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Abstract – Real-time segmentation of echocardiograms is of great practical significance for doctors' clinical diagnosis. This paper 
addresses the existing echocardiogram segmentation models' pursuit of high segmentation accuracy in insufficient training data, 
which leads to high model complexity and low learning efficiency. This paper fully exploits the spatial prior characteristics of the 
image itself. It proposes an echocardiographic left ventricular segmentation algorithm that utilizes double-layer constraints of prior 
information on spatial anatomical structures. The algorithm is based on the following two principles. Firstly, the segmentation 
model is initialized using a self-supervised sorting model based on the spatial anatomy to fully learn the orderly image features 
of the left ventricular spatial anatomy and achieve same-domain transfer of images, allowing the segmentation network to learn 
segmentation information more effectively; Secondly, the segmentation network is subjected to mask shape constraints, and the 
output space is limited by imposing anatomical shape priors to expand the global training goals of the CNN model. Finally, the 
algorithm proposed in this paper was verified using three classic segmentation models. The experimental results showed that on the 
public echocardiography dataset CETUS (Challenge on Endocardial Three-dimensional Ultrasound Segmentation), compared with 
the classic Resnet, Unet, and VGG segmentation models, the double-layer constrained segmentation model that introduces prior 
features has increased the segmentation accuracy (Dice index) by 5.6%, 4.9%, and 4.8%, respectively. The MIOU (Mean Intersection 
over Union) index increased by 7%, 5.5%, and 6.8%, respectively, demonstrating robustness to slice misalignment. 
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1.  INTRODUCTION

Due to the portability, cost-effectiveness, non-radia-
tion, and real-time nature of echocardiography, accu-
rate segmentation of the left ventricle from ultrasound 
images can help doctors with less clinical experience 
to analyze cardiac images conveniently and accurately 
to serve actual clinical diagnosis [1]. However, due to 
the ultrasonic imaging mechanism, echocardiography 

has characteristics such as considerable dynamic noise, 
low image contrast, and loss of edges [2]. This makes 
achieving fully automated real-time segmentation of 
the left ventricle in echocardiography a well-known 
challenge. In recent years, the most advanced deep 
learning technology has been used for cardiac image 
segmentation to automatically measure size and func-
tional assessment of the left ventricle, effectively im-
proving the diagnostic efficiency of echocardiography 
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[3, 4]. However, it also faces some limitations. For ex-
ample, deep learning networks depend on the learning 
capabilities and results of a large amount of annotated 
data and powerful storage computing units; there are 
currently very few publicly available datasets, and the 
scale is difficult to meet research needs.

To solve this problem, some researchers have pro-
posed deep network fusion algorithms to improve 
segmentation accuracy and convergence speed, espe-
cially when training datasets are limited. Literature [5-
8] combines deep learning networks with deformable 
models, and features extracted by trained deep neural 
networks are used instead of handcrafted features to 
improve accuracy and robustness. Literature [9] pro-
posed a method combining convolutional neural net-
works and ASM (Active Shape Model) to achieve auto-
matic segmentation of the left ventricle of echocardio-
grams. It uses the Nakagami distribution to integrate 
the shape prior of the image to provide preprocessing 
classification. The results show that the segmentation 
accuracy and convergence are improved at the same 
time. Literature [10-11] uses generative adversarial net-
works to make segmentation masks, and image frame 
structures correspond one-to-one, increasing the 
number of training samples and improving segmenta-
tion accuracy. Literature [12] fuses two convolutional 
neural networks, YOLOv7 and U-Net, to automatically 
segment echocardiographic images. Some researchers 
have effectively utilized unlabeled data and proposed 
semi-supervised and unsupervised deep learning 
methods to improve the segmentation performance 
of the model by combining multiple strategies  [13-16].

At this stage, deep network fusion algorithms have 
performed well in left ventricular segmentation tasks 
on ultrasound cardiac images. Algorithms that intro-
duce prior information about intensity, shape, time, 
topology, and atlas show obvious advantages in im-
proving the accuracy and efficiency of segmentation. 
However, most deep learning networks are based on 
feature classification of pixel sets, ignore the struc-
tural characteristics and related prior knowledge of 
echocardiograms, and lack the learning of global fea-
tures related to segmentation target structures, re-
sulting in limited feature learning capabilities of the 
model. Some researchers realize the importance of 
prior knowledge, such as image anatomy and imaging 
information, and try to utilize prior features better to 
optimize deep learning models. Literature [17] incor-
porates the perceptual similarity information between 
the generated and original frames into the segmenta-
tion model as prior knowledge. It uses unlabeled data 
for semi-supervised learning to improve segmentation 
performance. Literature [18] introduces a prior infor-
mation encoding module, and the results show that 
the accuracy of this method is close to the segmen-
tation result of the current optimal nnU-Net, with the 
convergence speed increased by 145%. Literature [19] 
proposes a Unet network model (MCCT-Unet) based on 

a multi-channel cross-fusion transformer. By effectively 
combining deep information with shallow information 
in the encoding stage, the segmentation performance 
of the network is improved. Literature [20] constructs 
a multi-fusion residual attention U-Net (MURAU-Net) 
automatic segmentation model by strengthening the 
connection of spatial features. Literature [21] intro-
duced spatial and temporal prior features and achieved 
excellent segmentation results through deep network 
fusion. These research results demonstrate the effec-
tiveness of introducing prior left ventricular anatomi-
cal structure features in improving the deep network 
fusion algorithm's segmentation accuracy and conver-
gence speed.

This paper proposes a segmentation algorithm for 
the left ventricle in echocardiography using double-
layer constraints on the prior information of spatial 
anatomy. The algorithm uses the orderliness of the 
anatomical position of the left ventricle to construct a 
self-supervised sorting model to initialize the segmen-
tation network. The shape prior is incorporated into 
the mask part of the segmentation network to con-
strain the output space, reduce the extraction depth 
of the feature layer of the segmentation network, and 
improve the segmentation performance. Experimental 
results show that with relatively limited training data, 
the model has achieved significant improvements in 
both the Dice and MIOU indicators of segmentation 
accuracy, fully verifying its excellent performance and 
practicality. Specifically, the model brings the following 
benefits: (1) By utilizing the strong correlation between 
different positions of the image simultaneously, effi-
cient model pre-training is achieved based on same-
domain transfer, effectively solving the problem of 
insufficient generalization ability in different domain 
transfer learning. (2) By analyzing the imaging charac-
teristics of echocardiography and the anatomical struc-
ture of the left ventricle and taking advantage of the 
natural order of the short-axis section of the left ventri-
cle in spatial position, a self-supervised sorting model 
is constructed, aiming to explore a reasonable model 
initialization method to improve the performance and 
efficiency of the model. (3) The short-axis section of the 
left ventricle presents a fixed position relationship from 
top to bottom at any time in the cardiac cycle. This spa-
tial anatomical prior knowledge is not only applicable 
to echocardiography. Still, it can also be extended to 
image segmentation of other modalities, providing a 
new way to solve the training requirements of medical 
image segmentation problems.

2. METHOD

The overall framework of the echocardiographic left 
ventricular segmentation algorithm using double-layer 
constraints of prior information on spatial anatomy is 
shown in Fig. 1. It mainly consists of two parts: a self-
supervised ranking model and a shape-constrained 
image segmentation model. The self-supervised rank-
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ing model aims to learn the anatomical prior features 
of the image. It uses pre-training of the self-supervised 
ranking model to initialize the segmentation network. 
It encourages the model to learn more about the 
segmentation task by obtaining anatomical position 
features when training the segmentation task. This 
information helps improve the prediction accuracy 
and convergence speed of segmentation models. The 
shape-constrained image segmentation model incor-
porates the shape prior of the label structure into the 

deep learning network. In this way, by constraining the 
training process of the neural network, the network is 
guided to make more anatomically meaningful predic-
tions. This study uses the prior spatial structure features 
and integrates high-dimensional and low-dimensional 
features into the deep learning segmentation network 
simultaneously. It is expected to achieve better seg-
mentation results, reduce the segmentation network 
learning model’s complexity, and reduce the scale of 
the training dataset.

Fig. 1. Overall algorithm framework

2.1. IMAgE DESCRIPTION

The dataset for the pre-training model and the shape-
constrained segmentation model are both from the 
public CETUS dataset. CETUS comprises 45 3D echo-
cardiography sequences, which are evenly distributed 
in three different subgroups: healthy subjects, patients 
with muscle damage, and patients with dilated cardio-
myopathy, and has been widely verified for its superior 
algorithm [22]. First, the 3D volume data is sliced along 
the short axis to obtain 2D slices. Second, 2D slices of 
the left ventricle from the apex to the base were ob-
tained manually, and other parts were removed. 

Finally, the acquired left ventricular short-axis slice 
sequence is normalized to ensure that all data have 
the exact spatial resolution along the short axis, and 
the left ventricular short-axis slice data are sampled ac-
cording to the sorting scale, 10,658 2D short-axis slice 
images were obtained, of which 8,276 were used for 
training and 2,382 for testing. 

The self-supervised sorting pre-training model uses 
slice sequences as input data. The input sequence is 
randomly shuffled to prevent the problem of the ab-
solute position of the left ventricular 2D slice feature 
map. The shape constraint segmentation model uses a 
single 2D slice as input for subsequent segmentation 
tasks.

2.2. SELF-SUPERVISED RANkINg MODEL 
  BASED ON SPATIAL PRIOR

The puzzle problem trains a deep learning network 
to identify the components of the target [23]. This pa-
per analyzes echocardiography's imaging characteris-
tics and the left ventricle's short-axis structure based 
on this concept. Its spatial anatomy resembles a cone, 
with these slices appearing in a fixed order from top to 
bottom in spatial position. This paper takes advantage 
of the natural spatial ordering of short-axis slices of 
the left ventricle to build a self-supervised sorting pre-
training model, initializes the parameters of the seg-
mentation network, and effectively integrates spatial 
anatomy prior knowledge into the Segmentation net-
work for deep learning. As shown in Fig. 2, the self-su-
pervised sorting pre-training model includes four parts: 
input, backbone feature extraction, output, and loss 
module. The input is an echocardiographic left ventricu-
lar short-axis slice aerial anatomical structure sequence, 
a set of short-axis slices from the apex to the base. The 
number of slices N defines the sorting scale (20>N>2), 
based on the selected N Slices, with different sorting for 
different inputs. The backbone feature extraction mod-
ule is a general convolutional network structure. In this 
paper, three classical structures, VGG [24], Unet [25], and 
Resnet [26], are chosen for the performance comparison 
of self-supervised sorting models. The output is an N*N-
dimensional probability matrix, and the loss module is 
mainly used to evaluate the accuracy of N-slice sorting.
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Fig. 2. Self-supervised ranking pre-training model based on spatial prior

The loss module is mainly used to evaluate the sort-
ing accuracy of echocardiographic left ventricular 
short-axis section image sequences. The optimization 
goal of the spatial anatomical structure self-supervised 
sorting task is the multi-level Softmax loss function. 
The specific loss function is as follows:

(1)

Among them, the formula of pji is as follows:

(2)

N represents the number of categories, yji pji indicating 
that the j-th image belongs to the i-th category, yji=1 in-
dicating that the j-th image belongs to the i-th category, 
yji=0indicating that the j-th image does not belong to 
the i-th category, pji indicating that the input j-th image 
belongs to the i-th category Probability, Z represents the 
input of the softmax activation function.

2.3. SHAPE-CONSTRAINED IMAgE 
 SEgMENTATION MODEL

The shape-constrained segmentation model imple-
ments the shape constraint function by adding convolu-
tional autoencoding, applying anatomical shape priors 
to the predicted images of the segmentation model to 

constrain the output space, expanding the global train-
ing goals of the CNN segmentation model, and using 
two loss functions to adjust the feedback of the seg-
mentation network. This approach improves sub-pixel 
segmentation accuracy by training an upsampling layer 
with high-resolution ground truth maps.

Fig. 3 shows the structure of the shape-constrained 
segmentation model. The convolutional autoencoding 
constraint model AE (autoencoder) [27] is integrated into 
the basic segmentation network based on deep learn-
ing and predicts image class label shape constraints. It 
fully uses the anatomical low-dimensional features of 
2D echocardiographic left ventricular images to improve 
model segmentation accuracy. 

The basic segmentation network uses a cross-entropy 
loss function to run predictions at the single-pixel level, 
since the backpropagation gradient is only parameter-
ized by the individual probability divergence term at 
the pixel level, it provides little global context. It can-
not guarantee the consistency of the overall anatomical 
shape. Class label prediction obtains the parameters and 
underlying structure of the lower-dimensional segmen-
tation by performing AE-based nonlinear low-dimen-
sional projections of the predicted image and the true 
label [28]. This paper builds a segmentation network 
with a double-constraint loss function to obtain more 
global information and local features, thereby improv-
ing the performance of the segmentation model.

Fig. 3. Shape-constrained segmentation network model
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The shape Constrained Segmentation Network via 
Cross-Entropy Loss of Basic CNN Segmentation Net-
work Lx (ϕ(x; θs), ys)and the linear combination of the 
shape loss Lm from AE to train the objective function, 
as shown in Equation 3. ω is the weight of the convolu-
tion filter of the segmentation network. The third term 
corresponds to weight decay, which limits the number 
of free parameters in the model to avoid over-fitting, 
weight decay to restrict the number of free parameters 
in the model to avoid overfitting. θs represents all train-
able parameters of the segmentation model, θf repre-
sents all trainable parameters of the AE model, which 
are updated during training. The coupling parameters 
λ1 and λ2 determine the weight of the shape loss and 
the weight decay terms used in the training. In this 
equation, the second term Lm ensures that the gener-
ated segmentations are in a similar low-dimensional 
space as the ground-truth labels.

(3)

2.4. PERFORMANCE EVALUATION

To measure the accuracy of echocardiographic left 
ventricular segmentation, this paper used three differ-
ent metrics, namely Dice, two-dimensional HD (Haus-
dorff Distance), and MIOU to evaluate the segmentation 
accuracy [29][30][31]. Let U={u1, u2,…um} be the predic-
tion area, and R={r1, r2,…rm } be the reference area.

Dice is a measure of the similarity between two sets. 
It evaluates the similarity between the network pre-
diction structure and the human annotation result. 
The segmentation task classifies the pixels in the im-
age. Set similarity evaluates the similarity between two 
contours and generally requires the index to be greater 
than 0.7 for the segmentation effect to be considered 
relatively good.

(4)

HD is the maximum distance from one set to the 
nearest point in another set. This distance is direction-
al, meaning that h(U, R) is not equal to h(R, U). H takes the 
larger of the two distances. A smaller value indicates a 
higher degree of similarity for parameters sensitive to 
differences in location information. The calculation for-
mula is as follows:

(5)

(6)

MIOU is the average intersection and union ratio, in-
cluding the heart and background areas. IOU is used 
to test the overlapping area of each category, calcu-
lated as the intersection area of a specific category 
divided by the union area of a particular category.  

The MIOU is calculated as the sum of the Io of all cat-
egories divided by the total number of categories.

(7)

Among them, nff represents the number of correctly 
classified foreground pixels, tf represents the total num-
ber of pixels belonging to the foreground, nbf repre-
sents the number of incorrectly classified background 
pixels, nbb represents the number of correctly classified 
background pixels, tb represents the total number of 
pixels belonging to the background, and nfb represents 
the number of misclassified foreground pixels.

3. RESULTS AND DISCUSSION

During model training, the classic CNN network struc-
tures, including VGG [24], Unet [25], and Resnet [26], 
were selected for medical image segmentation tasks. 
The echocardiographic left ventricle segmentation al-
gorithm using double-layer constraints of spatial prior 
information was verified to be effective. The model was 
implemented using the PyTorch deep learning frame-
work, with Kaggle selected as the running platform.

3.1. RESULTS AND ANALYSIS OF  
 SELF-SUPERVISED SORTINg  
 PRE-TRAININg MODEL

First, the feasibility of the self-supervised ranking mod-
el based on spatial priors for different deep-learning net-
works was verified under various input image sequence 
sizes. During the self-supervised model training process, 
the hyperparameters Epoch=20, batch size=16, and 
learning rate=1e-5 were set, with all parameter size lim-
its chosen based on tracking and error to provide higher 
accuracy. VGG [24], Unet [25], and Resnet [26] were 
used as the basic network structures for deep learning, 
and the performance of the self-supervised model was 
evaluated through average ranking accuracy. Table 1 
shows the ranking accuracy of the self-supervised rank-
ing model on the test set using different basic network 
structures and input image sequence sizes. Experimen-
tal results indicate that for sorting tasks with a sorting 
vector of less than 10, the sorting model can achieve an 
accuracy higher than 50%, which validates the results 
to a certain extent. This paper illustrates the rationale 
behind constructing a feasible sorting task for a self-
supervised sorting model based on spatial anatomical 
priors. It demonstrates that developing a self-supervised 
sorting model has significant potential for application in 
pre-training left ventricular segmentation tasks.

Table 1. Accuracy of different deep learning 
network structures

Method
Accuracy at different sorting scales

2 3 4 5 6 7 8 9 10

Unet 0.80 0.77 0.72 0.71 0.70 0.68 0.62 0.55 0.53

VGG 0.85 0.80 0.76 0.74 0.73 0.64 0.62 0.61 0.58

ResNet 0.88 0.85 0.83 0.80 0.73 0.70 0.64 0.63 0.61
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Next, the effect of self-supervised ranking based on 
spatial anatomy priors on the pre-trained segmenta-
tion model is verified. The Models used for compari-
son and verification include: Resnet, Resnet_S; Unet, 
Unet_S; VGG, VGG_S, where S represents self-super-
vised sorting based on spatial anatomy prior, which is 
used for the pre-training of segmentation models. 

Given the performance analysis results of the pre-
training model, the input scale of the ranking model 
in the experiment utilized 8 2D image slices, and the 
ranking output was an 8×8 probability matrix. After the 

training of the ranking task is completed, the model 
that performed best on the test set is selected, and the 
segmentation network is initialized. The ranking model 
and segmentation network use the same base network 
to facilitate simple and effective model parameter mi-
gration. The initial learning rate (Lr) is set to 0.01, the 
minimum learning rate is 1e-5, the optimizer used is 
AE, the batch size is 8, and the limits of all parameter 
sizes are selected based on tracking and error to im-
prove accuracy. The model is evaluated through the 
Loss_epoch curve of the training set, and the experi-
mental results are shown in Fig. 4.

(a)

(b)

Fig. 4. Loss_epoch curves at different model training stages. (a) Resnet(loss-epoch), Unet(loss-epoch) and 
VGG(loss-epoch), (b) Resnet_S(loss-epoch), Unet_S(loss-epoch) and VGG_S(loss-epoch)

Fig. 4 shows the Loss-Epoch curves of different base 
network model training stages. By comparison, it is 
found that the segmentation models Resnet_S, Unet_S, 
and VGG_S, which are based on spatial anatomy prior 
self-supervised sorting pre-training, exhibit faster con-
vergence capabilities. The reason is that during pre-
training, the model learns effective prior information 
naturally ordered in the spatial dimensions of left ven-
tricular ultrasound images. When the segmentation 
task training is completed, it will learn more task-related 
information and perform segmentation based on the 
learned prior features, which helps improve segmenta-
tion accuracy and speeds up training convergence.

3.2. RESULTS AND ANALYSIS OF THE 
 DOUBLE-LAYER CONSTRAINT 
  SEgMENTATION NETWORk MODEL

First, the impact of adding anatomical constraints 
on the convergence performance of the segmentation 
network was verified during the model training phase. 
Resnet was selected as the representative backbone 
network for evaluation in the experiment, and the per-

formance of the segmentation network before and after 
the introduction of anatomical constraints was com-
paratively analyzed. Here, S represents the use of pre-
training, and L represents the introduction of anatomi-
cal constraints. The Model parameter settings included 
a batch size of 10 and a learning rate of 2e-4, which was 
reduced to 1e-5 in the later stage of training. The loss 
function used was the cross-entropy loss function. Fig. 5 
shows the Loss_epoch curve of the model training stage 
represented by the Resnet base network. It was found 
that pre-training effectively improves the convergence 
speed of the model. After the anatomical constraints are 
introduced, since two losses limit the model, it increases 
the learning difficulty of the model, making the con-
vergence speed slower and consistent with the conver-
gence of the model without pre-training. 

Next, a comprehensive performance evaluation of 
the double-constraint left ventricular segmentation 
model based on self-supervised sorting pre-training 
proposed in this paper was conducted from two as-
pects: segmentation accuracy and model segmenta-
tion effect. The model's accuracy is evaluated through 
three indicators: Dice, HD, and MIOU. The experiment 
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was implemented using the PyTorch deep learning 
framework, and the running platform used was Kaggle. 
The test set comprises 2382 2D slices from 36-45 pa-
tients in the CETUS dataset. 9 segmentation models, 
including Resnet, Resnet_S, Resnet_S_L, Unet, Unet_S, 

Unet_S_L, VGG, VGG_S, and VGG_S_L were tested. The 
Segmentation effects were intuitively assessed through 
qualitative visual comparisons of different image quali-
ties, segmentation masks produced by different mod-
els, and corresponding ground truth values.

(a) (b) (c)

Fig. 5. Loss-epoch curves of Resnet, Resnet_S, and Resnet_S_L models. (a) Resnet(Loss-epoch),  
(b) Resnet_S(Loss-epoch), (c) Resnet_S_L(Loss-epoch)

Three pre-training models, Resnet_S, Unet_S, and 
VGG_S, refer to the performance analysis results of the 
pre-training models, using eight image slices as input, 
with a batch size of 16, a learning rate of 1e-5, and an 
epoch count of 10. The loss function used is multi-level 
Softmax. After completing the self-supervised sort-
ing task, the model with the best performance on the 
test set is selected as the pre-training model for the 
segmentation task. The parameters for the three basic 
network models of Resnet, Unet, and VGG are set with 
a batch size of 10 and a learning rate of 2e-4, which is 

reduced to 1e-5 in the later stage of training, with an 
epoch count of 50. The loss function used is the cross-
entropy loss function. Based on anatomical prior pre-
training, the shape-constrained segmentation models 
Resnet_S_L, Unet_S_L, and VGG_S_L proposed in this 
paper incorporate a linear combination of shape-
constrained Loss1 and Loss2. The objective function is 
trained using a linear combination of the cross-entropy 
loss of the basic CNN segmentation network and the 
AE shape loss. The experimental results are shown in 
Fig. 6, Fig. 7, Fig. 8, and Table 2.

(a) (b) (c)

Fig. 6. The performance of Resnet, Resnet_S, and Resnet_S_L models using  
(a) Dice, (b) MIOU, and (c) HD methods

(a) (b) (c)

Fig. 7. The performance of Unet, Unet_S, and Unet_S_L models using 
(a) Dice, (b) MIOU, and (c) HD methods
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(a) (b) (c)

Fig. 8. The performance of VGG, VGG_S, and VGG_S_L models using 
(a) Dice, (b) MIOU, and (c) HD methods

Fig. 6, Fig. 7, and Fig. 8 visually show the changes in 
test indicators of the model. By comparison, it is found 
that the Resnet_S, Unet_S, and VGG_S models based on 
self-supervised pre-training have significantly higher ac-
curacy than the randomly initialized Resnet, Unet, and 
VGG basic segmentation models. In the sorting task, the 
model learns many basic features, such as the spatial 
anatomical structure of the image. This effective prior 
information is suitable for migrating the weights of the 
segmentation model, allowing it to learn based on the 

acquired prior features once the segmentation model 
training is completed. More information related to seg-
mentation tasks can enhance model accuracy and speed 
up training convergence. Resnet_S_L, Unet_S_L, and 
VGG_S_L, which incorporate shape constraints, have 
further improved segmentation accuracy compared to 
Resnet_S, Unet_S, and VGG_S. The segmentation net-
work learns low-dimensional position and shape infor-
mation using sticky note shape constraints, significantly 
improving segmentation accuracy.

Table 2. Accuracy of different segmentation models

Accuracy Resnet Resnet_S Resnet_S_L Unet Unet_S Unet_S_L Vgg Vgg_S Vgg_S_L

Dice 0.827 0.843 0.874 0.813 0.827 0.853 0.805 0.821 0.844

MIOU 0.746 0.773 0.816 0.725 0.747 0.765 0.714 0.734 0.772

HD 3.617 3.605 3.565 3.796 3.774 3.759 3.871 3.761 3.727

Table 2 shows the segmentation results of the model 
on the test set. The Dice index for Resnet_S is improved 
by 1.8% compared to Resnet, Unet_S is improved by 
1.7% compared to Unet, and VGG_S is improved by 
1.9% compared with VGG; the MIOU index for Resnet_S 
is improved by 3.6% compared with Resnet, and Unet_S 
is 3% higher than Unet, and VGG_S is 2.8% higher 
than VGG; The HD parameters have not changed sig-
nificantly. These results fully demonstrate that the self-
supervised sorting tasks can be used to pre-train deep 
learning-based segmentation tasks. A double-layer 
constrained segmentation model using spatial prior 
information, the Dice index for Resnet_S_L further im-
proved by 3.7% compared to Resnet_S, Unet_S_L fur-
ther improved by 3.9% based on Unet_S, and VGG_S_L 
improved by 2.8% based on VGG_S; the MIOU index 
for Resnet_S_L further increased by 5.6% compared to 
Resnet_S, Unet_S_L further increased by 2.4% based 
on Unet_S, and VGG_S_L further increased by 5.2% 
based on VGG_S. The model constructed in this pa-
per shows excellent segmentation performance, with 
Dice and MIOU indicators as high as 0.874 and 0.816, 
respectively, but it still has significant potential for per-
formance improvement. Future research will focus on 
optimizing the segmentation network, incorporating 
spatial prior information, introducing cutting-edge at-
tention mechanisms, integrating multi-scale feature fu-

sion technology, and deep mining contextual informa-
tion. These advancements are expected to improve the 
Dice and MIOU indicators, ensuring the model provides 
more accurate and reliable segmentation results across 
various image segmentation application scenarios.

Fig.9 shows the segmentation experimental results 
of each model under different image qualities. Com-
paring the segmentation masks produced by various 
models against the corresponding ground truth val-
ues allows for an intuitive evaluation of each model's 
segmentation performance. The results show that the 
Resnet_S, VGG_S, and Unet_S models based on self-su-
pervised sorting pre-training perform better than the 
randomly initialized Resnet, VGG, and Unet models in 
the echocardiography left ventricle segmentation task. 
The pre-trained models showed satisfactory segmen-
tation results in the face of segmentation challenges 
such as artifacts, speckle noise, and blurred anatomical 
boundaries. When evaluating the two key indicators of 
boundary accuracy and region overlap, the segmen-
tation results of these models matched the ground 
truth values very well, significantly outperforming the 
basic segmentation network models. However, the 
Resnet_S_L, VGG_S_L, and Unet_S_L models that fur-
ther incorporated the double-layer prior information 
constraints of the shape mask did not show significant 
performance improvements.
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(a) (b) (c) (d)

Fig. 9. Echocardiographic left ventricular segmentation renderings in different scenarios

The segmentation model based on self-supervised 
sorting pre-training uses a sequence of adjacent slices 
as input. During the pre-training process of the model, 
the basic structural features of the left ventricular im-

age are learned. This prior information has a high re-
use potential in the segmentation task, which helps to 
improve the segmentation accuracy and accelerate the 
convergence of the model. It is worth noting that fur-
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ther integrating shape-constrained AE on top of these 
pre-trained models did not show significant perfor-
mance improvements. The reason is that, on the one 
hand, the spatial anatomical prior of the image in the 
pre-training stage has already implied some shape in-
formation, thus weakening the gain effect brought by 
the additional shape constraint.

On the other hand, the AE model is mainly trained 
based on the left ventricle segmentation mask to cap-
ture the anatomical variation of the left ventricle ac-
curately. Considering that the shape variation of the 
heart's left ventricle is relatively limited in the public 
dataset used in this study, the shape constraint of the 
second layer improves the performance. This improve-
ment is more reflected in the subtle optimization of the 
existing performance. It fails to achieve the significant 
improvement brought by pre-training.

4. CONCLUSION

To solve the problem that the fully supervised seg-
mentation algorithm for the left ventricle in echo-
cardiography needs to deepen the network learning 
depth to improve segmentation accuracy due to insuf-
ficient training data, this paper constructs a segmenta-
tion model that integrates image prior information to 
achieve an effective combination of low-dimensional 
and high-dimensional features, as well as global and lo-
cal features. On the one hand, through self-supervised 
sorting pre-training of the left ventricle from apex to 
base based on the spatial anatomical structure, the 
weights of the segmentation model are initialized, so 
that the model can fully obtain more local information 
related to the segmentation when performing the seg-
mentation task, thereby improving the segmentation 
accuracy and accelerating the convergence speed. On 
the other hand, the segmentation network model is 
implemented to predict the shape constraints of image 
class labels, and the anatomical low-dimensional fea-
tures of the left ventricle image of the two-dimensional 
echocardiogram are used to capture more global infor-
mation and further improve the segmentation accu-
racy of the model. The model can extract basic features 
from related images, which are common to similar im-
age analysis tasks, and can improve the performance of 
subsequent tasks.

Future research will continue to explore the sorting 
relationships implied by other spatial anatomical prior 
knowledge and try to model these relationships into a 
self-supervised sorting framework, study the specific 
impact of different sorting modes on the performance 
of the segmentation model, and find better sorting 
strategies. In addition, by optimizing the data input 
method, the sorting model can learn richer knowledge, 
significantly shorten the model training time, and im-
prove the sorting model's learning effect and general-
ization ability, providing more solid technical support 
for applications in medical image processing.
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