
Federated Learning Algorithm to Suppress 
Occurrence of Low-Accuracy Devices

607

Original Scientific Paper

Abstract – In recent years, federated learning (FL), a decentralized machine learning approach, has garnered significant attention. FL 
enables multiple devices to collaboratively train a model without sharing their data. However, when the data across devices are non-
independent and identically distributed (non-IID), performance degradation issues such as reduced accuracy, slower convergence 
speed, and decreased performance fairness are known to occur. Under non-IID data environments, the trained model tends to exhibit 
varying accuracies across different devices, often overfitting on some devices while achieving lower accuracy on others. To address 
these challenges, this study proposes a novel approach that integrates reinforcement learning into FL under Non-IID conditions. By 
employing a reinforcement learning agent to select the optimal devices in each round, the proposed method effectively suppresses 
the emergence of low-accuracy devices compared to existing methods. Specifically, the proposed method improved the average 
accuracy of the bottom 10% devices by up to 4%, without compromising the overall average accuracy. Furthermore, the device 
selection patterns revealed that devices with more diverse local data tend to be chosen more frequently.
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1.	 	INTRODUCTION

In recent years, with advancements in the Internet of 
Things (IoT) and artificial intelligence, machine learn-
ing technologies have been utilized in various aspects 
of daily life, bringing significant convenience to people. 
Concurrently, the explosive increase in data volume 
has led to privacy breaches, heightening concerns 
regarding privacy and security. Traditional machine 
learning methods require the aggregation of data in a 

single location. For example, many smartphones con-
tain private data that must be integrated for training. 
However, aggregating data in one place not only re-
sults in high communication costs and significant bat-
tery consumption on devices but also increases the risk 
of compromising user data privacy and security.

Federated learning (FL), introduced by Google in 2016 
[1], has garnered attention as a decentralized machine 
learning approach that addresses these issues. FL has 
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demonstrated its efficacy in enabling global-scale col-
laborative training, as evidenced by its successful appli-
cation in rare cancer boundary detection. This initiative 
aggregated insights from 71 hospitals spanning six con-
tinents while rigorously preserving patient data privacy 
[2]. However, it is crucial to recognize that despite its in-
herent privacy-preserving advantages, FL is not imper-
vious to privacy leakage stemming from shared model 
updates. Recent scholarly work, such as the differentially 
private knowledge transfer paradigm proposed by Qi et 
al. [3], underscores the necessity of integrating supple-
mentary privacy-enhancing mechanisms to bolster FL's 
resilience against inference attacks. Furthermore, Bosca-
rino et al. [4] highlighted FL's pivotal role in supporting 
indigenous data sovereignty, illustrating its potential to 
empower communities in maintaining control over sen-
sitive genomic information.

Communication efficiency constitutes another sig-
nificant impediment to the widespread adoption of FL. 
Wu et al. [5] introduced FedKD, an adaptive knowledge 
distillation strategy coupled with gradient compression 
techniques, which substantially curtails communication 
overhead, thereby tackling a critical scalability bottle-
neck. Similarly, the comprehensive survey by Asad et al. 
[6] meticulously examined existing methodologies and 
prospective avenues for alleviating FL's communication 
costs, reinforcing the urgency and multifaceted nature 
of this challenge in practical deployments.

A further salient obstacle in federated learning arises 
from the Non-Independent and Identically Distributed 
(Non-IID) nature of local datasets across participat-
ing devices. This inherent data heterogeneity not only 
diminishes model accuracy but also adversely affects 
the active engagement of users, thereby complicating 
model convergence and the reliable evaluation of per-
formance [7, 8]. Personalized federated learning frame-
works, such as the one proposed by Lin et al. [9], have 
been developed to address these non-IID issues by tai-
loring local models with a focus on communication effi-
ciency, robustness, and fairness concurrently, represent-
ing a notable trajectory in contemporary FL research.

The issue of fairness in federated learning has 
emerged as a particularly pressing concern, primarily 
due to the intrinsic heterogeneity among participating 
clients. Chaudhury et al. [10] emphasized the impor-
tance of explicitly addressing fairness, proposing solu-
tions grounded in cooperative game theory to ensure 
equitable model performance across diverse client 
populations. Moreover, recent innovations like FedFed, 
introduced by Yang et al. [11], prioritize the mitigation 
of non-IID effects through selective feature distillation, 
carefully balancing the inherent trade-offs between 
model accuracy and privacy preservation.

These recent advancements collectively underscore 
the imperative for federated learning to continue its 
evolution by comprehensively addressing the inter-
twined challenges of privacy, communication effi-
ciency, fairness, and data heterogeneity. Such holistic 

approaches are essential to ensure the deployment of 
robust, scalable, and equitable FL systems in diverse 
real-world settings, aligning closely with the practical 
motivations and ongoing challenges elaborated upon 
within this study.

In FL, the process of sharing and updating models is 
repeatedly performed while maintaining the data on 
each device, thereby enabling training while protect-
ing privacy. FL randomly selects a subset of devices to 
participate in each update, rather than having all de-
vices participate each time, which improves scalability 
and reduces communication costs.

However, FL has several limitations. The first is that 
data across devices may be non-independent and 
identically distributed (non-IID). This implies that the 
data distribution varies across devices, which differ in 
the labels they hold or the amount of data they pos-
sess. Therefore, the nature of non-IID data complicates 
FL training and evaluation.

Another challenge in FL is fairness, as discussed in Sec-
tion 3, "Heterogeneity and Performance Fairness." Fair-
ness issues arise from various perspectives, including the 
fairness of machine learning algorithms, as described by 
Pessach et al. [12] and in FL device selection, as raised by 
Vucinich et al. [13]. This study focuses on fairness in perfor-
mance, particularly in devices with lower accuracy. Spe-
cifically, under non-IID data conditions, the differing data 
distributions on each device tend to cause high variance 
in model test accuracies across devices. In such situations, 
performance fairness in FL is likely to be compromised, 
leading to an increase in low-accuracy devices.

This paper proposes a novel approach that applies re-
inforcement learning to address the issue of low-accura-
cy devices in FL. Conventional methods typically employ 
random device selection and enhance aggregation to 
improve performance. However, these methods tend to 
prioritize reducing the variance in accuracy over improv-
ing average accuracy, without sufficiently considering 
the performance enhancement of low-accuracy devices. 
This study aims to suppress low-accuracy devices more 
effectively than other methods while maintaining the 
performance of high-accuracy devices. The proposed 
method utilizes a reinforcement learning agent to learn 
how to improve the accuracy of lower-performing devic-
es in each round, with the aim of enhancing the perfor-
mance of low-accuracy devices without compromising 
average accuracy compared to existing methods. The 
contributions of this study are as follows:

•	 A novel algorithm that applies reinforcement 
learning is designed to address the issue of low-ac-
curacy device occurrence in FL. This algorithm en-
ables effective device selection during the FL train-
ing process, thereby suppressing the emergence of 
low-accuracy devices.

•	 Compared to existing methods, the proposed 
method significantly improves the average accu-
racy of the bottom 10% of devices in a non-IID data 
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environment without reducing the overall average 
accuracy. This result demonstrates that the pro-
posed method contributes to model fairness and 
performance enhancement, even under non-IID 
data conditions.

•	 We confirmed that the proposed method can ef-
fectively suppress the impact of low-accuracy de-
vices on complex datasets with more than 10 class-
es. This validates the effectiveness of the proposed 
method across a wide range of datasets.

The structure of this paper is as follows: Section 2 
presents background information on FL. Section 3 re-
views related research. Section 4 describes the details 
of the proposed FL algorithm that utilizes reinforce-
ment learning. Section 5 presents the evaluation re-
sults of the proposed method using real-world datas-
ets. Finally, Section 6 concludes the paper.

2.	 BACKGROUND

FL is a method for training models through iterative 
communication between a central server and multiple 
devices. Each round consists of the following steps, which 
form a continuous flow referred to as a "round." The learn-
ing process progresses by repeating these rounds.

i.	 Initialization: Before starting the first round, the 
central server initializes the weights of the global 
model.

ii.	 Device Selection: At the beginning of each 
round, the central server randomly selects the 
devices according to a specified ratio. Subse-
quently, the current global model weights are 
sent to the selected devices.

iii.	 Update: In this phase, each device trains the 
global model based on its local dataset and 
sends the updated local model weights back to 
the central server.

iv.	 Aggregation: The central server aggregates the 
received updated local model weights to update 
the global model.

v.	 Termination: This process is terminated when the 
global model converges and reaches a specific 
threshold. If convergence is not achieved, the 
process returns to device selection and proceeds 
with local updates and weight aggregation.

FedAVG [14], a fundamental FL framework, conducts 
learning as described in Equation (1):

(1)

where wk
t represents the weights of the local model of 

device k at round t, with wk
t+1 denoting the updated 

weights of the local model at round t+1; ∇Lk (wk
t; Dk) 

indicates the gradient of the loss function with respect 
to the local dataset Dk. In this manner, each device up-
dates the model weights wk

t using its local dataset Dk 
and learning rate η.

Next, the central server updates the global model by 
aggregating the weights wk

t+1 collected from each de-
vice according to Equation (2).

(2)

where wt is the weight of the global model at round t; 
K is the number of devices selected in round t; nk is the 
number of data samples on device k; and n is the total 
number of data samples across all devices.

3.	 RELATED WORK

3.1. Device Selection Techniques for FL

Recent investigations have explored diverse method-
ologies for optimizing device selection within federat-
ed learning frameworks, primarily focusing on enhanc-
ing overall model performance and training efficiency. 
For instance, Tian et al. [15] introduced FedRank, a cli-
ent selection method predicated on ranking that lever-
ages imitation learning to mitigate cold-start issues 
frequently encountered with reinforcement learning-
based techniques. By employing a pairwise ranking 
strategy, FedRank effectively selects clients based on 
system and data heterogeneity, demonstrating signifi-
cant improvements in convergence speed and energy 
efficiency. Furthermore, 

Pan et al. [16] developed a contextual client selection 
framework utilizing a Neural Contextual Combinato-
rial Bandit (NCCB) algorithm. This framework extracts 
client features through locality-sensitive hashing and 
exploits correlations among datasets, resulting in re-
duced training duration and enhanced model accu-
racy, approaching performance levels observed in IID 
scenarios. 

In a related vein, Zhang et al. [17] proposed an ap-
proach integrating spectrum allocation optimization 
with device selection for federated learning in wireless 
networks. Their method aims to minimize training de-
lay and energy consumption by selecting devices ac-
cording to the divergence between local and global 
model weights, thereby facilitating faster convergence 
under non-IID conditions. While these methodologies 
offer considerable advancements in device selection 
strategies and overall system efficiency, it is crucial to 
acknowledge that none of these explicitly address fair-
ness among devices, such as ensuring balanced accu-
racy or equitable participation across heterogeneous 
data distributions.

3.2.	 Federated Reinforcement Learning 
	 (FRL)

FRL is an approach that combines FL with reinforce-
ment learning (RL). FL focuses on collaborative train-
ing of models across multiple devices while preserv-
ing privacy, whereas FRL introduces reinforcement 
learning techniques to enable optimal device selection 
and parameter tuning. In FRL, the elements of RL (en-
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vironment, state, and action) are applied within the FL 
framework to potentially address complex issues [18]. 
Thus, FRL holds promise for overcoming the limitations 
of FL and is expected to have applications in various 
fields. Research on the use of reinforcement learning 
for device and client selection in FL has been active 
[19-22], with selections directly impacting the quality 
and utility of the model, which makes this a highly im-
portant area.

Wang et al. [19] proposed FAVOR, which utilizes the 
double deep-Q-network (DDQN) algorithm for client 
selection. This method allows device and client selec-
tion, which enhances convergence speed of the model 
under non-IID conditions, thereby saving on compu-
tational resources. However, because DDQN model 
training is limited to a single client, the agent may not 
rapidly converge.

Additionally, Bouaziz et al. [22] proposed FL to ad-
dress system and static heterogeneity using reinforce-
ment learning (FLASH-RL), which employs the DDQN 
model to perform client selection, aimed at reducing 
computational and communication costs. By enabling 
multi-action selection and learning, their approach ac-
celerates the learning process. Furthermore, FLASH-RL 
contributes to latency reduction by individually evaluat-
ing each client using a proprietary evaluation function.

Yu et al. [23] introduced DDPG-AdaptConfig, a deep 
reinforcement learning framework based on Deep De-
terministic Policy Gradient (DDPG), which adaptively se-
lects devices and configures local training hyperparam-
eters such as batch size and epoch count. This method 
incorporates a transformer-based actor network to cap-
ture heterogeneous information from model parame-
ters and applies clustering-based aggregation to further 
accommodate system and data diversity.

3.3.	Heterogeneity  and Performance 
	 Fairness

Shi et al. [24] argue that many current FL frameworks 
are designed with a central server-centric perspective, 
prioritizing metrics such as convergence speed and 
overall model accuracy, often at the expense of indi-
vidual client needs. This imbalance can disincentivize 
participation from less capable clients and potentially 
compromise the global model's representativeness. 
Their work proposes a taxonomy of fairness-aware FL 
methodologies, identifying critical stages where fairness 
considerations are paramount, including client selec-
tion, optimization processes, and incentive mechanisms.

Furthermore, Rafi et al. [25] emphasize that fairness 
issues in FL extend beyond client selection to encom-
pass reward allocation strategies. They contend that 
the uniform distribution of global models to all clients, 
irrespective of their individual contributions to the 
training process, can be perceived as unfair, particu-
larly by clients who have invested more resources or 
data. The authors also highlight the potential for demo-

graphic biases, such as those related to gender or eth-
nicity, to compound these fairness challenges within FL 
systems.

Chen et al. [26] investigate the inherent trade-off 
between privacy preservation and fairness in FL. Their 
analysis suggests that privacy-enhancing techniques, 
such as the introduction of noise or limitations on data 
sharing, can disproportionately impact disadvantaged 
groups by causing a greater degradation in their model 
performance compared to others. Conversely, efforts to 
enhance fairness might necessitate increased data trans-
parency, potentially leading to heightened privacy risks.

Huang et al. [27] categorize fairness in FL into two 
primary dimensions: collaboration fairness and perfor-
mance fairness. Collaboration fairness addresses the 
equitable distribution of rewards and the provision 
of adequate incentives for client participation. Perfor-
mance fairness, on the other hand, focuses on ensur-
ing consistent model accuracy across all clients. The 
authors assert that the simultaneous achievement of 
both collaboration and performance fairness is crucial 
for the development of sustainable and robust FL sys-
tems, particularly in real-world applications character-
ized by significant client heterogeneity.

These perspectives collectively demonstrate that 
fairness in FL is a multifaceted issue that intersects with 
client heterogeneity, privacy concerns, and system 
sustainability. Addressing fairness effectively requires 
comprehensive strategies that go beyond mere ac-
curacy optimization. In real-world scenarios, the data 
on devices are often non-IID, which accelerates imbal-
anced learning across devices. Data heterogeneity pos-
es a significant challenge in FL, leading to variations in 
learning outcomes and substantial differences in mod-
el accuracy among devices.

The conventional FedAVG method [14] is known to 
exhibit unstable performance under non-IID condi-
tions, with some devices demonstrating significantly 
higher or lower accuracy than others. In such situa-
tions, not only overall model accuracy enhancement 
but also performance fairness across devices should 
be considered. Performance fairness ensures that the 
model performs uniformly across all participating de-
vices, preventing scenarios in which low-performance 
devices are disproportionately affected, thereby im-
proving overall fairness.

Huang et al. [28] successfully increased the con-
vergence speed of the model while maintaining per-
formance fairness by employing a dual-momentum 
descent method and weighted aggregation that ac-
counts for client accuracy and participation frequency. 
Wentao et al. [29] introduced federated fairness and 
effectiveness (FedFE), which integrates momentum 
gradient descent into the FL process and performs ac-
curacy-based weighted aggregation, thereby achiev-
ing improvements in both fairness and convergence 
speed. Despite these advancements, a sufficient num-
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ber of studies have not been conducted on complex 
datasets with more than 10 classes, leading to a lack 
of validation regarding their adaptability to multiclass 
environments.

These studies presented effective approaches for 
addressing imbalances caused by non-IID data while 
enhancing performance fairness. This study focuses on 
performance fairness, specifically aiming to construct 
models for non-IID data environments.

Performance fairness refers to the uniformity of mod-
el performance across all devices participating in FL. In 
this paper, we define performance fairness as "achiev-
ing as equal accuracy as possible for all devices within 

FL," with the objective of enhancing this fairness while 
suppressing the emergence of low-accuracy devices. 

Li et al. [30] proposed q-fair federated learning (q-
FFL), which improves performance fairness by placing 
greater emphasis on devices with larger losses. Spe-
cifically, q-FFL mitigates performance disparities by 
weighting devices' losses using a parameter q (where q 
≥ 0), which controls the emphasis on high-loss clients. 
A larger q leads to a stronger focus on fairness across 
clients. However, the appropriate value of q must be 
determined empirically, as it depends on the dataset 
characteristics and involves a trade-off between fair-
ness and overall accuracy.

Fig. 1. Overview of the proposed method

Although the aforementioned methods represent 
noteworthy progress in addressing fairness and per-
formance challenges in federated learning, they are  
predominantly constrained by their reliance on pre-de-
fined parameters and their limited adaptability in high-
ly heterogeneous and multiclass scenarios. In contrast, 
our approach introduces a dynamic device selection 
mechanism guided by reinforcement learning, which 
specifically prioritizes devices with lower predictive ac-
curacy and incrementally enhances their performance 
over the course of the federated training process. A 
comprehensive comparative analysis, presented in 
the experimental evaluation section, benchmarks our 
method against the techniques described in [14, 29–
30]. Although we did not directly compare our method 
with [28], we confirmed that it outperforms [29]. As 
[29] has been shown to achieve better performance 
than [28], we considered a comparison with [29] suffi-
cient. The results consistently indicate that our method 
achieves superior performance fairness, particularly in 
environments characterized by pronounced non-IID 
conditions and complex multiclass data distributions.

FedHEAL [31] is a recently developed FL algorithm 
designed to address fairness issues in environments 

characterized by domain bias. It leverages the consis-
tency of parameter updates to mitigate the impact of 
noisy or low-quality updates by masking the updates 
of unimportant parameters. Additionally, FedHEAL 
promotes fair model aggregation by utilizing the Eu-
clidean distance, thereby preventing convergence bias 
often observed in conventional FL approaches. As a ge-
neric method, FedHEAL can be integrated with various 
existing FL algorithms.

3.4.	 Enhancing Privacy for FL

Recent research has increasingly emphasized the 
need to fortify privacy safeguards within FL. While the 
distributed architecture of FL, which retains raw data 
on local devices, provides a baseline of privacy, it re-
mains vulnerable to sophisticated inference and poi-
soning attacks.

Bietti et al. [32] introduced a personalized federated 
learning framework grounded in differential privacy 
[33]. Their study illustrates how personalized models 
can refine the trade-off between privacy and accuracy. 
However, they also acknowledge that tightening pri-
vacy guarantees inevitably results in diminished model 
performance.
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Addressing the challenge of intermittent client par-
ticipation, Jiang et al. [34] proposed Dordis, a distrib-
uted differential privacy framework resilient to client 
dropout. This approach achieves robust privacy pro-
tection without relying on a trusted central server, al-
though the noise required for differential privacy intro-
duces an unavoidable computational overhead.

Naseri et al. [35] explored the complementary use of 
local differential privacy (LDP) [36-37] and central dif-
ferential privacy to mitigate both backdoor and mem-
bership inference attacks in FL. Their findings confirm 
that while these privacy techniques can enhance sys-
tem resilience, they do so at the cost of reduced utility 
in the trained models.

In a related vein, Qi et al. [38] examined the suscep-
tibility of differentially private FL (DPFL) to poisoning 
attacks. To counter this, they developed Robust-DPFL, 
which augments resilience to poisoned gradients. 
While their method successfully improves robustness, 
it introduces added complexity into the FL pipeline.

Collectively, these studies underscore that although 
FL inherently offers a foundational level of privacy, 
augmenting it with advanced privacy-preserving tech-
niques frequently entails a trade-off with model accura-
cy and system complexity. The method proposed in this 
study is compatible with such techniques and can be 
integrated where stronger privacy assurances are neces-
sary. Nonetheless, the empirical validation of this inte-
gration remains an open avenue for future investigation.

4.	 METHODOLOGY

In this section, we describe the proposed method for 
improving the performance of the bottom B% of devic-
es in FL by integrating reinforcement learning. Here, B 
is a tunable parameter that specifies the proportion of 
devices with the lowest individual accuracies, which we 
particularly aim to support. This metric serves as an in-
dicator of fairness, emphasizing performance improve-
ment for underperforming clients. As illustrated in Fig. 
1, the proposed method incorporates device selection 
using DDQN within an FL framework. Unlike existing 
methods, our approach adopts reinforcement learning 
to enhance device selection. Specifically, we employed 
uniform manifold approximation and projection (UMAP) 
for dimensionality reduction, transforming high-dimen-
sional model weights into lower-dimensional represen-
tations while retaining essential information. In addition, 
we designed a reward mechanism based on the dis-
tance from the global model to discourage the selection 
of low-accuracy devices. This strategy enables efficient 
model construction, even in environments with signifi-
cant disparities in data distribution across devices.

The workflow of the proposed method is presented 
in Algorithm 1. In each round, the reinforcement learn-
ing agent selects the optimal devices and transmits the 
global model to these devices. The selected devices 
then perform training on their local datasets. Finally, 

the central server aggregates the models sent by the 
selected devices to update the global model. The agent 
updates its parameters based on the received rewards, 
which are designed to minimize the selection of low-
accuracy devices.

Algorithm 1: FL with DDQN for Device Selection

Initialize:

for each device k do

	 Device k trains local model w0
k for 1 epoch with 

	 local dataset.

	 Send updated weights w0
k to the server.

end for

Server performs dimensionality reduction on {w0
k} us-

ing UMAP to obtain initial state s0.

Initialize DDQN agent with initial state s0.

for each communication round t = 1 to T do

	 DDQN agent selects K devices based on the 
	 Q-values.

	 for each selected device k do

	 Send wt to the device k.

	 Device k trains local model wtk for E epochs 
	 with local dataset.

	 Send updated weights w k
{t+1} to the server.

	 Aggregate global model: w{t+1} =1/Ct ∑{k ∈Ct}w k
{t+1}

    

	 Select all devices to calculate rewards.

	 for each device k do

		  Send w{t+1} to the device k.

		  Device k tests model w{t+1} on local test dataset 
		  and calculates accuracy acct

k.

		  Send accuracy acct
k back to the server.

	 end for

	 Aggregate global model: w{t+1} ←1/|Ct | ∑k∈Ct

	 Select all devices to calculate rewards

	 for each device k do

		  Send w{t+1} to the device k.

		  Device k tests model w{t+1} on local test dataset 
		  and calculates accuracy acct

k.

		  Send accuracy acct
k back to the server.

	 end for

	 Calculate rewards rt using accuracy acct
k equation (6).

	 DDQN Agent Do:

	 Update the DDQN parameters θt by minimizing 
	 the loss Lt (θt).

end for
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Table 1 lists the symbols and descriptions used in this 
study.

Table 1. Notation

Symbol Definition Description
N Total number of devices The total number of devices

K Number of selected devices The number of devices 
selected in each round

Ct
Set of devices selected in 

round t
The set of K devices selected 

in round t

ai Action i The action of selecting 
device i

A Action space The set of possible device 
selections

rt
k Reward The reward for selecting 

device k in round t

γ Discount factor The importance of future 
rewards

θ Parameters of the main 
network

The weights of the neural 
network being trained

θ’ Parameters of the target 
network

The fixed weights of the 
target network

wt
k Weight in round t The weights of device k’s 

model in round t

4.1. DDQN-based Device Selection

To apply reinforcement learning to device selection, 
we formulated the Markov decision process.
•	 State: 

The state at round t, namely s_t, is represented as a 
vector 

st =(wt, wt(1)…,wt
(N) where wt represents the global 

model weights after round t, and wt(1),…,wt
(N) represent 

the local model weights of all N devices. The agent is 
colocated with the FL server and holds a list of weights. 
A specific wt

(k) is updated only in round t if device k is 
selected for training and the resulting Δt(k) is received 
by the FL server. Consequently, the state space can 
become very large, making learning in such a space 
difficult. Therefore, we applied UMAP to compress the 
weights of each model into a 10-dimensional space, 
reducing the size of the state to 10×(N+1) dimensions.
•	 Action:
Actions (a) are represented as vectors of N Boolean 
values, where a value of 1 indicates a selection:

(3)

As described in the subsequent section "Application 
of DDQN," in standard reinforcement learning, a subset 
of size K must be selected at each round t, resulting in 
(N

K) possible combinations. However, in FL, this makes 
the action space enormous, causing computational 
costs to skyrocket, thus making the application infeasi-
ble. Therefore, we utilized the multi-action selection ap-
proach proposed by Bouaziz et al. [22], to allow multiple 
actions to be selected and learned simultaneously. This 
method treats each device selection as an independent 
action, significantly improving computational efficiency.

•	 Reward:
Rewards (r) are represented as a set of length |Ct|:

(4)

where ζt
k measures the contribution of the local model 

of device k in round t relative to the global model:

(5)

(6)

A small value of Equation (5) indicates a large differ-
ence (Euclidean distance) between the weights of the 
device's local model and server's global model. In such 
cases, the device is considered unimportant, resulting 
in smaller ζt

k and reward rt
k. This is because the local 

model weights of the selected device are generated 
through an aggregation process that combines the 
weighted sums. Devices with small differences between 
their local and global model weights are assumed to 
make significant contributions in a round, thereby sub-
stantially affecting the performance of the global model. 
M is a constant; TargetACC represents the target average 
accuracy of the bottom B% of devices within a specified 
number of communication rounds, and BottomACC de-
notes the average accuracy of the bottom B% of devices 
when all devices perform testing using the aggregated 
global model in each round t. This process provides an 
important metric for the agent to learn actions that im-
prove the accuracy of the bottom devices. As the aver-
age accuracy of the bottom B% of devices increases, 
the agent is more likely to receive rewards, encourag-
ing actions that enhance the fairness among devices. 
Calculating the test accuracy for all the devices intro-
duces additional computational costs, with each device 
potentially being selected for up to twice the number 
of rounds. However, because the test accuracy calcula-
tion is not part of the learning process, the load on the 
devices is relatively small. This method allows the agent 
to effectively improve the average accuracy of the bot-
tom B% of devices.

4.2. Application of DDQN

In this study, following multiple existing studies, we 
employed the DDQN algorithm [39], which consisted 
of two neural networks: the main and target networks. 
The main network is used for training, whereas the 
target network evaluates the actions in the next state 
and is updated every P steps. The DDQN agent incorpo-
rates a replay memory mechanism to eliminate corre-
lations between consecutive experiences, specifically 
between(si, ai, si+1, ri, di) and (si+1, ai+1, si+2, ri+1, di+1 ); di is 
Boolean and indicates whether the terminal state has 
been reached.

The RL learning problem can be formulated by mini-
mizing the mean squared error (MSE) loss between the 
target value and the approximated value, expressed by 
the following equation:
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(7)

where Lt
k (θt) represents the loss function for action ak; 

Yt
k is the target value for action ak, and Q(st, ak; θt) is the 

approximated Q-value for action ak in state st. Target 
value Yt

k is defined as follows:

(8)

The action space A is defined as:

(9)

Each element ai indicates selection 1 or non-selection 
0. However, in each round, the following constraints 
must be satisfied:

(10)

where rt
k is the reward associated with the selection 

of device k; θ and θ' represent the parameters of the 
main and target networks, respectively, and γ is the dis-
count factor, with 0≤γ≤1, determining the importance 
of future rewards compared to current rewards. A value 
closer to 1 place more emphasis on future rewards, 
whereas a value closer to 0 prioritizes current rewards.

In traditional reinforcement learning, the goal is to 
select a single optimal action for a given state. How-
ever, in this study, we adopted a multi-action selection 
approach to select multiple devices. Specifically, the se-
lection of each device was treated as an independent 
action, and the loss for each device was calculated us-
ing Equation (7). This approach eliminates the need to 
explore all possible device combinations.

This method allows for efficient identification of op-
timal devices while considering the cooperative rela-
tionships and interactions among the devices. Further-
more, by evaluating the impact of each device selec-
tion on the overall learning outcomes, more effective 
learning is expected.

5.	 Evaluation

5.1. Experimental Setup

The datasets and models used in this study are as fol-
lows.

•	 MNIST:

The dataset consists of 60,000 grayscale images of 
handwritten digits for training and 10,000 images for 
testing. Each image has a resolution of 28 × 28 pixels and 
is classified into one of 10-digit classes (0–9). Due to its 
simplicity, balanced class distribution, and ease of imple-
mentation, MNIST is one of the most used benchmark 
datasets in FL research. In this study, it was adopted to 
enable comparison with existing methods and to vali-
date the effectiveness of the proposed method under 
standard and relatively simple experimental conditions.

For the model, we used a simple multilayer percep-
tron (MLP) consisting of one hidden layer with 100 

units and ReLU activation. The input layer had 784 di-
mensions (28 × 28), and the output layer had 10 units 
corresponding to the number of classes.

•	 CIFAR-10:
The CIFAR-10 dataset is a widely used standard bench-

mark consisting of 60,000 32 × 32 pixel color images classi-
fied into 10 classes. Each class contains 6,000 images. This 
dataset is extensively used in machine learning research, 
including comparative methods, and was thus adopted in 
this study. In addition, to introduce heterogeneity, we per-
formed non-IID partitioning following a Dirichlet distribu-
tion. The parameter values used were Dir(0.1) and Dir(0.5).

The model used for this dataset was a simple convo-
lutional neural network composed of two convolutional 
layers and three fully connected layers. Specifically, the 
first convolutional layer used 16 filters with a kernel size 
of 3×3, followed by a 2×2 max pooling layer. The second 
convolutional layer had 32 filters with a kernel size of 3×3, 
followed by another 2×2 max pooling layer. The fully con-
nected layers had 120, 84, and 10 units respectively.

•	 GTSRB:
The German Traffic Sign Recognition Benchmark 

(GTSRB) is one of the primary datasets for traffic sign rec-
ognition and classification tasks and contains approxi-
mately 50,000 images classified into 43 different traffic 
sign classes. Each image was captured in a real road en-
vironment, encompassing variations in lighting condi-
tions and viewpoints. The GTSRB is commonly used in 
FL research [40-42]. In this study, in using a dataset with 
43 classes, which exceeds the 10 classes of CIFAR-10, we 
aimed to evaluate the model’s classification ability and 
its adaptability to heterogeneity more thoroughly. This 
enabled a multifaceted validation of the versatility and 
performance of the proposed method. Additionally, 
non-IID partitioning was performed following a Dirichlet 
distribution to introduce heterogeneity. The parameter 
values used were Dir(0.1) and Dir(0.5).

For this dataset, we used a simple multilayer percep-
tron consisting of an input layer with 3072 dimensions 
(32 × 32 × 3), a 128-dimensional hidden layer with 
ReLU activation, and an output layer with 43 units cor-
responding to the number of traffic sign classes. This 
model design follows the experimental settings of Li et 
al. [30] and Jialuo et al. [43].

•	 Synthetic: 
The synthetic dataset is generated using the method 

inspired by Li et al. [30] and Shamir et al. [44], denoted 
as SYNTHETIC(α, β).

Specifically, the data samples (Xk, Yk) for device k 
(with sample size nk) were generated as follows: The 
model is defined by the following equation:

(11)

where x∈R60, Wk∈R10×60, and bk∈R10. The weight matrix 
Wk and bias vector bk were sampled from a normal dis-
tribution with mean uk and variance 1:
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(12)

The mean vector uk was sampled from a normal dis-
tribution with mean 0 and variance α:

(13)

Each element of the input data xk, denoted by (xk )j, 
was sampled from a normal distribution with mean vk 
and variance j-1.2:

(14)

where vk is sampled from a normal distribution with 
mean μk and variance 1, and μk followed a normal dis-
tribution with mean 0 and variance β:

(15)

This method allows controlling the heterogeneity of 
models and data across devices by adjusting param-
eters α and β. SYNTHETIC(0,0) and SYNTHETIC(1,1) 
were used in the experiments. Both had 10 classes 
and a data size of approximately 50,000. In this study, 
synthetic data were generated and used to control for 
heterogeneity and evaluate the changes in the perfor-
mance of the proposed method by varying the degrees 
of heterogeneity. For this dataset, we used a logistic re-
gression model following the experimental settings of 
Li et al. [30] and Jialuo et al. [43]. The model consisted 
of a single fully connected (linear) layer that takes a 
100-dimensional input vector and outputs scores for 
10 classes.

5.2.	 Comparison Methods

We selected the following methods as baselines:

•	 FedAVG [14]: This is adopted as the basic method 
to evaluate the baseline performance against Non-
IID data.

•	 FedFE [29]: This is a method that uses momentum 
gradient descent to improve convergence speed 
while considering fairness. The parameter settings 
used (α, β)=(0.5,0.5), were based on the optimal 
values in the experiments of Wentao et al. [29].

•	 q-FFL [30]: This is adopted to reduce performance 
disparities among devices, using 𝑞 = 1 for the syn-
thetic dataset and 𝑞 = 0.1 for other datasets. These 
settings were determined based on the optimal 
values in the experiments of Li et al. [30].

•	 FedHEAL [31]: We adopted this method, a state-
of-the-art FL method aimed at improving fairness. 
Following the experimental settings reported by 
Chen et al. [31], we set the parameters to (β, τ) = 
(0.4, 0.1), which demonstrated the best perfor-
mance in their experiments.

The proposed method was trained using the hyper-
parameters listed in Table 2. These values were chosen 
based on common practices in the federated learning 
literature [29-31]. In particular, the number of local ep-

ochs was selected within the typical range of 1 to 10, 
which is widely adopted in prior studies [29-31]. The 
value of B was determined based on the experimental 
results reported by Wentao et al. [29]. 

Table 2. Hyperparameters of Experiments

Hyperparameters MNIST CIFAR10/GTSRB SYNTHETIC

N (number of devices) 100 100 100

K (size of selected devices) 10 10 10

E (local epochs) 5 10 5

B (batch size) 16 32 32

Learning rate 0.01 0.01 0.1

Momentum 0.9 0.9 0.9

RL batch size 50 50 50

P (number of steps) 10 10 10

RL learning rate 10e-5 10e-5 10e-5

γ (discount factor) 0.99 0.99 0.99

M 1.01 1.01 1.01

For each dataset, the target accuracy (TargetACC) 
was set based on existing FedFE [29] and q-FFL [30] 
methods. Specifically, experiments were conducted 
using these methods, and the average accuracy of the 
bottom B% of devices (BottomACC) was measured. 
Based on these results, TargetACC was set to a value 
that exceeded the BottomACC achieved by q-FFL and 
FedFE by a few percent.

•	 MNIST (0.1):	 85%

•	 MNIST (0.5):	 90%

•	 CIFAR-10(0.1):	 37%

•	 CIFAR-10(0.5):	 47%

•	 GTSRB (0.1):	 77%

•	 GTSRB (0.5):	 8%

•	 SYNTHETIC (0,0):	15%

•	 SYNTHETIC (1,1):	10%

5.3.	 Results & Discussion

Fig. 2 and Table 3 present the progression and final out-
comes of the accuracy of each method across the datas-
ets used in this study. The evaluation metrics employed 
included the average accuracy of each device's local test 
data, variance and average accuracy of the bottom 10% of 
the devices, as well as top 10% of the devices.

The proposed method successfully enhanced the ac-
curacy of the bottom 10% of the devices across all da-
tasets, without compromising the overall average ac-
curacy. In some datasets, variance of the accuracy was 
reduced compared with those of existing methods (Ta-
ble 3). Notably, on CIFAR-10 with a Dirichlet parameter 
of 0.1 CIFAR-10(0.1), which represents a highly non-IID 
environment, the improvement in the accuracy of the 
bottom 10% of the devices was particularly significant.
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D
at

as
et

Method Variance Worst 
10% Accuracy Best  

10%
M

N
IS

T(
0.

1)

FedAVG 36.1 ±18.9 79.5±3.3 90.7 ±2.6 99.1+.8

q-FFL 30.5 ±16.9 81.4±4.8 93.1+.8 99.4±.4

FedFE 17.7+3.5 85.2±1.8 93.5 ±.3 99.4±.4

FedHEAL 14.7 ±2.2 86.1 ±.7 93.7±.3 99.3±.3

Ours 15.1±3.9 86.2 ±1.0 93.9 ±.4 99.4±.1

M
N

IS
T(

0.
5)

FedAVG 5.8+1.8 91.1+1.3 96.1 ±.4 99.3±.1

q-FFL 4.0 ±.8 92.4 ±.6 96.4 ±.2 99.2±.1

FedFE 4.1 ±.5 92.3 ±.4 96.2±.2 99.1+.1

FedHEAL 5.6+1.5 91.2±1.0 95.9±.2 99.0±.2

Ours 4.2 ±.6 92.3±.5 96.3 ±.3 99.2±.2

CI
FA

R1
0(

0.
1)

FedAVG 152.7+32.5 30.4±3.2 51.3+1.0 72.0±2.0

q-FFL 191.9+14.5 30.6 ±1.2 52.8 ±1.5 78.7±2.3

FedFE 123.4+3.7 34.7 ±1.3 53.5+1.7 73.0±1.2

FedHEAL 145.3+35.3 29.4 ±3.9 48.8±2.8 71.0±2.9

Ours 130.8+11.3 38.7 ±1.0* 54.7+.9 78.4±1.7

CI
FA

R1
0(

0.
5)

FedAVG 63.3+2.4 42.5 ±.7 56.9 ±.5 70.7 ±.6

q-FFL 56.9+3.7 43.0±1.0 57.0+1.0 69.8 ±.9

FedFE 51.5+5.6 43.8±.8 56.6±1.0 69.1 + 1.3

FedHEAL 52.6+8.8 41.7±1.2 54.5+.8 66.8±1.8

Ours 51.4+3.8 44.8 ±.9 57.6 ±1.0 69.7+1.5

G
TS

RB
(0

.1
)

FedAVG 82.1+24.8 68.0±5.0 86.9+1.5 97.7 ±.4

q-FFL 70.6+20.1 69.4 ±4.0 88.0±.5 97.9+.4

FedFE 59.6+13.5 70.3 ±2.2 86.9+1.6 96.5±1.6

FedHEAL 78.4+23.4 66.0 ±4.6 84.9±2.5 95.9+1.4

Ours 44.7 ±6.5 75.5 ±1.4 89.9+.4 98.1 ±.4

G
TS

RB
(0

.5
)

FedAVG 38.5+20.1 70.4+11.1 81.2±8.5 90.7+5.4

q-FFL 9.0 ±1.1 87.7±.9 93.5+ .5 97.9 ±.7

FedFE 17.9+2.7 81.6+2.7 89.6±1.5 96.1 + 1.1

FedHEAL 16.4±1.4 82.5 ±1.2 90.4+1.0 96.2±.6

Ours 9.2+1.2 87.9+.8 93.6 ±.4 98.3±.4

SY
N

TH
ET

IC
(0

,0
)

FedAVG 1429.7±35.3 o.o±.o 34.3+1.8 99.9±.1

q-FFL 849.6 +42.0 11.0+1.0 69.2±1.0 100.0 ±.0

FedFE 893.1+26.1 12.1±1.1 71.4+.7 100.0 ±.0

FedHEAL 1075.8±70.8 0.1+.2 48.3±2.1 99.5±.7

Ours 824.6 + 55.4 15.1 ±.7 73.5+2.1 100.0 ±.0

SY
N

TH
ET

IC
(1

.1
)

FedAVG 1405.5 ±74.1 0.0+.0 34.0 ±1.4 100.0 ±.0

q-FFL 1024.6 ±46.3 7.8 ±2.0 68.4+2.1 100.0 ±.0

FedFE 1044.5 ±46.3 6.7+1.1 70.4±2.4 100.0 ±.0

FedHEAL 1423.1 ±36.3 o.o±.o 48.0+3.7 100.0 ±.0

Ours 926.5 ±71.8 10.5+0.5 73.8±2.0 100.0 ±.0

*Indicates statistically significant differences (p<0.05) between the 
proposed method and other methods for the corresponding metric

(a)

(b)

(c)

(d)

(e)

(f )
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(g)

(h)
Fig. 2. Accuracy progression charts of average 

accuracy for each of the six datasets. (a) MNIST (0.1), 
(b) MNIST (0.5), (c) CIFAR-10(0.1), (d) CIFAR-10(0.5), 
(e) GTSRB (0.1), (f) GTSRB (0.5), (g) SYNTHETIC (0,0), 

(h) SYNTHETIC (1,1)

A partial distribution of the accuracy is shown in Fig. 
3. This figure was derived from datasets with stron-
ger non-IID characteristics, displaying the most pro-
nounced improvements. Visually, the number of low-
performing devices has clearly decreased compared 
with respect to the baseline methods.

(a) (b)

(c) (d)

Fig. 3. Accuracy distribution map
(a) MNIST(0.1), (b) CIFAR-10(0.1), (c) GTSRB(0.1),  

(d)SYNTHETIC(1,1)

In this study, we used UMAP for dimensionality re-
duction of the model weights of each device to better 
capture the underlying distribution among devices. 

To evaluate its effectiveness, we used the MNIST data-
set and introduced varying degrees of label imbalance 
among devices by controlling a parameter Z, which de-
notes the proportion of a single dominant label in each 
device's data. For instance, Z=80 indicates that 80% of 
the data within a device belong to one specific label, 
while the remaining 20% are uniformly distributed 
among the other labels. A setting of Z=100 represents 
extreme label concentration (single-label scenario), 
whereas Z =10 corresponds to a fully IID scenario, with 
all ten MNIST labels evenly represented.

We visualized the model weights after one epoch of 
local training and reduced them to two dimensions us-
ing both PCA and UMAP. While PCA was able to reveal 
some cluster structure under highly imbalanced set-
tings (Fig. 4 (a)), it struggled to clearly separate clus-
ters when the distribution became more subtle (Fig. 
4 (b)). In contrast, UMAP consistently provided clearer 
and more distinct cluster formations, even in moder-
ately complex distributions (Fig. 4 (c)). This suggests 
that UMAP captured the latent structures in the model 
weights more effectively than PCA.

By reducing the weights to 10 dimensions and using 
them as state representations for reinforcement learn-
ing, our method allowed the agent to more accurately 
distinguish between devices with different underlying 
data characteristics. This contributed to more effective 
device selection and, ultimately, better performance 
under heterogeneous data distributions.

(a)

(b) (c)

Fig. 4. Dimensionality Reduction of Local Model 
Weights. (a)with PCA (Z = 80), (b) with PCA (Z=20), 

(c) with UMAP (Z=20)
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Additionally, Fig. 5 shows the number of selections 
for each device in CIFAR-10(0.1). As observed, the re-
inforcement learning agent intentionally selected de-
vices that would increase accuracy. When the devices 
are randomly selected, the number of selections X for 
a single device follows X∼Binomial(n=250, p=0.1) with 
expected mean μ= np = 25 and σ=√(np(1-p) )≈4.74 as 
standard deviation. Typically, assuming a normal dis-
tribution, approximately 99.7% of the data would lie 
within the range [10.78,39.22]. However, in Fig. 5, ap-
proximately ten devices fall outside this range, suggest-
ing that the reinforcement learning agent intentionally 
increased the selection frequency of these devices. In 
addition, upon examining the data distribution of the 
most frequently selected devices in Fig. 5, these de-
vices were observed to have the largest amounts of 
data among those possessing more than five classes. 
As illustrated, because the number of devices selected 
per round is limited to K, devices with more diverse and 
abundant data were chosen more frequently.

Fig. 5. Average number of device selections in 
CIFAR-10 (0.1)

6.	 CONCLUSION

This study introduces a novel approach designed to 
suppress the occurrence of low-accuracy devices in FL. 
The proposed method integrates reinforcement learn-
ing-based device selection using a DDQN and incorpo-
rates a reward mechanism based on the distance from 
the global model. Furthermore, it employs multi-action 
selection to choose multiple devices simultaneously, 
thereby ensuring an efficient selection process. By uti-
lizing UMAP for the state representation, this method 
achieves both dimensionality reduction and enhanced 
representational capabilities.

The results indicate that the proposed approach ef-
fectively improves the average accuracy of the bottom 
10% of the devices by up to approximately 4% without 
diminishing the overall average accuracy compared 
to existing methods. In addition, beyond the 10-class 
CIFAR-10 dataset, the method successfully suppressed 
low-accuracy devices in the GTSRB dataset, contain-
ing a greater number of classes. This demonstrates the 
versatility and effectiveness of the proposed method 
across diverse datasets.

In future research, we plan to extend the application 
of reinforcement learning beyond device selection to 
include weighted aggregation, with particular atten-
tion paid to the potential of multi-agent reinforcement 

learning. Moreover, addressing real-world challenges 
such as data heterogeneity, communication costs, and 
privacy concerns remains essential. Developing new al-
gorithms that specifically aim to suppress low-accuracy 
devices in non-IID environments, while considering 
these practical constraints, is critical for ongoing and 
future investigations.
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