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Abstract – Distributed Denial of Service (DDoS) attacks stand out as a serious threat, capable of disrupting online services and 
businesses. The main aim of Distributed Denial of Service (DDoS) attacks is to make system services unavailable to the legitimate users. 
To detect these attacks, intrusion detection systems (IDS) continually monitor the network traffic. During this process, the IDS system 
generates high false positive rates while distinguishing low-rate DDoS (LRDDoS) and high-rate DDoS (HRDDoS) attack traffic from 
legitimate traffic. The idea behind feature selection is that picking the right network features is a key part of interpreting the difference 
between normal traffic and LRDDoS or HRDDoS attack traffic. This means the IDS performance will automatically get better. In this 
paper, we propose a scalable feature selection method that utilizes the statistical t-test to identify an optimal feature subset from original 
feature set at a low computational cost. We strongly hypothesize that the proposed feature selection method yields an optimal feature 
subset and the machine learning classifiers trained on this feature set can effectively distinguish benign, LRDDoS, and HRDDoS network 
traffic. We evaluated the proposed method on the publicly available benchmark datasets CICIDS2017, CICIDS2018, and CICDDoS2019, 
utilizing twelve supervised machine learning classifiers. Among the twelve classifiers, the Extra Tree Classifier (EXT) demonstrated 
superior performance, achieving an average accuracy of 96.50%, precision of 96.58%, and an F-Score of 96.50% across the four sample 
test datasets (D1, D2, D3, and D4). The proposed method showed consistent and superior performance in distinguishing the LRDDoS, 
HRDDoS, and benign traffic to the state-of-the-art existing works over the four test datasets. 
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1.  INTRODUCTION

As our dependence on technology continues to rise, 
the importance of cybersecurity has surged to unprec-
edented heights. The Internet of Things (IoT), cloud 
computing, mobile devices, and the widespread use of 
digital communication have all contributed to an expo-
nential increase in the attack surface for cyber-attacks 
[1]. Among all the cyberattacks, Distributed Denial of 
Service (DDoS) attacks stand out as a serious threat, ca-
pable of disrupting online services and businesses. 

Attackers carry out these network attacks by over-
whelming the networks or server’s resources (CPU, 
memory, bandwidth, etc.) with massive traffic because 

of which even a legitimate user will not able to access 
services of network or server. According to the NetScout 
threat report H1 2024, DDoS attacks rose 12.8% com-
pared to H2 2023 NetScout threat report. The longest 
attack lasted for over an hour, resulting in a count of 
825,217 DDoS attacks. Furthermore, in less than 5 min-
utes, the number of DDoS attacks increased to 4,137,582. 
In this paper, we attempt to categorize modern DDoS at-
tacks into two groups based on rapid disruption of net-
work or server services. The first group of DDoS attacks 
are high-rate DDoS (HRDDoS) attacks, which make the 
services unavailable within short period of time. The sec-
ond category of attacks consists of low-rate DDoS (LRD-
DoS) attacks. In this kind of network attack, attackers ex-
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ploit potential logic errors or vulnerabilities in the service 
to send the malicious requests. These malicious requests 
slowly make the server unavailable for legitimate users. 
Some research works focus on model building instead of 
feature selection tasks, as mentioned in [2]. These types 
of models result in high false positive rates.

Research works [3-5] developed an IDS system to 
detect DDoS attacks applying feature selection and 
machine learning techniques. These research studies 
evaluated learning machines on the CICDS2017 data-
set. However, the limitation is that the CICDDoS2017 
dataset does not represent a wide range of DDoS at-
tacks. Also, the dataset only included a limited number 
of DDoS samples, failing to cover full spectrum of DDoS 
classes.  Though studies [6-8] propose feature subsets 
to identify DDoS attacks they are not better representa-
tive features for LRDDoS and HRDDoS attacks. 

Usually, most research studies directly apply conven-
tional feature selection methods to select the optimal 
feature subset. These methods are divided into three 
categories: filter-based, wrapper-based, and embed-
ded methods. Each of these methods have their ad-
vantages and limitations. The filter-based methods cal-
culate feature importance using statistical properties 
without employing machine learning algorithms. The 
information gain (IG), chi-square, and correlation coef-
ficient (CrC) methods are fast and computationally effi-
cient, making them suitable for high-dimensional data. 
These methods may ignore interactions among fea-
tures when feature relationship is complex. Addition-
ally, when working with continuous data, there may be 
a bias towards more diverse features, which could re-
sult in the inclusion of irrelevant features in the subset.

Wrapper methods generate different feature subsets 
using random selection or heuristic selection. The ma-
chine learning algorithm will select the optimal feature 
subset based on each subset performance. While these 
methods enhance the performance of a model by us-
ing an optimal feature subset, they can be computa-
tionally costly when dealing with large datasets, may 
also limit the model generalizability.

Embedded methods use algorithms like Lasso (L1 reg-
ularization), Ridge (L2 regularization), and decision trees 
to build feature selection right into the model train-
ing process. These methods often result in improved 
generalization and performance of the model. Specific 
algorithms tailor these methods, potentially limiting 
their broader applicability and making them less inter-
pretable than filter methods. Thus, feature subsets ob-
tained by conventional feature selection techniques for 
binary classification of DDoS attacks fail to discriminate 
LRDDoS and HRDDoS attacks. Therefore, it is essential to 
identify a more appropriate and optimal feature subset 
for detection of LRDDoS and HRDDoS attacks.

The problem of accurately distinguishing between 
legitimate user traffic, LRDDoS and HRDDoS network 
traffic is the present challenge w.r.t DDoS attacks. In-

correctly identifying attack traffic can lead to system 
overload or failure, while misclassifying legitimate traf-
fic can cause service disruptions and financial losses. 
This problem can be addressed using machine learning 
with t-test feature selection, which helps to identify the 
most important features to discriminate between be-
nign and attack traffic. By focusing on the relevant fea-
tures, the system can improve its accuracy in detecting 
attacks while minimizing errors, ensuring both security 
and continuous service for legitimate users.

The motivation for this study coins from the gap in 
the present literature which does not address detec-
tion of LRDDoS and HRDDoS variants using machine 
learning techniques integrated with a lightweight 
feature selection method. Also, the immense volume 
of modern network traffic necessitates the immediate 
need for identification of key features in minimal time 
and at the same time to obtain high detection accu-
racy. LRDDoS attacks can gradually merge with legiti-
mate traffic, while HRDDoS attacks result in abrupt and 
massive data spikes. Thus, for effective detection in 
both scenarios, it is essential to focus on selecting the 
most relevant features that can distinguish between 
low-rate DDoS attack traffic and legitimate user traffic. 

At the outset, to address the limitations of convention-
al feature selection methods, in this research we propose 
a lightweight feature selection method to obtain an op-
timal feature subset that detects LRDDoS and HRDDoS 
attacks by employing the Extra Tree classifier (EXT). 

The proposed method is a lightweight solution for 
selecting significant features with less computation 
time. Following are highlights of the present work.

•	  In this research, we propose a light-weight feature 
selection method that leverages the inferential sta-
tistical t-Test to identify optimal feature set to dis-
criminate LRDDoS and HRDDoS attacks.

•	  Based on the proposed feature selection method, 
we strongly suggest 58 network traffic features for 
differentiating low-rate and high-rate DDoS traffic 
from benign traffic.

•	  To evaluate the proposed method, we utilized re-
liable and publicly available benchmark dataset 
CICDDoS2019. We tested our method on four dif-
ferent testing datasets (D1, D2, D3, and D4) ob-
tained from testing day traffic of CICDDoS2019 
dataset to achieve generalizability.

•	  We evaluated performance of twelve machine 
learning classifiers on the feature subset identified 
by our feature selection method. Among all classi-
fiers, the Extra Tree classifier (EXT) performed the 
best, with an average accuracy of 96.50%, precision 
of 96.58%, and F-score of 96.50% across four test 
datasets (D1, D2, D3, and D4).

•	  On the CICIDS2017 and CICIDS2018 datasets, an 
accuracy 99.81% and 99.99% is achieved by pro-
posed method.
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2. RELATED STUDy

In this section, we provide a brief discussion of the pop-
ular feature selection methods used to select a subset of 
features and implement the IDS system. A number of IDS 
datasets are available publicly, and it is proved that the 
CICDDoS2019 dataset is the most reliable and contains 
updated DDoS attack vector instance [6]. This led us to 
concentrate on the CICDDoS2019 IDS dataset, which has 
been the subject of evaluation in recent studies.

In cybersecurity, especially when it comes to detect-
ing Distributed Denial-of-Service (DDoS) attacks, the 
performance of machine learning models largely de-
pends on the quality of the input data. For each class 
of the CICDDoS2019 dataset DDoS attacks, Sharafaldin 
et al. [6] suggested a significant feature subset with 24 
different features using a weighted standard mean of 
random forest feature importance. The performance of 
ID3, Random Forest, and logistic regression machine 
learning classifiers is evaluated on these 24 features. 
Overall, ID3 classifier outperformed the other two, 
achieving a high detection rate of 65% and an accuracy 
of 78% on more than 7 crore instances. The approach 
they used did not address the detection of LRDDoS 
and HRDDoS attacks. They did not discuss the general-
izability of their model, which could lead to variations 
in the rate of DDoS attacks in different network data.

 To address the high dimensionality problem, S. Li et 
al. [7] suggested Truncated Lanczos-Tensor SVD to re-
duce the dimensionality of large-scale datasets. How-
ever, they did not address the adaptability, and prac-
tical evaluation of this method. Hajimaghsoodi and 
Jalili [8] suggested a novel method, i.e., a 3-phase RAD 
model, to detect DDoS attacks using a statistical ap-
proach. The number of features used to evaluate their 
model remains undisclosed and did not address the 
low-rate and high-rate DDoS attacks detection. To de-
tect, identify, categorize, and classify IoT DDoS attacks, 
Jia et al. [9] developed the edge-centric protection sys-
tem FlowGuard. However, the system has certain draw-
backs, including its dependence on artificial datasets, 
which could potentially impact its real-world applica-
bility, and its use of high-performance edge servers, 
which could limit its scalability in resource-constrained 
environments. Maheswari et.al [10], developed an op-
timized weighted voting-based ensemble model for 
detection of DDoS attacks in SDN environment. and se-
lected 20 features using statistical analysis. However, in 
this study they did not discuss the computational cost 
and detection of high- and low- rate DDoS attacks. The 
most recent work by S. Mahdavifar and A. A. Ghorbani 
[11], suggested 22 significant features using the mu-
tual information gain and developed CapsRule method 
to detect the reflection-based DDoS attacks but they 
did not study for low rate and high-rate DDoS network 
attacks. Enock Q.E. et al [12] proposed a feature selec-
tion method by integrating mutual information gain, 
correlation, and random forest feature importance for 
DDoS attacks detection using RCHT method.

G.C. Amaizu et al. [13] developed the DDoS detection 
system for 5G and B5G networks, which uses an effec-
tive feature extraction technique in conjunction with a 
composite multilayer perceptron to detect and catego-
rize DDoS attacks. The multilayer perceptron models and 
feature extraction in real-time applications may increase 
the computational burden. Cil et al. [14] suggested a deep 
learning (DL) model that combines feature extraction 
and classification. Using DNN algorithm, they achieved 
improved DDoS attack detection and classification. How-
ever, for multiclass classification, the model accuracy was 
lower. In order to construct an effective intrusion detec-
tion system (IDS) for detecting and categorizing DDoS 
attacks, A.A. Najar et al. [15] suggested a feature subset 
which contains 43 features. The creative feature selec-
tion, efficient preprocessing, and comprehensive data-
set analysis are important contributions of this study. Al-
though it provides a high detection accuracy and quick 
detection times, drawbacks include (i) inability to handle 
unbalanced data, (ii) computational complexity, (iii) de-
pendence on the dataset quality, and (iv) difficulties of ex-
trapolating to other attack types. Wei et.al [16] suggested, 
a deep learning-based hybrid AE-MLP method to classify 
the DDoS attacks. They used an autoencoder to denoise 
the DDoS attacks and then classified them using MLP. 
Ferrag et.al [17], developed a deep learning-based CNN 
method to address the classification problems of DDoS 
attacks in the smart agriculture sector. A. Alashhab et al. 
[18] suggested an IDS framework utilizing online machine 
learning (OML) to detect DDoS attacks within software-
defined networks (SDN). They identified 22 features using 
their custom dataset. However, these works did not ad-
dress the generalizability of the model, low-rate and high-
rate DDoS attacks detection. To address the generalizabil-
ity issue in IDS system, O. Barut et.al [19] developed R1D1T 
model to classify the DDoS attacks using raw packet data. 
The R1D1T model converts the data into 1-D image and 
applies self-attention-based neural networks to perform 
classification. Despite addressing these issues, the gener-
alizability and computational cost of this model pose seri-
ous limitations.

Li et al. [20], developed a mathematical model for 
detecting and mitigating low-rate DDoS attacks in 
cloud computing environments, specifically targeting 
container-based DDoS attacks. However, this work fo-
cused on LRDDoS attacks and neglected HRDDoS at-
tacks. They designed their mathematical model based 
on the number of requests per unit time in the test bed 
network. Makhduma F. Saiyed et al. [21], designed a 
lightweight method FLUID, to differentiate DDoS at-
tacks from legitimate traffic. The development of this 
approach relied on the theories of Kullback-Leibler (KL) 
divergence and greedy bin-packing information. In 
this approach, they have achieved an average 90% ac-
curacy on the CICDS2017, CICDDoS2019, and ToN-IoT 
datasets based on a single threshold value. However, 
threshold value-based methods may not be suitable 
to discriminate the LRDDoS and HRDDoS attack traffic 
from the legitimate traffic.
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Raghupathi et al. [22], suggested a feature selection 
method using independent sample t-test. This method 
was used to identify significant features for the detec-
tion of DDoS attacks and focused solely on binary clas-
sification. M. F. Saiyed and I. Al. Anbagi [23], suggested 
GADAD model to select key features using GAStats 
method to detect low-rate and high-rate DDoS attacks. 
However, this model computational time is high.

Thus, the majority of research studies focused on de-
tecting DDoS attacks but did not address for LRDDoS 
and HRDDoS traffic detection. Few studies [20], [21] 
and [23] focused on detecting either LRDDoS or HRD-
DoS attacks. The research literature shows that there 
has been limited research w.r.t detection of LRDDoS 
and HRDDoS attacks. Thus, in this paper we mainly 
focused on addressing three key areas: We aim to (1) 
identify the significant feature subset with less com-
putational cost and at 95% confidence interval; (2) dis-
criminate between LRDDoS and HRDDoS attacks with 
high accuracy and precision rates, and (3) develop a 
generalizable model. The current study addresses low-
rate and high-rate DDoS attack detection.

3. METHODOLOgy

A key statistical method for determining whether 
there is a significant difference between the means 
of two groups is the statistical t-test. It plays a cru-
cial role in the hypothesis testing, which evaluates 
whether observed differences are genuine or merely 
due to random chance. Various fields widely employ 
this straightforward yet powerful technique to de-
rive meaningful insights from data comparisons. Re-
searchers frequently use the t-test to test hypotheses 
and make inferences about population parameters 
based on sample data. Using the power of the t-test 
for statistics, we propose a method to obtain a feature 
subset that can unearth the difference between DDoS 
traffic and normal traffic.

The proposed feature selection method utilizes the 
training dataset (DMxN), where M represents the number 
of instances and N denotes the number of features, as 
outlined in the algorithm. The preprocessing steps, from 
step 1 to step 6, involve eliminating static features, those 
with standard deviation zero, and highly correlated fea-
tures. The algorithm also eliminates duplicate instances; 
if they represent less than 0.05% of the total instances 
of the class label and contain NaN or infinite values. The   
proposed feature selection method is performed from 
step 7 to step 14. The feature selection method starts by 
dividing the preprocessed dataset into three groups: 1. 
BENIGN, 2. LOW, and 3. HIGH. In step 8, algorithm selects 
the feature in sequential order from the BENIGN group 
and the LOW group. Next, we calculated the mean and 
variance of the current feature using Eq. 1 and Eq. 2 re-
spectively. In Eq.1 and Eq.2 x̄BENIGN and x̄DDoS Attack are the 
mean value of current feature considered from two 
groups; σ2

BENIGN and σ2
DDoS Attack are variances of the cur-

rent feature.

(1)

(2)

(3)

Then, Ttest_score is computed using Eq.3 wherein vari-
ables nBENIGN and nDDoS Attack represent the number of 
samples in respective groups. Here, the DDoS Attack 
can belong to LOW or HIGH group. In the next step, the 
degree of freedom (DOF) is computed using Eq. 4, and 
Tcritical value is obtained from tdistribution table with a 95% 
confidence interval w.r.t DOF.

(4)

In the subsequent steps, features that satisfy the given 
constraint are identified and considered as significant, if 
Ttest_score of the feature is greater than Tcritical value. From 
step 8 to step 10, we proceed until we reach (N-1)th fea-
ture. The same process is repeated by considering HIGH 
and BENIGN groups to identify significant features for 
detection of HRDDoS attacks. After identifying signifi-
cant feature subsets separately for LRDDoS and HRD-
DoS attacks these feature subsets are merged to obtain 
the final feature subset. The Ttest_score value is determined 
using the statistical evaluation method described in the 
Algorithm, where the ability of each feature to discrimi-
nate between Benign, Low and High classes is analyzed 
based on the independent t-Test value.

Algorithm: Proposed Feature Selection for 
Detection of Low-rate and High-rate DDoS 
Network Traffic

 Input: Train dataset DMxN

 M → Number of instances 

 N → Number of input features (1 to N-1 are the iput 
 features and Nth feature is the label)

 Output: Optimal feature subset F’

 Start

 Step 1: Remove socket features. {Unnamed 0, ‘Flow 
 Id’, ‘Source IP’ ‘Source Port’ , ‘Destination IP’ , ‘Detina- 
 tion Port’, ‘Protocol’ , ‘Timestamp’ and ‘SimilarHTTP’} 

 Step 2: Removal of duplicate instances

  D1 ← D updated dataset after removing duplicate rows

 Step 3: Removal of NaN or Inf values contained rows
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  D2 ← D1 updated dataset after removing NaN and 
  Infinity value rows

 Step 4: Removal of highly correlated features

  {fwd header length (2), subflow fwd packets, sub- 
  flow fwd bytes, subflow bwd packets, and suflow  
  bwd bytes}

 Step 5: Removal of standard deviation is zero fetures

  {fwd avg packets/bulk, fwd avg bulk rate, bwd 
  avg bytes/bulk, bwd psh flags, fwd urg flags, bwd 
  urg flags, fwd avg bytes/bulk, bwd avg packets/ 
  bulk, and bwd avg bulk rate, fin flag count, psh 
  flag count and ece flag count}

 Step 6: Handling the negative values in the dataset

 Step 7: Split the dataset into 3 groups based on 
 class labels: BENIGN, 2.LOW and 3. HIGH 

 Step 8: Calculate mean and variance of current 
 feature from BENIGN group and LOW/HIGH group

 Step 9: Calculate Ttest_score value of current 
 feature using mean and variance

 Step 10: Calculate degree of freedom for current 
 feature

 Step 11: Obtain Tcritical value with respect to 
 degree of freedom at 95% confidence interval

 Step 12: If Ttest_score value greater than  
 Tcritical value, Consider the feature is significant

 Step 13: Repeat from step 8 to step 12,  
 until the end of feature set and groups.

 Step 14: Return optimal feature subset F’

Stop

4. DATASET

To evaluate the performance of the proposed meth-
od, we utilized the CICIDS2017 [24], CICIDS2018 [25], 
and CICDDoS2019 widely used benchmark IDS datas-
ets. Among these, the CICDDoS2019 dataset satisfies 
all the eleven properties listed by Gharib et al. [26], 
making it a reliable IDS dataset. It offers diverse DDoS 
attack scenarios, including normal traffic, enabling re-
searchers to evaluate the effectiveness of their detec-
tion algorithms. Its comprehensive feature set aids in 
the development of sophisticated methods for feature 
selection and model training. The training dataset has 
more than 50 million instances split into 13 class labels. 
Of these, one label represents benign (legitimate user) 
traffic, and remaining 12 labels represent various types 
of DDoS attack traffic. The testing dataset includes 
more than 20 million instances, categorized into 8 class 
labels, where one label denotes benign traffic and the 
other 7 represents different attacks. For our experimen-
tation, we utilized a sample of 399,998 instances for 
training day dataset and 112,611 instances for testing 
day dataset to evaluate the proposed method.

Table 1. Class distribution of the CICDDoS2019 
training dataset utilized for evaluation

SN Class Label Number of Instances
1 BENIGN 56425
2 WebDDoS 439
3 UDP_Lag 31194
4 NetBIOS 31194
5 LDAP 31194
6 MSSQL 31194
7 DNS 31194
8 SYN 31194
9 UDP 31194

10 TFTP 31194
11 NTP 31194
12 SNMP 31194
13 SSDP 31194

Total 399998

Table 2. Class distribution of the CICDDoS2019 
testing dataset utilized for evaluation

SN Class Label Number of Instances
1 BENIGN 56306
2 UDP_Lag 1873
3 NetBIOS 9072
4 LDAP 9072
5 MSSQL 9072
6 PortMap 9072
7 SYN 9072
8 UDP 9072

Total 112611

Tables 1 and 2 depict the class distribution of the 
training and testing datasets respectively. To ensure 
generalizability, robustness, reduce overfitting; we 
have sampled four different testing datasets (D1, D2, 
D3, and D4) from 20 million testing day network traffic 
instances, each having 112611 network flow samples. 
Additionally, we derived a validation dataset (VD) of 
112612 samples from 50 million sequential samples of 
the CICDDoS2019 dataset. Thus, validation and testing 
datasets contain unique instances and are of same size. 
For experimental analysis, Classes labels are encoded 
by encoding benign instances as BENIGN, low-rate at-
tack traffic as LOW, and high-rate attack traffic as HIGH, 
using Andrew Visualization Plot. 

To ensure the generalizability of the proposed meth-
od, we have also considered benign, low-rate, and 
high-rate DDoS instances from publicly available data-
sets (CICIDS2017 and CICIDS2018). The CICIDS2017 and 
CICIDS2018 sample datasets information is depicted in 
Table 3.

SN Dataset Class 
Label

Number of Instances
Training Validation Testing

1 CICIDS 
2017

BENIGN 30065 9956 9979

LOW 12974 4349 4265

HIGH 59913 20013 20074

2 CICIDS 
2018

BENIGN 119981 39956 40063

LOW 1067 328 335

HIGH 118952 39716 39602

Table 3. Class distribution of CICIDS2017 and 
CICIDS2018 datasets used for evaluation
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5. EXPERIMENTATION AND RESULTS

In this section, we discuss the experimentation and 
evaluation results. All the experiments were executed 
on a Dell PC, which has an i7 Intel processor with 2.2Ghz 
speed and 16 MB RAM. To simulate the proposed work, 
the Jupiter notebook IDE and python scripts were utilized.

Fig. 1 illustrates the architecture of proposed system 
for the detection of LRDDoS and HRDDoS attacks. The 
training dataset, which initially had 87 features along 
with the target feature was input to the feature selec-
tion algorithm. The preprocessing stage reduced the 
number of feature dimensions from 87 to 61. During 
the feature selection phase, the application of a sta-
tistical t-Test resulted in 58 significant features in just 
0.49 seconds. The 58 features resulted from feature 
selection algorithm are included in the appendix. For 
evaluation of the proposed method, 58 features re-
sulted from t-Test are retained w.r.t training, validation 
and testing datasets and twelve machine learning clas-
sifiers were used to measure their classification and 
prediction performance. The classifiers included Ada-
Boost, K-Nearest Neighbors (KNN), Linear Discriminant 
Analysis (LDA), Logistic Regression (LR), Multi-Layer 
Perceptron (MLP), Naive Bayes (NB), Quadratic Discrim-
inant Analysis (QDA), Random Forest (RF), and Ridge. 
The performance evaluation metrics considered are 
Accuracy (Acc), Precision (Prec), Sensitivity (Sns), Speci-
ficity (Spe), F-score and Balanced Accuracy (BA) given 
by Eq.5 to Eq.10 respectively.

(5)

(6)

(7)

(8)

(9)

(10)

Table 4. Validation metrics of twelve machine learning 
models using the CICDDOS2019 validation dataset

Before training the classifiers, we normalized the 
training dataset using a min-max scalar, which scaled all 
the data points within the range of 0 and 1. The normal-
ized dataset with 399998 instances, which included 58 
features is input to twelve machine learning classifiers 
for training. These twelve classifiers were then validat-
ed using 112612 instances. Table 4 provides a detailed 
performance analysis of twelve machine learning mod-
els on the validation dataset (VD). Subsequently, the 
performance of machine learning models is evaluated 
on four distinct testing day subset datasets. The perfor-
mance results of twelve models on four test datasets 
(D1, D2, D3, and D4) is depicted using Table 5, Table 6, 
Table 7 and Table 8 respectively.

SN Model Acc. (%) Prec. (%) F-Score (%)
1 ADB 78.56 78.93 78.72
2 DT 82.67 82.64 82.65
3 EXT 80.92 80.98 80.94
4 KNN 83.77 83.74 83.74
5 LDA 77.44 78.98 77.43
6 LR 80.79 81.53 80.99
7 MLP 80.25 80.45 80.32
8 NB 85.23 87.50 84.44
9 QDA 27.01 9.10 13.61

10 RF 81.11 81.16 81.13
11 Ridge 76.88 78.62 76.99
12 XGB 82.52 82.50 82.50

Table 5. Performance metrics of twelve classifiers 
using the CICDDOS2019 testing day dataset D1

SN Model Acc. (%) Prec. (%) F-Score (%)
1 ADB 55.18 50.43 48.87
2 DT 82.17 86.86 83.99
3 EXT 96.12 96.24 96.15
4 KNN 88.12 92.41 89.32
5 LDA 88.10 90.99 88.97
6 LR 81.22 90.72 83.73
7 MLP 82.73 91.22 85.12
8 NB 90.58 89.43 89.55
9 QDA 44.57 73.90 31.11

10 RF 90.07 90.75 90.30
11 Ridge 53.56 71.62 49.54
12 XGB 95.30 95.58 95.41

Table 6. Performance metrics of twelve classifiers 
using the CICDDOS2019 testing day dataset D2

SN Model Acc. (%) Prec. (%) F-Score (%)
1 ADB 54.19 50.52 49.30
2 DT 91.60 92.70 91.98
3 EXT 96.56 96.63 96.56
4 KNN 87.09 92.15 88.46
5 LDA 88.32 91.09 89.14
6 LR 79.20 90.35 81.97
7 MLP 80.96 90.86 83.62
8 NB 92.06 91.36 91.47
9 QDA 43.67 73.26 30.39

10 RF 89.65 89.74 89.62
11 Ridge 53.58 60.47 49.56
12 XGB 95.31 95.63 95.43

Table 7. Performance metrics of twelve classifiers 
using the CICDDOS2019 testing day dataset D3

SN Model Acc. (%) Prec. (%) F-Score (%)

1 ADB 54.18 48.73 48.63
2 DT 85.23 89.39 86.68
3 EXT 96.67 96.73 96.67
4 KNN 87.35 92.19 88.69
5 LDA 88.06 91.04 88.96
6 LR 79.20 90.41 82.00
7 MLP 81.16 90.90 83.81
8 NB 92.04 91.23 91.35
9 QDA 43.98 73.43 30.60

10 RF 88.29 89.61 88.75
11 Ridge 53.51 60.54 49.55
12 XGB 95.49 95.73 95.59
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Table 8. Performance metrics of twelve classifiers 
using the CICDDOS2019 testing day dataset D4

SN Model Acc. (%) Prec. (%) F-Score (%)

1 ADB 55.16 48.98 49.23

2 DT 85.12 89.36 86.60

3 EXT 96.66 96.72 96.65

4 KNN 87.46 92.22 88.76

5 LDA 88.12 91.08 89.01

6 LR 79.12 90.39 81.94

7 MLP 81.16 90.91 83.82

8 NB 92.06 91.27 91.39

9 QDA 43.94 73.41 30.58

10 RF 89.10 89.99 89.41

11 Ridge 53.49 66.25 49.54

12 XGB 95.30 95.60 95.41

From these results, we observed that ADB, QDA and 
Ridge performance is lower, and the test accuracy ranges 
between 43% and 55% for these classifiers. With the ex-
ception of the EXT model, the accuracy of the remaining 
models ranged from 80% to 95%. Overall, the EXT model 
showed superior performance compared to the remain-
ing eleven machine learning models. The EXT tree model 
outperformed eleven models with an average accuracy of 
98.31%, precision of 99.97%, and F-score of 98.29%. Using 
our method, the model is able to detect benign traffic and 
HRDDoS attack traffic with an average balanced accuracy 
of 98%, while LRDDoS attacks are detected with an aver-
age balanced accuracy of 91.20% which is very signifi-
cant. The hyperparameter settings used for EXT classifier 
are n_estimaters = 10, criterion='gini’, max_depth=none, 
min_samples_split = 2, min_samples_leaf = 1, max_fea-
tures = 'auto', n_jobs =1, random_state = none.

Fig. 1. Architecture for detection of low-rate and high-rate DDoS attacks

Furthermore, to analyze the model in-depth we uti-
lized receiver operating characteristics (ROC) curves 
as an evaluation metric. Fig. 2 depicts ROC curves ob-
tained when the model is evaluated on the four test 
datasets (D1, D2, D3 and D4).

Table 9 displays the detailed performance results of 
the EXT model against BENIGN, LRDDoS, and HRDDoS 
attacks. In this study, we also present the balanced ac-
curacy metric, which reveals the performance of indi-
vidual classes w.r.t three-class classification.

COMPARISON WITH EXISTINg FEATURE 
SELECTION METHODS:

We have compared our feature selection method to 
widely applied methods such as filtering (information 
gain and variance threshold), embedding (logistic re-
gression), and wrapping (Random Forest Importance 

and Extra Tree Classifier Importance). Table 10 depicts 
the comparison of the proposed method to some of 
the widely used feature selection methods. The In-
formation Gain method identified 32 features and 
achieved an average accuracy of 74% across four test 
datasets using the EXT classifier. In contrast, the logis-
tic regression method identified 27 features with an 
average accuracy of 80%. Similarly, the random forest 
importance method also reached an average accuracy 
of 80% with 18 features, while the Extra Tree classifier 
importance achieved the same accuracy using 17 fea-
tures. However, our proposed feature selection meth-
od outperformed all five methods, achieving an aver-
age accuracy of 96.50% using 58 significant features. In 
Table 10, NOF denotes number of features. Fig. 3 shows 
comparison of how well the EXT model worked on four 
testing day datasets using conventional feature selec-
tion methods vs. proposed method.
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Table 9. Performance metrics obtained for 
validation and four testing day datasets of 
CICDDOS2019 for the EXT model using the 

proposed feature selection

D
at

as
et Class 

Label

Sns. (or) 
Recall 

(%)

Spe. 
(%)

Pre. 
(%)

Acc. 
(%)

F-Score 
(%)

BA 
(%)

VD

BENIGN 99.99 99.99 99.99 99.99 99.99 99.99

LOW 60.24 87.07 58.03 80.93 59.12 73.65

HIGH 63.06 87.53 65.16 80.92 64.09 75.29

D1

BENIGN 96.60 99.94 99.94 98.27 98.25 98.27

LOW 84.24 97.97 81.69 96.63 82.94 91.10

HIGH 98.39 96.62 95.16 97.34 96.75 97.51

D2

BENIGN 96.67 99.96 99.96 98.31 98.28 98.31

LOW 84.24 98.40 85.03 97.03 84.63 91.32

HIGH 99.40 96.69 95.30 97.78 97.31 98.05

D3

BENIGN 96.75 99.99 99.99 98.37 98.34 98.37

LOW 84.13 98.51 85.87 97.11 84.99 91.32

HIGH 99.61 96.69 95.31 97.87 97.41 98.15

D4

BENIGN 96.65 99.99 99.99 98.32 98.29 98.32

LOW 84.17 98.53 86.08 97.14 85.11 91.35

HIGH 99.69 96.63 95.23 97.86 97.41 98.16

Table 10. Balanced accuracy of proposed feature 
selection vs. conventional methods using EXT 

model

SN
Feature 

Selection 
Method N

O
F D1 

(%)
D2 
(%)

D3 
(%)

D4 
(%) M

od
el

Time 
(Sec.) for 
feature 

selection

1 Information 
Gain 32 76.23 72.57 73.71 73.66 EXT 94.76

2 Logistic 
Regression 27 71.73 89.53 89.58 89.57 EXT 4.53

3 Variance 
Threshold 18 82.74 80.71 81.27 81.32 EXT 0.55

4
Random 

Forest 
Importance

21 82.07 79.97 80.54 80.56 EXT 174.80

5
Extra Tree 
Classifier 

Importance
17 81.96 79.85 80.36 80.37 EXT 16.78

6 Base Line 
78 Features 78 82.18 80.06 80.78 80.71 EXT -

7 Proposed 58 96.12 96.56 96.67 96.66 EXT 0.49

(a) (b)

(c) (d)
Fig. 2. (a) ROC curve of EXT model for test dataset D1 (b) ROC curve of EXT model for test dataset D2 (c) 

ROC curve of EXT model for test dataset D3 (d) ROC curve of EXT model for test dataset D4
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Fig. 3. Comparison of proposed feature selection vs. 
Conventional methods using EXT model

STATE-OF-THE-ART COMPARISON  
WITH EXISTINg WORKS:

Table 11 compares the proposed method with state-
of-the-art existing systems over the four test datasets 
(D1, D2, D3, and D4). The existing system [27] showed 
the balanced accuracy (97.16%) is higher than the pro-

posed method over the D4 test dataset. However, this 
method demonstrated inconsistent performance over 
the four test datasets. When compared to [27], the pro-
posed system showed consistent performance with 
96.50% balanced accuracy on average. Though existing 
system's feature dimensions are lower compared to the 
proposed method, the low-rate and high-rate DDoS at-
tack detection performance of the proposed method is 
superior to the existing methods and systems.

EVALUATION ON CICIDS2017 AND CICIDS2018: 

The 58 features obtained using the proposed feature 
selection method are projected on CICIDS2017 and 
CICIDS2018 datasets and normalized using min-max 
scalar. The normalized training dataset is then used to 
train the EXT classifier and is validated using valida-
tion dataset. Then the proposed method is evaluated 
w.r.t testing dataset using the trained and validated 
EXT model. The performance of EXT model, over the 
CICIDS2017 and CICIDS2018 datasets are depicted in 
Table 12. The experiment results proved that the pro-
posed method showed better balanced accuracies (an 
average of 99.81% and 99.99%) over the two datasets. 

(a) (b)
Fig 4. (a) ROC curve of EXT model for CICIDS2017, (b) ROC curve of EXT model for CICIDS2018.

Table 11. Comparison of proposed method to existing research studies on DDoS attack detection w.r.t 
balanced accuracy metric metric over the CICDDoS2019 dataset

SN Author & year FC Model
Balanced accuracy of testing datasets

D1 (%) D2 (%) D3 (%) D4 (%)

1 [6] & 2019 24 EXT 84.93 83.53 83.88 83.98

2 [9] & 2020 10 EXT 64.13 59.52 62.73 62.81

3 [13] & 2021 10 EXT 72.81 86.96 86.50 90.91

4 [14] & 2021 68 EXT 93.15 78.80 78.54 93.32

5 [27] & 2022 40 EXT 96.66 91.40 92.42 97.16

6 [10] & 2022 20 EXT 82.87 82.84 82.50 83.12

7 [28] & 2023 6 EXT 77.27 76.85 76.05 76.12

8 [18] & 2024 14 EXT 64.40 61.59 61.74 61.74

9 [11] & 2024 22 EXT 73.69 71.42 72.38 72.36

10 [15] & 2024 43 EXT 80.25 75.85 77.61 78.07

11 [29] & 2024 10 EXT 73.55 74.72 73.35 73.25

12 Base line 78 EXT 82.19 80.06 80.79 80.72

13 Proposed 58 EXT 96.12 96.56 96.67 96.66



Table 12. Performance metrics of EXT model using 
CICIDS2017 and CICIDS2018 datasets

D
at

as
et Class 

Label

Sns. or 
Recall 

(%)

Spe. 
(%)

Pre. 
(%)

Acc. 
(%)

F-Score 
(%)

BA 
(%)

CI
CI

D
S2

01
7 BENIGN 99.53 99.94 99.85 99.85 99.69 99.74

LOW 99.88 99.97 99.83 99.96 99.85 99.92

HIGH 99.93 99.69 99.78 99.83 99.86 99.81

CI
CI

D
S2

01
8 BENIGN 100 99.99 99.99 99.99 99.99 99.99

LOW 100 100 100 100 100 100

HIGH 99.99 100 100 99.99 99.99 99.99

The ROC curves of EXT model over the CICIDS2017 
and CICIDS2018 datasets is depicted in Fig. 4

Results proved that our proposed method also 
performed better on the other two popular datasets 
(CICIDS2017 and CICIDS2018). The EXT model perfor-
mance on the CICIDS2017 dataset in terms of accuracy, 
precision, recall, and f-score was 99.81%, while on the 
CICIDS2018 dataset, it was 99.99%. This indicates that 
our proposed model achieved generalizability.

Here is a summary of the results and key observa-
tions:

•	 Authors & Years: The studies range from 2019 to 
2024, with each study offering performance scores 
for four different datasets (D1, D2, D3, and D4).

•	 Performance (FC): The number of features selected 
(FC) varies across studies, from as low as 6 to as 
high as 78.

•	 Performance Scores (D1 to D4): The accuracy scores 
(D1, D2, D3, and D4) vary across various IDS stud-
ies, with values generally falling within a range from 
59.52% to 97.16%. The highest performance scores 
tend to appear in more recent studies (2022-2024).

•	 Baseline: The baseline performance, with 77 fea-
tures selected, shows moderate accuracy (ranging 
from 80.06% to 82.19%).

•	 Proposed Model: The proposed model, with 58 fea-
tures, achieves very high performance, with accuracy 
scores of 96.12%, 96.56%, 96.67%, and 96.66% w.r.t 
D1, D2, D3, and D4 datasets respectively, outperform-
ing the baseline and other state-of-the-art studies.

Key Observations

i. The proposed model demonstrates significant im-
provement over previous research studies on DDoS 
attack detection, with higher accuracy across all 
datasets.

ii. The proposed feature selection method reduced 
33.33% of the feature space. 

iii. The computational cost of the EXT model using 78 
features (baseline features) is 25.5 seconds, where-

as using 58 features obtained by proposed method 
it is just 14.99 sec. 

iv. The baseline and earlier studies (2019-2020) gen-
erally show lower performance, indicating that 
newer models, including the proposed one, offer 
enhanced results.

v. Studies with fewer features (e.g., [6] in 2019 and [9] 
in 2020) typically show lower accuracy, while more 
recent studies (especially from 2022 and 2023) 
exhibit better accuracy, possibly due to improved 
methodologies or optimizations in feature selec-
tion and model performance.

Thus, this summary highlights the significant advan-
tage of the proposed method in comparison to previous 
work, both in terms of accuracy and feature selection.

6. CONCLUSION

Distributed Denial of Service (DDoS) attacks can 
severely impact IT services by rendering systems in-
accessible to legitimate users. Despite the challenge 
involved in detection of DDoS attacks, a much more 
critical challenge is to differentiate LRDDoS traffic from 
legitimate traffic. In this paper, we propose a feature 
selection method that leverages the statistical t-Test to 
improve the IDS ability to predict LRDDoS and HRDDoS 
attack traffic more accurately and precisely.

The features obtained using the proposed feature 
selection method aids the machine learning model to 
detect LRDDoS and HRDDoS attacks at a 95% confi-
dence level. We evaluated the proposed method on CI-
CIDS2017, CICIDS2018, and CICDDoS2019 datasets. To 
generalize the learning model for intrusion detection, 
we evaluated the performance of the trained model us-
ing four distinct testing datasets obtained using CICD-
DoS2019 dataset which contains network traffic flows 
unseen during training and validation phase. For evalu-
ation, we have considered twelve machine learning clas-
sifiers. Among all learning models, the Extra Tree (EXT) 
model has performed better. When these four testing 
day datasets are used for experimental study, the EXT 
model has achieved an average accuracy of 96.50%, a 
precision of 96.58%, and an F-Score of 96.50%. Overall, 
the EXT model showed an average accuracy of 99.81% 
and 99.99% on CICIDS2017 and CICIDS2018 datasets 
respectively. These results indicate that feature set ob-
tained using the proposed feature selection with extra 
tree learning machine addressed generalizability.

 It is also observed that the computational time for 
finding the feature subset is much lower compared 
to the conventional methods and that the proposed 
method shows comparatively better performance in 
discriminating low-rate DDoS attack, high-rate DDoS 
attack and benign network traffic. 

In this paper, the research work is limited to finding 
an optimal feature subset based on feature selection 
using t-Test and integrating t-Test feature selection with 
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EXT classifier for machine learning. Future research work 
could focus on improving the accuracy of LRDDoS at-
tacks detection using new feature extraction methods. 
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IG Information Gain

LR Logistic Regression

RFFI Random Forest Feature Importance

EXT Extra Tree Classifier 

VT Variance Threshold

FC Feature Count

SN Serial Number
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Appendix:
List of 58 features selected using proposed feature selection 

SN Feature Name SN Feature Name SN Feature Name SN Feature Name

1 Total Fwd Packets 16 Flow IAT Max 31 Packet Length Std 46 Active Mean

2 Total Backward Packets 17 Fwd IAT Mean 32 Packet Length Variance 47 Active Std

3 Total Length of Fwd Packets 18 Fwd IAT Max 33 SYN Flag Count 48 Active Max

4 Fwd Packet Length Max 19 Bwd IAT Total 34 RST Flag Count 49 Active Min

5 Fwd Packet Length Min 20 Bwd IAT Mean 35 ACK Flag Count 50 Idle Mean

6 Fwd Packet Length Mean 21 Bwd IAT Std 36 URG Flag Count 51 Idle Std

7 Fwd Packet Length Std 22 Bwd IAT Max 37 CWE Flag Count 52 Idle Min

8 Bwd Packet Length Max 23 Bwd IAT Min 38 Down/Up Ratio 53 Inbound

9 Bwd Packet Length Min 24 Fwd PSH Flags 39 Average Packet Size 54 Flow Duration

10 Bwd Packet Length Mean 25 Bwd Header Length 40 Avg Fwd Segment Size 55 Fwd IAT Total

11 Bwd Packet Length Std 26 Fwd Packets/s 41 Avg Bwd Segment Size 56 Fwd IAT Std

12 Flow Bytes/s 27 Bwd Packets/s 42 Init_Win_bytes_forward 57 Fwd Header Length

13 Flow Packets/s 28 Min Packet Length 43 Init_Win_bytes_backward 58 Idle Max

14 Flow IAT Mean 29 Max Packet Length 44 act_data_pkt_fwd

15 Flow IAT Std 30 Packet Length Mean 45 min_seg_size_forward


