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Abstract – The increasing global population and the challenges posed by climate change have intensified the demand for 
sustainable food production. Traditional agricultural practices are often insufficient, leading to significant crop losses due to diseases 
and pests, despite the widespread use of pesticides and other chemical interventions. This paper introduces a new approach that 
integrates deep learning techniques, specifically Convolutional Neural Networks (CNNs) with Squeeze and Excitation (SE) networks, 
to enhance the accuracy of disease detection in fig leaves. By leveraging three pre-trained CNN models—MobileNetV2, InceptionV3, 
and Xception—this framework addresses data scarcity issues and improves feature representation while minimizing the risk of 
overfitting. Data augmentation techniques were employed to counteract data imbalance, and visualization tools like Grad-CAM and 
t-SNE were utilized for model interpretability. The proposed CNN-SE model was trained and evaluated on a fig leaf dataset comprising 
1,196 images of healthy and diseased fig leaves, achieving an accuracy of 92.90% with MobileNet-SE, 91.48% with Inception-SE, and 
89.62% with Xception-SE. Our model demonstrates superior performance in detecting fig leaf diseases, presenting a robust solution 
for sustainable agriculture by providing accurate, efficient, and scalable disease management in crops. The code of the proposed 
framework is available at https://github.com/lafta/SE-block-with-CNN-Models-for-Plant-Disease-Detection. 
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1.	 	INTRODUCTION

One of the greatest challenges to increasing agricul-
tural productivity is the spread of pests and diseases in 
crops, which are considered the primary cause of more 
than a third of annual agricultural production losses 
[1]. To protect plants from these threats, numerous 
pesticides and costly techniques are employed. How-
ever, the large-scale use of these chemical methods 

has adverse effects on species diversity, human health, 
and crop yields, while also increasing production costs 
[2]. Recently, researchers have reported remarkable 
progress in applying Artificial Intelligence (AI) tech-
nology, particularly deep learning (DL) techniques, to 
the detection and classification of diseases on plants. 
These techniques have played a key role in transform-
ing conventional farming practices into more sustain-
able ones by providing accurate, efficient, and scalable 
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solutions, even aiding in the early diagnosis of diseases 
[3]. DL algorithms can classify image data based on their 
feature content and extract relevant information [4]. 
Convolutional Neural Networks (CNNs) are a specialized 
type of DL models primarily designed to process image 
data, automatically learning features and patterns be-
fore making decisions [5]. The extracted features are fed 
into the classifier without human intervention, unlike in 
traditional machine learning, where feature extraction 
and classification are separate steps. Essentially, CNNs 
are composed of two steps; feature extraction and clas-
sification, the first step are employed three operations 
which are convolution operation that achieved by con-
volutional layer, activation function, and    pooling op-
eration. Various filters are applied to analyze and detect 
the important features in the image starting from small 
features such as edges, lines, and corners till reach the 
very important features ( faces, leaves, etc.) [6]. From 
the perspective of feature re-calibration, a Squeeze and 
Excitation (SE) network has been introduced to capture 
the interdependencies between convolutional feature 
channels [7]. The SE block consists of two main pro-
cesses: squeezing and excitation. The squeeze operation 
creates a channel descriptor by summarizing feature 
maps across their spatial dimensions to embed global 
information. The excitation process generates channel-
specific weights. Through feature re-calibration, the SE 
block can selectively highlight important features while 
diminishing less relevant ones. This block can be incor-
porated into conventional DL models, such as CNNs [8]. 
Despite all the capabilities CNNs offer, they still face sev-
eral challenges, the most significant being the need for 
large amounts of training data [9]. This has prompted 
researchers in the field of AI to explore the use of trans-
fer learning (TL), a technique that improves model per-
formance by transferring knowledge from an already 
trained model instead of training the model from scratch 
[10]. In addition to TL, data augmentation is a technique 
used to handle the lack of data by increasing the size of 
the training dataset through various transformations of 
existing images, such as translation, rotation, shearing, 
flipping, zooming, etc. This generates new data that is 
added to the original dataset, enhancing the model's 
generalization and robustness [11]. Since DL as a black 
box, it is difficult to understand what occurs within the 
hidden layers and how these networks make decisions 
or predictions [12]. To address this challenge, transpar-
ency is necessary to identify the regions the model fo-
cuses on. This can be achieved using explainable learn-
ing techniques. Specifically, Grad-CAM and t-SNE visu-
alization techniques are employed to bridge this gap, 
providing deeper insight and a clearer understanding of 
how the model reaches its conclusions. This study aims 
to address the aforementioned challenges by develop-
ing an accurate plant disease detection model through 
feature extraction from leaf images using multiple CNN 
architectures, and by integrating a squeeze-and-excita-
tion (SE) block to enhance classification accuracy. The 
main contributions of this paper include:

•	 A new CNN-SE framework integrating CNNs with 
SE network has been proposed. This approach en-
hances feature learning by focusing on informative 
channels and dynamically recalibrating weights, 
improving fig leaf disease detection accuracy.

•	 Three pre-trained CNN models from ImageNet 
were employed to mitigate data scarcity, improve 
feature extraction, and reduce overfitting risks.

•	 Data augmentation techniques were applied to 
address class imbalance and limited training data, 
enhancing model generalization.

•	 Interpretability tools, Grad-CAM and t-SNE, were 
used to analyze model decisions, visualize feature 
importance, and detect potential biases.

2.	 LITERATURE REVIEW 

This section presents the most recently studies in 
the field of detecting the plant leaf disease using the 
DL techniques. Saikat Datta and Nitin Gupta [13] de-
veloped a deep CNN-based architecture to classify tea 
leaf diseases into six categories: Gray Blight, Algal Spot, 
Brown Blight, Heliopolis, Healthy Leaves, and Red Spot. 
They introduced a novel real-world dataset containing 
5,867 images, covering five disease types and healthy 
leaves. F. Khan et al. [14] proposed a DL framework for 
detecting blight, leaf spot and sugarcane mosaic virus 
in maize crops. they evaluated five YOLO variants (YO-
LOv3-tiny, YOLOv4, YOLOv5s, YOLOv7s and YOLOv8n) 
and selected YOLOv8n for its compact architecture and 
superior inference speed. this model was subsequently 
deployed in a mobile application to real-time disease 
management in agricultural settings. MKA Mazumder 
et al. [15] proposed LeafDoc-Net,  lightweight TL ar-
chitecture that integrates two pretrained CNN models, 
DenseNet-121 and MobileNetV2, for multi-species leaf 
disease detection. The model employs an attention-
based transition mechanism for enhancing feature fu-
sion, followed by global average pooling to reduce spa-
tial dimensionality. Additionally, it incorporate dense 
layers with swish activation and batch normalization to 
deepen the network while maintaining computational 
efficiency. Qinghai Wu et al. [16] proposed  DL model 
contains three components of feature extraction, at-
tention calculation and then lastly the classification, an 
attention module was added to generate feature maps 
at various depths for enhancing the network’s focus on 
discriminative features while reduce background noise. 
The attention module also made use of LeakyReLU as 
an activation function to tackle the problem of neu-
rons failing to learn when their input is negative, The 
extracted features were integrated through a fully con-
nected layer to predict disease category for soybean 
leaf. YA Bezabh et al. [17] proposed a pepper disease 
classification model based on two CNN architectures: 
AlexNet and VGG16. The authors utilized these two 
CNN architectures to extract features, then combined 
the extracted features in single features set. 
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After that the combined feature set was used as in-
put to the fully connected layers for classification with 
a multiclass classifier. Rina Bora et al. [18] developed 
a framework known as the Multivariate Normal Deep 
Learning Neural Network (MNDLNN) to detect diseases 
in the leaves, fruits, roots and stems of tomato plants. 
The methodology comprises of conversion the  image 
color to HSI format, masking of green color to obtain 
the healthy and unhealthy region, identification of 
fruits and roots with the region of interest, segment-
ing the unhealthy region via RKMC clustering and final 
stage includes the extraction of necessary features us-
ing RMSSO. Anuradha Chug et al. [19] proposed a Hy-
brid Deep Learning (HDL) framework that combines 
EfficientNet architectures (B0–B7) as feature extractors 
with five machine learning classifiers. They developed 
the IARI-TomEBD dataset, a real-time image collec-
tion of tomato early blight disease for experimental 
validation. The HDL models demonstrated strong 
performance on this custom dataset and were further 
evaluated on two public plant disease benchmarks.
The EfficientNet-B3-ADB and EfficientNet-B3-SGB con-
figurations achieved state-of-the-art results across all 
datasets. Mahum, Rabbia, et al. [20] proposed an En-
hanced DenseNet model by integrating an additional 
transition layer into DenseNet-201. To address extreme 
class imbalance in the training data, they employed 
a reweighted cross-entropy loss function, enhancing 
model robustness. Ashwathnarayan Nagarjun et al. [21] 
proposed a cotton leaf disease classification method 
combining transfer learning and deep learning tech-
niques. For the deep learning component, they em-
ployed a conventional convolutional neural network 
(CNN), while their transfer learning approach utilized 
architectures such as Inception and ResNet. The study 
relied on a custom-collected cotton disease dataset to 
achieve its objectives. However, the work exhibits sig-
nificant ambiguities and lacks critical implementation 
details, including methodological transparency and 
reproducibility safeguards. Malathi Chilakalapudi and 
Sheela Jayachandran [22] proposed a framework that 
employs transfer learning-based CNN and a Chrono-
logical Flamingo Search Algorithm (CFSA). The authors 
utilized the color PlantVillage dataset and applied an 
augmentation process incorporating operations such 
as contrast adjustment, rotation, rescaling, and others. 
Manjunatha Shettigere Krishna et al.  [23] developed 
a classification system for detecting plant diseases in 
leaves using multiple CNN architectures. Their primary 
contribution involved enhancing data augmentation 
by introducing Gaussian noise. The authors imple-
mented four CNN architectures in parallel and evalu-
ated their performance across two datasets. In their 
baseline approach, they processed input data directly 
through the CNNs without additional modifications, 
yielding preliminary results. Sherihan Aboelenin et al. 
[24] developed a method that employs multiple CNN 
variants and a Vision Transformer (ViT), merging them 
into an ensemble model. Both CNNs and the ViT were 

used to extract features: the CNN variants captured 
global features, while the ViT focused on extracting lo-
cal features. The model was trained using the Apple and 
Corn leaf disease datasets from PlantVillage. The global 
features extracted by the CNN variants were concate-
nated and fed into the ViT, where they were combined 
with the local features. The ViT then performed the final 
classification of leaf diseases. The key contribution of 
this study lies in the novel integration of CNN architec-
tures with a ViT framework. Table 1 presents the meth-
ods, limitations, datasets, and accuracy metrics of the 
respective studies.

3.	 METHODS AND MATERIALS     

3.1. Dataset.Description

The Fig Leaves Dataset [25] was employed in this 
work to train and evaluate the proposed model. It com-
prises 2,321 high-resolution images of fig leaves from 
various regions in Iraq, captured during the peak fruit 
season to ensure the utmost accuracy in identifying in-
fections. These images are divided into two categories: 
infected and healthy leaves. The dataset is both small 
and unbalanced, with 1,350 images of infected leaves 
and 971 images of healthy leaves. To tackle the chal-
lenges of data imbalance and scarcity, a data augmen-
tation method was implemented in two phases. The 
first phase involved randomly selecting and duplicat-
ing healthy leaf images until their number matched 
that of the infected leaf images, ensuring equal rep-
resentation of both classes. In the second phase, stan-
dard data augmentation techniques were applied, 
including rotation, width and height shifts, shear and 
zoom transformations, horizontal flipping, and rescal-
ing. These techniques were used to increase the train-
ing data, enhancing its diversity and robustness. After 
augmentation, the dataset was randomly split into 80% 
of the images per class for training and 20% for testing. 
Fig. 1 displays samples from the fig leaves dataset.

Fig. 1. Samples from the fig leaves dataset. The first 
row depicts healthy leaves, while the second row 

depicts infected leaves

3.2. CNN Architectures

The application of DL algorithms improves the diag-
nosis process of plant diseases. Such algorithms work 
best when analyzing large image databases along with 
access to strong computational availability [26]. These 
models coordinate all modelling procedures which 
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start from data pre-processing and move through archi-
tecture engineering until they reach hyperparameter 
optimization and parameter selection or update [27]. 
The paper investigates leaves infected plant identifica-
tion by utilizing three deep CNN models comprising 
MobileNetV2, InceptionV3 and Xception.  Testing con-
firmed these models function well on the ImageNet da-
taset and extract fine and large features because they 
contain distinctive filter sizes from 1 × 1 to 7 × 7. These 
models adopt batch normalization layers to speed up 
learning processes while offering better efficiency in 
plant disease detection. The mobile-oriented model 

MobileNetV2 functions as a compact yet efficient sys-
tem for embedded devices with its design combining 
19 bottleneck residual layers and ReLU activation [28]. 
The structured framework of InceptionV3 comprises 
three divisions including a stem section along with 
inception blocks along with final layers which enables 
the extraction of features from multiple scales and per-
forms classification through a combination of GAP and 
fully connected layers [29]. Xception uses depthwise 
separable convolutions to process information faster 
while decreasing parameter numbers through depth-
wise and pointwise convolution operations [30].

Table 1. Summary of Related Works: Methods, Datasets, Limitations, and Performance in Leaf Disease 
Classification

[Ref.], 
year Method Limitations Dataset Accuracy

[13], 
2023 Deep CNN The study faces limitations of class imbalance in the dataset and high 

computational requirements during model training
Tea leaf diseases 

dataset 96.56%

[14], 
2023 YOLOv8n

Use test datasets with uneven class distributions, skewing accuracy 
metrics and reducing real-world applicability, also, relies on corn 
leaf images captured with a limited-range camera, introducing 

device-specific biases. Additionaly, remains non-public, hindering 
reproducibility.

Corn leaf dataset 99.04%

[15], 
2023 LeafDoc-Net

small dataset size, with some classes containing only 39 images. This 
constraint hinders model generalization, exacerbating overfitting and 

class imbalance.

corn disease dataset 
and a wheat leaf 
sickness dataset

99%

[16] , 
2023 CNN The model exhibits high computational complexity and ignores data 

balancing in both original and augmented datasets.
Soybean leaf disease 

dataset 85.42%

[17] , 
2023 AlexNet and VGG16

The study relies on conventional CNN architectures, lacks advanced 
techniques such as attention mechanisms, and involves computationally 

intensive implementations due to the large number of parameters.
Pepper leaf disease 95.82%

[18] , 
2023

Multivariate Normal 
Deep Learning 

Neural Network.

The dataset is inaccessible, and the authors omit testing on universal 
benchmarks like PlantVillage private dataset 99.84%

[19] , 
2023

EfficientNet-B3- ADB 
and EfficientNet-

B3-SGB
Persistent class imbalance and Lack of explainability

PlantVil- lage-
TomEBD and 

PlantVillage-BBLS
97.2%

[20] , 
2023 DenseNet-201 Unclear dataset partitioning, Reliance on DenseNet-201 increases 

resource demands, and Overfitting risks. PlantVillage dataset 97.2%

[21], 
2024

CNN, ResNet101, 
Inception v2, and 

DenseNet121

The study lacks critical implementation details and provides an 
insufficiently detailed methodology. Furthermore, it fails to present 

novel contributions, primarily replicating existing frameworks without 
substantive innovation.

Cotton disease 
dataset 99.00%

[22], 
2024

CFSA-TL-based CNN 
with LeNet

The model’s shallow LeNet architecture lacks advanced features like 
batch normalization or dropout, limiting its generalization ability and 

increasing the risk of overfitting and vanishing gradients.

Colored PlantVillage 
dataset 95.7%

[23], 
2025

EfficientNet-
B0,EfficientNet-B3, 

ResNet50, and 
DenseNet201

The study used standalone CNN models without combining their 
outputs, showed weak performance, lacked innovation in feature 
extraction or classification, and relied on unverified, web-scraped 

images collected under inconsistent conditions.

PlantDoc dataset and  
Web-sourced dataset

EfficientNet-B3 
(80.19% )

[24], 
2025

Vgg16, Inception-V3, 
DenseNet201, and 

ViT.

The approach incurs high training costs and faces optimization 
challenges due to gradient instability in ViT. Furthermore, ViTs inherently 

require large-scale datasets for effective training, yet the available 
dataset was limited, compounding the issue as no data augmentation 

techniques were applied.

PlantVillage dataset 
(Corn and Apple leaf 

disease)

Apple (99.24%) 
Corn (98%)

3.3.	 Squeeze and Excitation (SE) 
	 Network

The SE network is an attention mechanism used to 
improve the representational power by modeling the 
interdependencies between the channels of its convo-
lutional features. The SE network begins with a squeeze 
operation, where global average pooling is applied to 

the feature maps output by the preceding convolu-
tional layers. This operation condenses the spatial di-
mensions (height and width) of each feature map into 
a single value, effectively summarizing the global in-
formation of each channel [31] . Following the squeeze 
operation, the SE network implements the excitation 
operation. This involves two fully connected (dense) 
layers with an ReLU activation function in between. The 
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first dense layer reduces the channel dimension to a 
bottleneck, capturing the interdependencies between 
channels. The second dense layer restores the original 
channel dimension, outputting a set of weights for 
each channel. The weights obtained from the excita-
tion phase are used to recalibrate the original feature 
maps. Each feature map channel is scaled by its corre-
sponding weight, allowing the network to emphasize 
or suppress specific features dynamically based on 
their importance to the current task [32]. Fig. 2 shows 
the SE block [7].

3.4.	 Proposed Model

In this section, we introduce our proposed frame-
work, named the CNN-SE model, which consists of 
three modules. The local attention features are ob-
tained with the help of the CNN module, while the SE 
module extracts the global relations from the extracted 
features, potentially enhancing the learning process to 
a greater extent. The classification module then classi-
fies the fig leaves as infected or healthy. The flow of the 
proposed CNN-SE framework is illustrated in Fig. 3. The 
preprocessing stage prepares the dataset for feature 
extraction and classification. This involves three steps:

•	 Class Balancing: Ensuring uniform sample sizes 
across all classes to mitigate bias.

•	 Image Resizing: Adjusting images to the standard 
input size required by the CNN variant used in the 
proposed model.

•	 Data Augmentation: Expanding the dataset size 
through transformations (e.g., rotations, flips) to 
improve classification accuracy and model gener-
alizability.

A.	 CNN Module

The CNN block employs convolution layers to learn 
the characteristics of the input image and extract valu-
able features. These layers apply convolutional filters to 
the input image to extract features such as edges, tex-
tures, and patterns. Each convolutional layer typically 
follows ReLU activation function and is often followed 
by a pooling layer to reduce the spatial dimensions and 
computational load. In this module, we utilized three 
pretrained CNN architectures, MobileNetV2, Incep-
tionV3, and Xception, separately. The architecture of 
these models was modified to improve their ability to 
learn disease-spot features in fig leaf images. The origi-
nal classification layers at the end of the pre-trained 
models were removed, and an SE block was added af-
ter the CNN block. The features extracted by the CNN 
module were then passed into the SE module for fur-
ther enhancement.

B.	 SE Module

SE module uses the SE network to further enhance 
the representational capability of our approach since 
it captures the interdependence between the chan-
nels of the convolutional features of the different lay-

ers of the network. It applies the squeeze operation to 
acquire the channel-wise global context and then ap-
plies the excitation operation to address the issue of 
inter-channel dependencies. In particular, the weights 
coming from the excitation phase are used to update 
the original feature maps. This process helps the net-
work to focus on the features that are informative and 
at the same time reduce other features that are not 
very useful, thus increasing the representational ca-
pability of the model. The squeeze operation sums the 
feature maps along the spatial domain and this is used 
one generate a channel descriptor. This is usually done 
through what is called global average pooling.

(1)

Where xi, j, c is the value at the spatial location (i, j) of 
the c-th channel of the feature map X with spatial di-
mensions H×W.

The excitation operation captures the channel-wise 
dependencies using a simple gating mechanism. This 
involves passing the squeezed features through two 
fully connected (FC) layers with ReLU and sigmoid acti-
vations, respectively.

(2)

Where z is the sqeeze feature factor of size C×1 
(where C is the number of channel), W1 and W2 are 
the weight matrices of the fully connected layers, δ de-
notes the ReLU activation function, and σ denotes the 
sigmoid activation function.

The recalibration of the original feature map X is per-
formed by channel-wise multiplication of the original fea-
tures with the activations from the excitation operation.

(3)

Where Sc is the excitation output for the c-th channel, 
and x'i,j,c is the recalibrated feature map.

In general, the SE block can be represented by the 
following sequence of operations:

(4)

C.	 Classification Module

This module consists of set of layers to train the 
weights obtained from the SE block. These layers are: 

•	 The Flatten layer: transforms feature maps into a 
1D vector.

•	 Fully Connected (Dense) Layers: Following the flat-
tening layer, there are two fully connected layers. 
Each dense layer is depicted with its size and acti-
vation function:

•	 Dense Layer (1024, ReLU): A dense layer with 1024 
neurons and a ReLU (Rectified Linear Unit) activa-
tion function.



626 International Journal of Electrical and Computer Engineering Systems

Fig. 2. SE block

Fig. 3. A schematic diagram of the CNN-SE framework

•	 Dropout Layer (30%): A dropout layer with a 30% 
dropout rate, used to prevent overfitting by ran-
domly setting a fraction of input units to 0 during 
training.

•	 Dense Layer (1024, ReLU): Another dense layer 
with 1024 neurons and a ReLU activation function.

•	 SoftMax Layer: Assigns class probabilities for the 
two types of fig leaves: healthy and inflected.

3.4.	 Explainable Tools

DL has often been seen as a complex and opaque 
process, frequently referred to as a "black box" due to 
the challenges in understanding why a model makes 
certain decisions. This lack of transparency can under-
mine trust in the system's final outcomes [12]. To ad-
dress this issue, this paper utilizes Grad-CAM and t-SNE 
visualization techniques to overcome these limitations 
and provide a clearer understanding of how deep 
learning methods reach their conclusions. 

•	 The Grad-CAM (gradient-weighted class activation 
mapping) technique is a visualization method that 
helps in understanding network predictions by cre-
ating visual representations of what the network is 
focusing on. It uses the gradients of the classification 

score with respect to the final convolutional feature 
map to identify the parts of an input image that have 
the most impact on the classification score. Areas 
with large gradients indicate where the final score 
relies the most on the data. This technique translates 
network behavior into interpretable output, which 
can be used to answer questions about the net-
work’s predictions [33]. In this study, Grad-CAM was 
used to identify the regions of interest emphasized 
by individual CNN models to better understand the 
specific traits and features that these models priori-
tize during detection.

•	 t-SNE, or t-Distributed Stochastic Neighbor Em-
bedding, is a non-linear dimensionality reduc-
tion technique that maintains the data's structure 
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across different scales [10]. It excels at visualizing 
high-dimensional datasets by creating a low-di-
mensional representation that can be plotted. This 
allows for the visualization of clusters, patterns, 
and relationships that are challenging to detect in 
high-dimensional space.

4.	 RESULTS AND DISCUSSION

4.1.	 Performance evaluation metrics

Testing the proposed model is essential to evaluating 
its performance. Accuracy, recall, precision, and F1 score 
are the evaluation metrics are used to evaluate our mod-
els. The choice of evaluation metrics is guided by spe-
cific criteria. For balanced datasets, accuracy is the most 
suitable metric. In contrast, for imbalanced data, preci-
sion, recall, and the F1-score are more appropriate. Pre-
cision and recall help identify specific errors (e.g., false 
positives and false negatives, respectively), while the 
F1-score provides a balanced assessment by harmoniz-
ing these two metrics. The accuracy measures the pro-
portion of correctly classified samples out of all samples 
submitted to the model. The recall reflects the model’s 
ability to identify positive samples, indicating how many 
actual positives were correctly detected. The Precision, 
on the other hand, measures the proportion of correctly 
predicted positive samples out of all predicted positives. 
The F1 Score evaluates the balance between recall and 
precision in a classification model. Equations (5), (6), (7), 
and (8) are used to calculate accuracy, recall, precision, 
and F1 score, respectively. In these formulas, true posi-
tive (TP) and true negative (TN) represent correct pre-
dictions, while false positive (FP) and false negative (FN) 
represent incorrect ones [34].

(5)

(6)

(8)

(7)

During the model training process, we used specific 
hyperparameters that were selected through a process 
of trial and error to ensure optimal model performance. 
These included a learning rate (0.001), Adam optimizer, 
batch size (32), 30 epochs, dropout rate (0.3), and a 
dense layer with 1024 neurons.

4.2.	 Experimental Results using CNN 
	 Models

The experimental results using CNN models—Mo-
bileNetV2, InceptionV3, and Xception—are summa-
rized in Table 1 and illustrated in Fig. 4. Each model 
demonstrated varying degrees of performance in clas-
sifying fig leaves as either healthy or infected. 

MobileNetV2 achieved the highest overall perfor-
mance among the three models, with an accuracy of 
90.74%. The high recall rate of 95.18% indicates that 
the model is very effective at identifying true positive 
cases of infected leaves. The precision of 87.41% sug-
gests that there are some false positives, but overall, 
the model balances well between precision and recall, 
leading to a strong F1 score of 91.13%. InceptionV3 
also performs well, with an accuracy of 88.70%. Similar 
to MobileNetV2, it has a high recall rate (95.18%), indi-
cating its strong ability to detect infected leaves. How-
ever, its precision is slightly lower at 84.26%, suggest-
ing more false positives compared to MobileNetV2. The 
F1 score of 89.39% reflects a good balance between 
precision and recall, albeit slightly lower than Mobile-
NetV2. Xception shows the lowest performance among 
the three models, with an accuracy of 85.55%. Despite 
its lower accuracy, Xception has the highest recall rate 
(95.92%), indicating that it is very good at identifying 
infected leaves. However, its precision is the lowest at 
79.44%, meaning it has a higher rate of false positives 
compared to the other models. The F1 score of 86.91% 
is also the lowest, reflecting the trade-off between its 
high recall and lower precision. The confusion matrices 
for each model, as illustrated in Fig. 4, show the dis-
tribution of true positive, true negative, false positive, 
and false negative predictions.

Table 1. Performance Metrics of Original CNN 
Models on Fig Leaf Dataset

CNN model Accuracy Recall Precision F1 Score
MobileNet 90.74% 95.18% 87.41% 91.13%

Inception 88.70% 95.18% 84.26% 89.39%

Xception 85.55% 95.92% 79.44% 86.91%

4.3.	 Experimental Results using 
	 CNN-SE model

The experimental results using the proposed model, 
which integrate CNN architectures with SE blocks, are 
summarized in Table 2 and illustrated in Fig. 5. Three 
CNN models—MobileNet, Inception, and Xception—
were used separately in the feature extraction phase 
of the image data, CNN module. SE blocks are added 
to enhance the representational power based on the 
assumption that the correlations between the chan-
nels of convolutional features require proper model-
ing.  MobileNet-SE model achieved the highest per-
formance among the three proposed models, with an 
accuracy of 92.90%. The recall rate is 94.81%, indicating 
a high ability to correctly identify true positive cases of 
infected leaves. The precision is 91.42%, suggesting a 
balanced handling of false positives. The F1 score of 
93.09% reflects a strong balance between precision 
and recall, making this model the most robust of the 
three. Inception-SE model also performed well, with an 
accuracy of 91.48%. It has a recall rate of 91.48%, show-
ing that it can effectively identify infected leaves. The 
precision is very close, at 91.50%, indicating a minimal 
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rate of false positives. The F1 score of 91.48% demon-
strates a consistent balance between precision and 
recall, underscoring the model's reliability. While Xcep-
tion-SE model has the lowest performance among the 
three proposed models, it still shows substantial im-

provement compared to the base models. It achieved 
an accuracy of 89.62%, with a recall rate of 89.62%, in-
dicating good detection of infected leaves. The preci-
sion is 89.70%, suggesting effective handling of false 
positives.

Fig. 5. (a) Training Accuracy for MobileNet-SE; (b) Loss Curve for MobileNet-SE; (c) Confusion Matrix for 
MobileNet-SE; (d) Training Accuracy for Inception-SE; (e) Loss Curve for Inception-SE; (f) Confusion Matrix 

for Inception-SE; (g) Training Accuracy for Xception-SE; (h) Loss Curve for Xception-SE; (i) Confusion Matrix 
for Xception-SE

The F1 score of 89.62% reflects a well-maintained 
balance between precision and recall. These results il-
lustrate the effectiveness of the SE blocks in enhancing 
the performance of CNN models across various metrics, 
contributing to a more accurate and reliable classifica-
tion of plants leaves.

Table 2. Performance Metrics of the Proposed CNN-
SE Models

CNN model Accuracy Recall Precision F1 Score
MobileNet 92.90% 94.81% 91.42% 93.09%

Inception 91.48% 91.48% 91.50% 91.48%

Xception 89.62% 89.62% 89.70% 89.62%

4.4.	 Discussion

The dataset used in this study is the Fig leaf disease 
dataset. Since this dataset is anonymized and contains 

no sensitive information (e.g., personal identities and 
proprietary farm details), there are no ethical concerns 
regarding data privacy. Furthermore, the training process 
is conducted offline, eliminating risks associated with un-
authorized data sharing or privacy breaches. Regarding 
environmental impact, our method employs many CNN 
architectures one of them is a lightweight method and 
the two others are deep CNN architectures, these meth-
ods are optimized for efficiency, which significantly re-
duces computational demands and energy consumption 
compared to resource-intensive architectures. This design 
choice aligns with sustainable practices in AI develop-
ment. The CNN architectures were selected due to their 
distinct advantages in achieving the task’s objectives:

•	 MobileNetV2: A highly efficient and lightweight 
network, offering faster inference speeds com-
pared to bulkier CNNs like VGG and AlexNet.
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•	 InceptionV3: Excels at multi-scale feature extrac-
tion by employing parallel convolutional kernels 
(1×1, 3×3, 5×5) within the same layer, enabling de-
tection of diverse patterns while maintaining lower 
computational complexity than architectures such 
as VGG.

•	 Xception: Optimizes efficiency further by replacing 
standard convolutions with depthwise separable 
convolutions—a refinement of Inception’s prin-
ciples—to minimize parameter count and compu-
tational overhead.

Integrating these networks with SE block enhances 
channel-wise feature recalibration, strengthening the 
model’s ability to generalize and improve classification 
accuracy. Comparing the performance of the original 
CNN models (MobileNet, Inception, Xception) with 
their enhanced versions that incorporate SE blocks (Mo-
bileNet-SE, Inception-SE, Xception-SE) reveals significant 
improvements across various metrics. The addition of SE 
blocks led to better accuracy, precision, recall, and F1 
scores for all models. MobileNet-SE showed a notable in-
crease in accuracy from 90.74% to 92.90%, with precision 
improving from 87.41% to 91.42% and a higher F1 score 
of 93.09% compared to 91.13%. Inception-SE also ben-
efited from SE blocks, with accuracy rising from 88.70% 
to 91.48% and precision improving from 84.26% to 
91.50%, resulting in a more balanced F1 score of 91.48%. 
Similarly, Xception-SE exhibited an improvement in ac-
curacy from 85.55% to 89.62%, with precision increasing 
from 79.44% to 89.70% and a more balanced F1 score 
of 89.62%. These enhancements highlight the effective-
ness of SE blocks in boosting the representational power 
and overall performance of CNN models for classifying 
plants leaves. Fig.6 presents the feature distribution vi-
sualized using t-SNE for the fig leaves dataset, compar-
ing the original CNN models (left column) and the CNN 
models enhanced with SE blocks (right column). 

The t-SNE plots indicate that the SE blocks have im-
proved the feature separation between healthy and 
infected leaves, showing more distinct clusters with re-
duced overlap between the two classes. This suggests 
better feature representation and classification capa-

Fig. 6. Feature distribution visualized using t-SNE 
for fig leaves dataset

bility. Fig. 7 illustrates how Grad-CAM can be used to 
interpret and visualize which parts of an image contrib-
ute most to the decisions made by the DL models. The 
Grad-CAM highlights regions of the leaf that the model 
considers important for its classification. Brighter areas 
(in warm colors like red and yellow) indicate regions 
that have a higher impact on the model's decision, 
suggesting the presence of disease or other relevant 
features. This study represents the first application on 
the Fig leaves dataset, making it challenging to directly 
compare the performance of the proposed model with 
existing research in the literature.

Original image MobileNet

Inception Xception

MobileNet Inception Xception

MobileNet-SE Inception-SE Xception-SE

Fig. 7. Grad-Cam with heatmap of infected leaves 
using CNN models

We did not limit ourselves to these points; instead, 
we tested our model against multiple other CNN vari-
ants and obtained the results shown in Table 3 below.

Table 3. Performance Comparison of the Proposed 
Model with Other CNN Variants

CNN model Accuracy Recall Precision F1 Score
EfficientNet 90.3% 86% 96.2 90.9%

InceptionResNetV2 87.96% 89.5% 85.9% 87.7%

ResNet 76.48% 75.6% 78.1% 76.62%

As shown in Table 3, our proposed model demon-
strates superior performance compared to the CNN 
variants listed in the same table, achieving better re-
sults across all evaluated metrics. The proposed model’s 
computational efficiency—enabled by its architectures 
(e.g., MobileNet, Inception, and Xception)—allows it to 
deliver accurate results more rapidly than tradition-
al CNN-based approaches. This efficiency facilitates 
seamless integration with portable IoT hardware devic-
es, making it a strong candidate for real-time plant leaf 
disease detection systems. Such integration represents 
a promising direction for future research. To demon-
strate the model’s ability to generalize to unseen data, 
we employed data augmentation techniques to en-
hance dataset diversity and mitigate overfitting. Eval-
uation was conducted on a held-out test set (20% of 
the data), which was not used during training, and the 
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model consistently achieved high performance across 
accuracy, precision, recall, and F1-score metrics. Ad-
ditionally, Grad-CAM visualization confirmed that the 
model effectively focused on relevant disease regions, 
further supporting its robustness and interpretability. 
Despite the significant advantages of our proposed 
system, certain limitations persist. While SE network 
enhances feature representation through channel-
wise attention mechanisms, the additional parameters 
it introduces elevate the risk of overfitting when train-
ing on small datasets. Moreover, integrating SE net-
work with lightweight architectures like MobileNet or 
Inception—though beneficial—results in increased 
computational overhead and inference latency, which 
may offset the efficiency gains of these architectures. 
For future directions, applying Vision Transformers 
(ViT) could enhance the proposed model’s accuracy in 
capturing fine-grained disease patterns, while Genera-
tive Adversarial Networks (GANs) could be leveraged 
to synthetically expand the dataset, addressing limita-
tions in data diversity or scarcity. 

5.	 CONCLUSION 

The study presented a novel approach for detecting 
plant diseases in fig leaves by integrating Squeeze-
and-Excitation (SE) networks with pre-trained Convo-
lutional Neural Network (CNN) models, namely Mo-
bileNetV2, InceptionV3, and Xception. The proposed 
CNN-SE framework demonstrated significant improve-
ments in classification accuracy, achieving 92.90%, 
91.48%, and 89.62% for MobileNet-SE, Inception-SE, 
and Xception-SE, respectively. These results highlight 
the effectiveness of SE blocks in enhancing feature 
representation and model performance by dynami-
cally recalibrating channel-wise feature weights. Key 
contributions of this research include addressing data 
scarcity through transfer learning and data augmenta-
tion, improving model interpretability using Grad-CAM 
and t-SNE visualization tools, and providing a robust 
solution for sustainable agriculture. The framework's 
lightweight design ensures computational efficiency, 
making it suitable for deployment in resource-con-
strained environments. Despite its successes, the study 
acknowledges limitations such as the risk of overfitting 
with small datasets and increased computational over-
head from SE integration. Future work could explore 
advanced architectures like Vision Transformers (ViT) 
and Generative Adversarial Networks (GANs) to further 
enhance accuracy and dataset diversity.
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