical im-
plications and practical challenges of deploying pri-
vacy-preserving models in clinical settings, including 
developing robust validation frameworks, investigat-
ing model interpretability while maintaining privacy 
guarantees, and assessing the framework's resilience 
to various privacy attacks. This research establishes a 
strong foundation for privacy-preserving medical data 
analysis while highlighting the importance of balanced 
optimization strategies in healthcare applications, sug-
gesting promising potential for wider adoption in clini-
cal practice, provided that future developments con-
tinue to address the challenges of scalability, efficiency, 
and ethical implementation.
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