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Abstract – This research presents an innovative approach leveraging computational intelligence for chromosomal primitive extraction 
and speaker recognition. The study emphasizes real-time digital signal processing (DSP) embedded systems integrating chromosomal-
inspired techniques to enhance auditory feature extraction and speaker identification accuracy. By applying Gamma chromosomal 
factors, Mel-Frequency Cepstral Coefficients (MFCC) are refined through convolution, emulating human cochlear functionality. 
This integration aligns well with the perceptual auditory mechanisms and computational intelligence paradigms. The proposed 
methodology incorporates feature extraction techniques like Linear Predictive Coding (LPC), Linear Predictive Cepstral Coefficients 
(LPCC), and MFCC, followed by robust classifiers such as Support Vector Machines (SVM), Artificial Neural Networks (ANN), and Recurrent 
Self-Organizing Maps (RSOM). Experimental results demonstrate superior performance of RSOM, achieving a recognition rate of up to 
99.7% with Gamma-enhanced MFCCs, compared to 98.6% for SVM and 91% for SOM. The RSOM model effectively identifies speakers 
across diverse conditions, albeit with slightly increased response times due to its dynamic recurrence loop. This work addresses challenges 
like environmental noise and variability in speech styles by introducing the Gamma chromosomal factor, a logarithmic nonlinear 
enhancement model. The experimental setup, executed on DSP boards using Python, highlights the advantages of computationally 
intelligent systems in real-world applications such as biometric authentication and decision-making systems. These findings underscore 
the potential of chromosomal-inspired computational techniques to advance speaker recognition technology, offering high accuracy 
and reliability in adverse conditions. Future research will focus on optimizing architectural and software frameworks to improve response 
times and further integrate this approach into constrained real-time systems.
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1.	 	INTRODUCTION

Speech is a natural and variable process that serves as 
the primary means of human communication, conveying 
information through acoustic signals. Speaker recogni-
tion has evolved from statistical models like HMM and 

GMM-UBM to deep learning approaches such as CNNs, 
RNNs, and wav2vec 2.0. Computational intelligence tech-
niques, including Recurrent Self-Organizing Maps (RSOM) 
and Genetic Algorithms (GA), have shown promise in 
speech processing. However, their integration remains 
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underexplored, particularly for embedded systems. This 
study considers the foundation of speaker identification, 
a subset of artificial intelligence (AI), that involves distin-
guishing individuals based on their speech [1]. It aims 
to enhance recognition accuracy and efficiency while 
benchmarking against existing methods. An evolutionary 
recurrent neural system processes these acoustic vectors 
through unsupervised learning, associating each vector 
with a speaker's identity stored in a database. During the 
control phase, it compares new inputs to its stored data 
and makes an identification decision [2]. This process is 
implemented in embedded systems, such as digital sig-
nal processors (DSPs), under real-time constraints. Speech 
and speaker recognition, alongside facial recognition, are 
critical fields in Industry 4.0, IoT, blockchain, and cloud 
computing. These technologies are vital for security and 
decision-making applications [3]. 

Approaches such as Cochlear coefficients and its de-
rivatives are widely employed, with the selection guided 
by the specific demands and limitations of the system. 
This paper introduces, as second contribution, a novel ap-
proach to extracting speech signal features and examines 

the most accurate classification algorithms for speaker 
identification. The aim is to enhance robotic safety, voice 
control, and decision-making, targeting zero-error perfor-
mance, even in challenging environments.

This work is structured as follows: Section 1 contex-
tualizes speaker recognition, tracing key models to the 
adopted computational intelligence approach. Section 
2 s speech feature extraction methods and classifiers, 
highlighting accuracy, decision speed, and compara-
tive analysis. Finally, sections 3 and 4 focus, respective-
ly, on experimental results and discussion.

2.	 APPLIED METHODS

2.1.	 Main techniques for extracting 
	primiti ves

ASR transcribes speech into text, while speaker iden-
tification determines identity using vocal features. De-
spite differing goals, they share techniques and can be 
integrated for more robust, personalized systems. [4]. 
Fig. 1 illustrates the global architecture of the voice rec-
ognition system.

Fig. 1. Global architecture of a voice recognition system

Speaker recognition captures speech, digitizes it via 
DSP, extracts features (e.g., LPC, MFCC), and matches 
them to a database. It identifies speakers by balancing 
feature detail with reduced dimensionality. The pri-
mary techniques for extracting speech primitives are 
as follows:

a. Linear predictive coding ( LPC)  

Since the 1960s, LPC models speech as a filter with 
poles, representing the vocal tract, using filter coeffi-
cients to describe its transfer function [5].

(1)

Linear Prediction (LPC) computes coefficients ak to 
minimize the error e(n), commonly using autocorrela-
tion or covariance, with autocorrelation preferred for 
its efficiency and stability. The LPC technique's block 
diagram is shown in Fig. 2.

Fig. 2. Schematic representation of the LPC method

Consider x(t) as the speech signal; the temporal auto-
correlation function is expressed as: (2)

Linear prediction (LP) is a key tool in speech analysis, 
modeling the signal s(n) at time n based on p previous 
samples. The weighted sum of these samples produces 
a prediction error, e(n), as shown in equation 1.
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This represents the average over time of the signal mul-
tiplied by its own version shifted by a time delay τ. For a 
digital signal xk, sampled with a period Te, the discrete 
autocorrelation function is calculated using the equation:

(3)

Here, M represents the number of points considered 
in computing the average, where the total duration 
is T=M.Te. The Levinson-Durbin algorithm [6] is used to 
determine signal coefficients by applying it to the filter 
signal for linear prediction. It calculates the linear predic-
tion coefficients that minimize the mean squared error, as 

(4)

The autocorrelation method computes LPC coeffi-
cients from windowed frames, precisely modeling the 
vocal tract's spectral envelope.

b. Linear Predictive Cepstral Coefficients ( LPCC) 

LPCC smooths the speech signal's spectral envelope 
while extracting speaker characteristics. Based on LPC 
analysis, it derives coefficients from the prediction pro-
cess. Fig. 3 shows the LPCC extraction block diagram.

Fig. 3. Schematic illustrating the process of LPCC feature extraction.

The parameters are determined using the following 
equation:

(5)

Cn : the nth coefficient of cepstrum
An : the nth linear predictor coefficient LPC

c. Mel Frequency Cepstral Coefficient (MFCC)

In 1980, Davis and Mermelstein introduced Mel-
Frequency Cepstral Coefficients (MFCC) analysis [7], a 
robust parameter extraction method based on the Mel 
scale. It uses FFT and DCT to derive decorrelated coef-
ficients that closely simulate human auditory percep-
tion. The Mel scale, reflecting the human ear's sensitiv-
ity, is linear at low frequencies and logarithmic at high 
frequencies, as defined by the following equation [8]:

(6)

MFCC extraction involves pre-emphasis, segmenta-
tion with a Hamming window, FFT, and Mel-scaled filter 
banks. The first 12 coefficients from 20-30 ms overlap-
ping windows are used for analysis.

(7)

The Fast Fourier Transform (FFT) is an efficient algo-
rithm for calculating the Discrete Fourier Transform 
(DFT) of a discrete signal x(n).

(8)

We write in this case:

(9)

The discrete Fourier transform (DFT) for N frequency 
points of a discrete signal is expressed as:

(10)

Where, X(k) is the DFT output.

N is the sample count per frame, enabling time-to-
frequency conversion. The Mel scale (1937) models 
auditory spectra using triangular filters, crucial for 
cepstral coefficient calculation. [9 -10]. Fig. 4 shows the 
general shape of the Mel-scale filter bank.

Proceed to the discretization of the frequency on N 
points among [-Fe/2 ,Fe/2] by putting:

defined by:
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Fig. 5. Representative of ANN structure

ANN is widely used in speech and speaker recogni-
tion under artificial intelligence applications (Deep 
learning and Q-learning). The self-organizing map 
(SOM), as a static tool, achieves 85-90% speaker recog-
nition, while the recurrent dynamic neural map (RSOM) 
improves this to 97-100% under optimal conditions. 
See Fig. 6.

The layer consists of neurons functioning as inter-
connected, fundamental processing units, operating 
through the following sequence of steps:

Unsupervised Learning: The neurons are trained by 
processing MFCC vectors that represent the speech 
signals of known individuals.

Neuron Count Estimation: The total number of neu-

Where, ck : is the MFCC vector of the kth frame

∆ck=ck+2 - ck-2 : first derivative of the MFCCs calculated 
from the MFCC vectors of the kth+2 frame and kth-2 
frame;

∆∆ck=∆ck+1 - ∆ck-1: second derivative of MFCC.

d. 	Comparative study between primitives’  
	 extraction techniques 

A comparative study of MFCC, PCA, and ARMA for 
voice feature extraction assesses their effectiveness, 
efficiency, and suitability in speech processing. Addi-
tional methods like spectral subtraction, LPC, Wiener 
filtering, and independent component analysis ICA aid 
in noise separation. Key comparison factors include 
computational complexity, noise robustness, and 
speech quality [13].

To ensure a smooth, stable spectrum, the energy log-
arithm (amplitude spectrum logarithm) is computed as 
follows:

(11)

Here, m represents the number of Mel scale filters, 
ranging from 20 to 40.

X(k) denotes the FFT of the frame, while H(k) refers to 
the transfer function of the Mel filter.

The Discrete Cosine Transform (DCT) is applied to filter 
coefficients, enhancing discriminative power and noise 
robustness for speech recognition. The coefficients c(n) 
are calculated using the following equation [11]:

(12)

In this context c(n) represents the MFCC coefficients. 
s(m) denotes the logarithmic spectrum. N indicates the 
number of samples within each frame. M refers to the 
number of filter banks.

MFCC dynamic features are captured by delta and 
acceleration coefficients, reflecting temporal changes, 
with typical speech systems sampling at 16 kHz. and 
extracts these features [12].

Fig. 4. Mel Scale Filter Bank

Each method has its strengths depending on the ap-
plication. For speech recognition, MFCC and LPCC are 
commonly used. PCA is mainly for dimensionality re-
duction. LPC and ARMA are more relevant for speech 
synthesis and modeling. [14 -15]. 

2.2.	 Classification models

Classification identifies speakers by matching fea-
tures with a database using classifiers like HMM, SVM, 
k-means, PCA, and ANN [16].

a. Artificial Neural Networks ANN 

An artificial neural network (ANN), inspired by the 
human brain, processes and produces information. 
Multi-layer perceptron (MLP) networks have three lay-
ers: input, hidden (for non-linear processing), and out-
put (for results). See Fig. 5 [17 - 18].

Input layer Hidden layer Output layer
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Fig. 6. Representation of Recurrent Self-Organizing 
Map RSOM

(13)

Each signal vector is sent to all neurons of the RSOM 
map. The neuron whose weight vector has the smallest 
Euclidean distance to the input vector is activated, de-
termining whether the input corresponds to a known 
or unknown individual. The Euclidean distance be-
tween the input x(t) and the weight wi is calculated as 
follows:

(14)

The winning neuron is the one that minimizes this 
Euclidean distance.

b. Support Vector Machine (SVM) 

In the early 1990s, Vladimir Vapnik introduced the 
support vector machine (SVM), which projects data 
into a higher-dimensional space to find the best hy-
perplane for classification or regression. SVM solves the 
discrimination problem by constructing a function f 
that maps an input vector x to an output vector y [20].

(15)

The linear discriminant function is derived as a linear 
combination of the input vector x=(x1, x2., xN) and the 
weight vector w : f(x)=wx+b, b∈R a scalar referred to as 
the bias.

If f(x)>0, it is decided that x is of class 1, otherwise, if  
f(x)<0, we decide x of class -1.

For classifying speech primitives using SVM, the fol-
lowing criteria are taken into account:

(16)

The margin of a hyperplane is defined as the shortest 
distance between the hyperplane and the closest data 
points. Let dis (x, w, b) denote the distance between a 
point x located on the plane H1 and the hyperplane 
defined by f(x) = 0. The margin M can be expressed as:

M = min {dis (w ⋅x + b )} (17)

This distance is calculated as: (f(x))/‖w‖ =1/‖w‖, re-
sulting in the distance between the two planes H1 and 
H2 being 2/‖w‖.

The vectors w and b define the separating hyper-
plane, also known as the optimal hyperplane. Optimiz-
ing this hyperplane involves minimizing the squared 
norm ‖w‖2, leading to the objective: min( 1/2 ‖w‖2).

This problem is typically solved using the Lagrange 
multipliers method. The classification function is repre-
sented as: class(x) = sign(w ⋅ x + b). The indicator func-
tion can also be reformulated based on the following 
expression [21].

(18)

In practical classification scenarios, data frequently 
necessitates separation via a nonlinear decision bound-
ary. This is accomplished by applying a kernel-based 
transformation K(x, y), which optimizes the input data 
and is represented in the following form:

(19)

Among the kernels used are:

c. Comparative study of main classifier models

A comparative study of classifiers like HMM, RSOM, 
CSOM, SVM, and DNN assesses their effectiveness in 
speech recognition. HMMs achieve around 90% accu-
racy, while RSOMs capture temporal speech dynamics 
and CSOMs handle classification. CNNs excel in visual 
data analysis, and DNNs surpass 95% recognition rates. 

rons, Nn, in the RSOM map is calculated using the for-
mula Nn = 2.5 × C, where C is the number of individuals 
(or vectors) involved in training. For example, recogniz-
ing 40 speakers typically requires around 100 neurons.

Neuron Specialization: After multiple training itera-
tions, each neuron becomes fine-tuned to a specific 
input vector. In our case, the stop criterion is set at 100 
iterations.

Testing and Identification: Once trained, the RSOM 
map can process any speech samples, analyze them, 
and visualize potential identification outcomes.

Weight Vector Representation: The weight vector 
associated with a specific neuron, indexed as iii, is de-
scribed using the expression provided below [19]:
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Fig. 7. Algorithm of experimented SVM Function

Table 1. Compared performances over existing 
models

Model Recognition 
Accuracy (%)

Computational 
Cost (ms)

Dataset 
Used

HMM 81 100 TIMIT

SVM 87 200 TIMIT

CNN 92 350 TIMIT

DNN 92.5 500 TIMIT

i-vector 89 275 TIMIT

Deep RSOM Embeddings 96 850 TIMIT

2.3.	adopted  method

Speaker recognition on embedded systems uses ma-
chine learning tailored to resources, speed, and accura-
cy. Lightweight models like SVM suit low-resource sys-
tems, while complex algorithms work on high-resource 
systems. This work employs Python-programmed DSP 
cards for a comparative study of SVM and RSOM, with 
Fig. 7 illustrating the SVM algorithm.

This approach introduces Gamma Chromosomal 
Factors, a novel technique convolved with MFCC primi-

SVMs, effective with non-linear boundaries, achieve 
85-95% accuracy. X-vector and i-vector methods, com-
bined with DNNs, exceed 98%, while Deep Speaker 
Embeddings (DES) can achieve over 99%, though envi-
ronmental conditions can reduce performance to 92%. 
Each method's choice depends on application require-
ments and data quality. 

Various performance parameters are used to evalu-
ate the suggested model. The RSOM in its evolutionary 
form (hybridized with GA) demonstrates a strong bal-
ance between recognition accuracy and computation-
al efficiency in speaker recognition tasks. It achieves 
high precision (93-99%), recall (89-97%), and F1-score 
(92-96%), making it competitive with deep learning 
models while maintaining a lower computational cost. 
Compared to traditional models like HMM (Precision: 
75-82%, Recall: 72-80%, F1-score: 73-81%) and SVM 
(Precision: 78-85%, Recall: 75-83%, F1-score: 76-84%), 
RSOM outperforms in handling dynamic speech varia-
tions. However, modern deep learning approaches 
such as CNN (Precision: 88-94%, Recall: 86-93%, F1-
score: 87-93%), LSTM (Precision: 90-96%, Recall: 89-
95%, F1-score: 89-95%), and wav2vec 2.0 (Precision: 93-
97%, Recall: 92-96%, F1-score: 92-96%) achieve higher 
recognition accuracy but at the expense of increased 
computational complexity. In terms of time efficiency, 
RSOM outperforms deep learning models, with pro-
cessing times comparable to HMM and SVM, making 
it a viable choice for embedded systems and real-time 
speaker recognition applications. 

The Table 1 below highlights some parameter scores 
supported by TIMIT database.

tives to enhance speech feature extraction, especially 
in adverse environments. The resulting convolutional 
output is then fed into an evolutionary RSOM model 
embedded on a DSP. A comparative analysis with an 
embedded SVM model, known for its lightweight na-
ture, underscores the advantages of our approach.

The experimental setup includes:

•	 a PC running the Code Composer Studio CCS soft-
ware environment for programming a DSP board.

•	 a Texas Instruments TMS 320 DSP.

•	 a USB cable for downloading the program describ-
ing the model to be implemented to the DSP.

•	 a screen interface for viewing results and curves
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Gamma Day Night

Men 0.9 1.0

Women 0.6 0.78

Children 0.4 0.55

Table 2. Chromosomal Gamma scores over 
conditions

Fig. 8. Algorithm of adopted RSOM Function

Our contributed chromosomal factor Gamma is cal-
culated using a logarithmic, non-linear model devel-
oped through experiments and validations.

Gamma (γ)= α*log(β+λ) (19)

Alpha (α) represents a membership factor that char-
acterizes the state of an individual speaker. Its value 
ranges between 0 and 1.

Beta (β) serves as an indicator of geographic condi-
tions and atmospheric pressure, varying within the in-
terval [0, 10].

Lambda (λ) denotes a coefficient associated with 
neighborhood noise. This coefficient is typically negli-
gible, ensuring that (β+λ) ≤ 10.

Gamma chromosome, derived from deoxyribonucle-
ic acid (DNA) composition, influences human biologi-
cal traits. Its variation with day-night cycles can impact 
pronunciation.

Speaker recognition results on a DSP using Python 
depend on speech quality, feature extraction, classifi-
cation algorithms, and system parameters. Accuracy 
ranges from 70% to 99%, and performance is assessed 
through metrics like precision, recall, and F1-score. Ex-
perimentation results for the sentence "I am Happy" 
spoken by five public people, using SOM, SVM, and 
RSOM without MFCC filtering, are presented in Table 3. 
Results may slightly vary with databases like TIMIT or 
VoxCeleb, but the performance gap between models 
remains consistent.

Table 3. Comparison of recognition rates across 
models using MFCC, excluding chromosomal Gamma

Models/
speakers SOM rates in % SVM rates in % RSOM rates 

in %

Person 1 81.5 86.9 92

Person 2 83.2 88 94.5

Person 3 90.1 89.9 97.4

Person 4 87.6 95 99.2

Person 5 89 96.8 98

The algorithm assumes pre-processed, labeled 
speech signals split into training and testing sets. MFCC 
extraction functions are pre-implemented. 

Compared to RSOM, it offers limited execution time 
and accuracy. Fig. 8 illustrates the optimized RSOM, 
where the BMU (Best Matching Unit) acts as a small in-
telligent processor, identifying the speaker.

3.	 RESULTS

MFCC coefficients in speaker recognition can be af-
fected by environmental conditions, causing errors. 
Our approach uses a chromosomal factor, Gamma, to 
refine and enhance these coefficients. Tests on diverse 
speakers show Gamma ranges from 0.1 to 1.0. The re-
sults of this study are mentioned in Table 2 below.
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These results are illustreted in Fig. 9 below.

Fig. 9. Representation of recognition rates for 
different models over DSP

Nevertheless, RSOM exhibits a slightly longer response 
time of 30 ms, attributed to its dynamic recurrence loop, 
in contrast to 22 ms for SOM and 17 ms for SVM. The re-
sults highlight a trade-off: RSOM offers higher precision, 
while SVM is faster. RSOM remains the preferred choice, 
as real-time efficiency can be optimized through DSP 
hardware enhancements and software acceleration. 
RSOM's diverse neuron weights enhance adaptability to 
Deep Learning and Q-learning, while its recurrence loop 
adds dynamism, further improving results. When these 
models are tested using chromosomal Gamma MFCC 
primitives, an improvement in the results is observed, as 
shown in Table 4 below:

Table 4. Comparison of recognition rates across 
models using chromosomal Gamma MFCC primitives

Models/
speakers SOM rates in % SVM rates in % RSOM rates 

in %

Person 1 82.1 87.4 92.7

Person 2 83.6 90 95

Person 3 91 91.5 98

Person 4 88.3 97,2 99.7

Person 5 89.5 98.6 98.5

Fig. 10 below illustrates the response of each model 
on their respective embedded systems, showing rec-
ognition rates when chromosomal Gamma is applied 
to MFCC primitives.

Fig.10. Visualization of recognition rates with 
chromosomal Gamma across various models on DSP

4.	 DISCUSSION

Speaker recognition is challenging due to factors like 
speech style, background noise, and microphone varia-
tions. Therefore, thorough evaluation under diverse 
conditions is crucial for reliability. As shown in Fig. 9, 
the RSOM model outperforms the SVM and SOM with a 
maximum recognition rate of 99.2%, compared to 96.8% 
for SVM and 90.1% for SOM, all without the chromosom-
al factor Gamma applied to the MFCC primitives.

By applying the convolutional method of MFCC 
primitives combined with the chromosomal factor 
Gamma to the spoken sentence during the testing 
phase of the various models, the following outcomes 
were observed:

•	 RSOM achieved the highest speaker recognition 
rate of approximately 99.7% in 34 ms.

•	 SVM reached a peak recognition rate of around 
98.6% in 20 ms.

•	 SOM attained a maximum recognition rate of 
about 91% in 25 ms.

The embedded DSP model, utilizing computational 
sensors with the RSOM classifier, demonstrates superi-
or speaker recognition performance compared to oth-
er models. However, it requires more processing time 
to generate its response. Consequently, architectural 
and software optimizations are suggested to enhance 
its suitability for a real-time, constrained system.

5.	 CONCLUSION 

This research demonstrates the significant advance-
ments made in the field of speaker recognition by le-
veraging computational intelligence and chromosomal-
inspired techniques. The study developed an embedded 
real-time system using a combination of Mel-Frequency 
Cepstral Coefficients (MFCC) and Gamma chromosomal 
factors for feature extraction, along with advanced clas-
sifiers such as Support Vector Machines (SVM), Artificial 
Neural Networks (ANN), and Recurrent Self-Organizing 
Maps (RSOM). The results underscore the potential of 
these methods to significantly enhance recognition ac-
curacy, even in challenging environmental conditions. 
Speaker recognition is inherently complex due to vari-
ous challenges, including variability in speech styles, en-
vironmental noise, and device inconsistencies. The intro-
duction of the Gamma chromosomal factor addresses 
these issues by providing a non-linear enhancement to 
MFCC, inspired by biological auditory processes. This fac-
tor adapts to variations in environmental conditions and 
speaker characteristics, enabling robust feature extrac-
tion and improving recognition rates. Experimental re-
sults demonstrate the superiority of RSOM in achieving 
a maximum recognition rate of 99.7% with Gamma-en-
hanced MFCCs, compared to 98.6% for SVM and 91% for 
SOM. However, RSOM's slightly increased response time 
due to its dynamic recurrence loop highlights a trade-
off between accuracy and computational efficiency. The 
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study also emphasizes the versatility and adaptability 
of computational intelligence techniques. The integra-
tion of MFCC primitives with the Gamma factor not only 
improves recognition performance but also aligns with 
human auditory perception, bridging the gap between 
biological inspiration and technological application. The 
real-time implementation on DSP boards demonstrates 
the feasibility of deploying these advanced techniques 
in embedded systems, making them suitable for various 
practical applications, including security, robotics, and 
voice-controlled systems. 
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