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Abstract – Indoor aeroponic vertical farming systems have revolutionized agriculture by allowing efficient use of space and resources, 
eliminating the need for soil. These systems improve crop productivity and growth rates. However, accurately predicting lettuce yield 
in aeroponic environments remains a complex task due to the intricate interactions between environmental, nutrient, and growth 
parameters. This work aims to address these issues by integrating advanced sensor technologies with ElasticNet Regression Model 
(ElNetRM) for its hybrid L1 and L2 regularization capabilities, handling multicollinearity and feature selection problems effectively 
in order to develop a reliable yield prediction framework. The predictive results showcases that the ElNetRM model forecasts lettuce 
yield with high accuracy of 92% and less error score (RMSE) of 2.28 using a comprehensive dataset from a sensor-equipped indoor 
aeroponic system. Also, the results demonstrate the superior predictive power of ElNetRM in capturing complex variable relationships, 
enhancing yield prediction reliability. 
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1.	 	INTRODUCTION

Machine learning applications in lettuce production 
is revolutionizing the farming, improving efficiency, 
adaptability, and sustainability is being examined in 
this research study. This study highlights the integra-
tion of convolutional neural networks (CNNs) and 
YOLO-based models in lettuce crop cultivation which 
involves pest and disease diagnosis, precision spray-
ing, pesticide residue detection, crop condition moni-
toring, growth stage classification, yield prediction, 
weed management, and irrigation and fertilization 
management [1]. Another research highlights that the 
advanced Machine learning (ML) techniques are crucial 
for food security and hydroponic systems, but incon-
sistent predictions due to diverse features and datas-
ets require further research. Integrating advanced ML 

techniques with hydroponic systems holds promise 
for accurate yield forecasts and sustainability [2]. Artifi-
cial intelligence and IoT in aeroponics enable accurate 
regulation of fertilizer concentrations, misting cycles, 
temperature, and humidity. The integration of plasma-
activated water and plasma-activated mist improves 
resource efficiency and plant health. Machine learning 
applications in lettuce production improve efficiency, 
adaptability, and sustainability [3].

In order to satisfy the increasing demands of the ris-
ing population, global food production must quadruple 
by 2050 [4, 5]. Nevertheless, the present rates of grain 
growth are insufficient to attain this objective [6]. Cli-
mate change impacts agriculture, potentially reducing 
crop production and increasing food scarcity. With a pro-
jected 9 billion global population by 2050, governments 
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must manage sudden crop availability disruptions [7, 
8]. The Food and Agriculture Organization (FAO) reports 
a significant rise in grain demand and consumption in 
emerging countries like India between 1964 and 2030, 
with cereal imports increasing from 39 million tons in 
1970 to 130 million tons between 1997 and 1999. This 
trend is expected to persist and potentially accelerate 
[9]. Importing conventional crops can lead to food secu-
rity issues. Precision agriculture requires accurate crop 
forecasting, but weather conditions influence produc-
tion. Models for accurate forecasting are needed for in-
formed planning [10, 11]. Forecasting in applied sciences 
is crucial for precision farming techniques like aeroponic 
indoor farming. Machine learning techniques are being 
integrated into marketing software, equipment main-
tenance, health-monitoring systems, agricultural yield 
prediction, and soil analysis to improve crop growth and 
productivity [12].

Fig. 1. Various forms of Vertical Farming

This research article provides a detailed description 
on the lettuce yield prediction with the efficacy of the 
ElasticNet machine learning regression model. This 
manuscript is organized in such a way, section-2 deals 
with the detailed literature survey, section-3 with the 
methodology involved, section-4 with the implemen-
tation results and discussions and finally, section-5 and 
section-6 with the conclusion and future scope of the 
research that leads to the further enhancement of the 
proposed work.  

2.	 LITERATURE SURVEY

Using precision farming techniques integrated with 
the applications of machine learning algorithms, the re-
searchers have analyzed, implemented and developed 
the crop prediction models in an effective manner.

Historically, crop-cutting experiments were used to 
quantify agricultural yield, but it's time-consuming and 
requires human labor. Currently, artificial neural networks, 
LASSO-Least Absolute Shrinkage and Selection Operator, 
and ELNET are used for predicting yields [13-17]. Sridhara 
et al. [18] used the LASSO, ENET, PCA, ANN, and SMLR 

methodologies for predicting the Sorghum harvest. The 
researchers found that the developed artificial neural 
network (ANN) model outperformed the ENET regression 
model in estimating the yield of wheat crop.

Raja and Shukla [19, 20] used an Extreme Learning 
Machine (ELM) and hybrid grey-wolf-optimization Ar-
tificial Neural Network (ANN) models to get a more ac-
curate forecast of the final bearing capacity and settle-
ment of a geosynthetic-reinforced sandy soil.

Vertical farming, an innovative agricultural method, 
is attracting interest due to its capacity to enhance crop 
productivity per unit of land area [21, 22]. Nevertheless, 
the increase in expenses may have an adverse effect on 
profitability. This novel agricultural system tackles is-
sues such as population expansion, limited cultivable 
area, and environmental limitations. Vertical farming 
efficiently utilizes space, minimizing the need for land 
and development in urban areas, while also catering 
to the increasing need for organic food [23]. Neverthe-
less, the presence of obstacles in sensor technologies, 
inventive cultivation approaches, energy optimization, 
and automation is anticipated to propel progress to-
wards more effective production systems.

Modern technologies and sensors are used in vertical 
farming to keep an eye on the growing environments 
and make sure they are perfect for food growth, health, 
and development [24, 25]. This makes it easier to con-
trol energy and use resources more efficiently. Vertical 
farming is better for the earth than traditional farming 
because it increases food output and reduces trash 
[26]. However, it can be hard to combine sensors, con-
trol systems, and machine learning methods because 
they need complex robotics and data management 
systems.

Vertical farming technology is changing quickly, with 
a focus on gathering and analyzing data to get the best 
crop response [27]. This trend is good for the environ-
ment, society, and the economy [28, 29] and it looks 
like it will help keep food fresh in cities. Vertical farm-
ing has shown promise for growing a number of differ-
ent crops, but more study is needed to make it more 
efficient and cost-effective. It has a lot of promise, but 
more study is needed to successfully apply it.

A lot of research has been done on different aspects 
of vertical farming, such as its types [21], how it works 
[28], how to control the environment and make the 
best use of resources [25, 30], how to build a smart in-
door farm, sensing technologies, trends, and engineer-
ing challenges [31].

AI is a powerful computer program that lets comput-
ers learn from their mistakes, adapt to new information, 
and do jobs like people [32]. Vertical farming is a great 
example of how technology has changed the way food 
is grown [33]. AI, which is driven by machine-learning 
algorithms, looks at data and makes choices. It tracks 
plant growth, improves weather conditions, and makes 
the best use of resources [32]. AI finds trends and pre-
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dicts plant health by looking at data from physical and 
image sensors [34]. This helps farmers make smart 
choices and get the most crops.

Recent technological advances are being used in 
vertical farming to lower costs and protect the environ-
ment [35]. AI is very important for keeping an eye on 
food growth and making output better. Color pictures 
are used for plant phenotyping under artificial lighting, 
which lets growers keep an eye on and improve crop 
growth all the time [36]. Hwang et al. [34] created an 
image-based system to track the growth of crops, and 
Vorapatratorn et al. [37] created an AI-powered system 
for plant farms to automatically run their operations. 
Crop-growth records from multiple planting rounds 
are saved and used to train machine-learning mod-
els for automatic plant growth [31]. Rizkiana et al. [38] 
used resilient backpropagation ANNs to guess how tall 
plants would get, taking into account external factors 
and the heights of the plants at the start. They did this 
by growing cabbage in a plant workshop.

A machine-vision method was used by Story et al. [39] 
to find cabbage grown in gardens suffers from deficien-
cy of the essential nutrient called calcium. To showcase 
the difference between healthy and nutrient-deficient 
plants, they used a gray-level co-occurrence matrix 
and dual segmentation regression analysis. A group of 
researchers led by Hao [40] created a multi-scale hier-
archical convolutional neural network (MFC-CNN) de-
sign to measure the amount of stress in leaves. Sun et 
al. [41] used a CNN design to collect features from RGB 
pictures and sensor data to figure out how much water 
plants were losing. A study by Gozzovelli et al. [42] used 
WGAN and a deep CNN architecture to identify the let-
tuce plants that were stressed by tip-burn.

AI is revolutionizing vertical farming by improving 
crop productivity, resource allocation, and automation, 
but small and medium-sized farms face challenges like 
high costs associated with collecting and analyzing ex-
tensive data from sensors and cameras [32, 43]. The ab-
sence of a common software platform may impede the 
incorporation of AI algorithms [33, 36]. In addition, the 
use of AI gives rise to issues about privacy and security, 
particularly in relation to the handling of sensitive data 
pertaining to crops, farmers, and customers particular-
ly lettuce crops [42, 44].

Data quality challenges such as sensor noise, envi-
ronmental unpredictability, and human error might 
impede the accuracy and effectiveness of AI in verti-
cal farming [45, 46]. The process of training and imple-
menting AI models might require a significant amount 
of resources, particularly for farms that are small or me-
dium-sized. Gaining insight into the decision-making 
processes of AI models is essential for ensuring trans-
parency and maintaining food safety [47, 45]. Ensuring 
fairness and accuracy in AI models necessitates the mit-
igation of bias [40, 44]. Notwithstanding these difficul-
ties, AI has the capacity to transform vertical farming, 
enhancing its efficiency, productivity, and sustainabil-

ity. Vertical farming may enhance global food security, 
resource conservation, and environmental stewardship 
by effectively tackling these challenges and improving 
AI approaches [31].

3.	 METHODOLOGY

3.1.	 Elastic-Net regression for Lettuce 
	 Crop Yield Prediction

Lettuce, a popular leafy green herb, is a popular choice 
due to its health benefits. Aeroponic lettuce can be 
grown in a controlled environment with nutrient solu-
tion sprays. However, yield prediction of lettuce crop in 
conventional and precision farming is crucial. Machine 
learning has emerged as a solution for predicting lettuce 
crop yield effectively. The Elastic-Net (ENet) regression 
algorithm is chosen for this work, which is a balanced 
fitting of the dataset, combining LASSO and RIDGE reg-
ularization algorithms. This algorithm is chosen for its 
ability to handle high-dimensional data, handle noise 
and outliers, optimize hyper-parameters, adapt to new 
data, make decisions, and provide statistical insights on 
prediction results. High variance algorithms like decision 
trees and KNN are examples of high bias.

3.2.	 Mathematics behind ElasticNet 
	regression

Multiple Linear Regression involves more than one 
independent variable and one dependent variable. It is 
mathematically represented as, 

Y= β0+β1 X1+β2 X2+⋯+βn Xn (1)

where, Y is the dependent variable, X1 X2…Xn are the 
independent variables, β0 is the intercept and β1, β2…
βn are the slopes.

The main goal of the algorithm is to find the best fit line 
equation that can predict the values based on the inde-
pendent variables. In regression, set if records (dataset) 
are present with X and Y values and these values are used 
to learn a function so that to predict Y from an unknown 
X this learned function can be used. So here, to find the 
value of Y, a function is required that predicts continuous 
Y in the case given X as independent features.

In order to best fit line in linear regression, its not 
easy to get it easily in real life cases so we need to calcu-
late errors that affects it. These errors to be calculated 
to mitigate them. Thus, the equation for calculating the 
error function or cost function is represented as,

(2)

where, J is the error function, ŷi is the predicted values 
and yi is the actual values. 

The purpose is to determine the optimal values for the 
intercept θ1 and the coefficient of the input feature θ2 
providing the best fit line for representing this relation-
ship,

ŷi=θ1+ θ2 xi (3)
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In order to reduce the error function, the parameter 
values need to be updated. The technique behind this 
is to start θ1 and θ2 with random values and iteratively 
update until reaching the minimum error or cost.

So the cost function with respect to θ1,

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Similarly, for finding Jθ1
, the equation is represented 

below.

(11)

Hence, finding the coefficients of a linear equation 
that best fits the training data is the objective of the lin-
ear regression. The respective intercept and coefficient 
X will be if α is the learning rate.

(12)

(13)

Similarly, 

(14)

(15)

Since, the Elastic Net model is also a linear regres-
sion model that incorporates all the functionalities of 

(16)

where, N is the number of observations; yi is the actual 
output for observation i; yî is the predicted output for 
observation i; p is the number of features (predictors); 
βj is the coefficient of feature j; ∝ is the elastic net mix-
ing parameter, controlling the balance between L1 and 
L2 regularization; λ1 is the L1 regularization strength; λ2 
is the L2 regularization strength. 

The Elastic Net algorithm aims to find the values of 
βj that minimize this objective function. The regular-
ization terms  help prevent 
overfitting by penalizing large coefficient values. The 
mixing parameter α allows you to control the trade-off 
between L1 and L2 regularization.

When α=0, the Elastic Net reduces to Ridge regres-
sion, and when α=1, it reduces to Lasso regression.

The Elastic Net approach is particularly useful when 
dealing with datasets where many features are corre-
lated, as it can select groups of correlated features to-
gether (similar to Lasso) while still providing some of 
the shrinkage properties of Ridge. This makes Elastic 
Net a versatile choice for feature selection and regular-
ization in linear regression models.

4.	 FLOW DIAGRAM, IMPLEMENTATION RESULTS 
AND DISCUSSIONS

The results and discussions section deals with the de-
tailed notes on various phases from dataset collection 
to the comprehensive evaluation of the experimental 
results produced during the implementation of im-
proved ElasticNet regression model on the aeroponic 
lettuce crop yield estimation as shown in Fig. 2. 

Fig. 2. Architecture diagram of Lettuce Yield prediction using ElNetRM model

multiple linear regression model. In addition, it also 
embeds a composite penalty term including both L1 
(Lasso) and L2 (Ridge) regularization techniques. The 
objective function of Elastic Net is the sum of the L1 and 
L2 penalty terms, which are added to the ordinary least 
squares (OLS) objective function. The Elastic Net objec-
tive function is expressed in a generic form as follows:
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4.1.	 Dataset Collection and 
	 Visualization

Lettuce growth dataset have been collected from the 
aeroponic farming Centre for a cycle of 45-60 days. The 
sample dataset is shown in Fig. 3. 

There are nine different lettuce features were utilized 
for training the ElNetRM model. All the parameters list-
ed here are related to the indoor or controlled environ-
ment agriculture; they are nutrient solution character-
istics such as power of hydrogen (pH), total dissolved 
salts (TDS), electrical conductivity (EC), turbidity and 
related to the crop growth ambience namely, tempera-
ture, humidity, light, growth and yield. 

In order to better understand the lettuce datasets 
utilized for the implementation process, the datasets 

Fig. 3. Sample lettuce growth dataset

were visually represented in the form of pictures. Fig. 
3 showcases the distribution plot of the parameter pH 
with respect to the other input variables.

Fig. 4. Distribution Plot of pH parameter

Though there are multiple number of visualization 
plots are available, histogram technique (bootstrap dis-
tribution) was highly utilized to represent the features 
in an individual manner or as a whole. Fig. 5 showcases 
the distribution of lettuce growth parameters as sepa-
rate plots in such a manner that one feature do not col-
lide with another.

Fig. 5. Bootstrap Distribution Plot of lettuce growth parameters
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Fig. 6. Boxplot representing dataset with outliers

Fig. 7. Boxplot representing dataset without outliers

4.2.	 Preprocessing towards model 
	testing

One of the most important steps before training 
any machine learning models is preprocessing. Here, 
the authors have utilized the data cleaning technique 
called removal of outliers in order to achieve high yield 
prediction accuracy.

Fig. 6. Represents the boxplot visualization of the orig-
inal dataset size comprising of 225792 features [25088 

rows multiplied with 9 columns]. One of the foremost 
used preprocessing technique is the removal of outliers, 
which are being removed from the original dataset with 
the help of Inter Quartile Range (IQR) method. The fea-
tures which does not fall within the quartiles i. e within 
the specified inliers between 25th and 75th quartiles were 
neglected during the model training. 

Once the outliers are identified and removed 
(cleaned), once again the preprocessed dataset were 
visualized in Fig. 7.
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After preprocessing, the size of the dataset size is 
reduced to 205251 features i.e [225792-20541 outlier 
features=205251 features].

4.3.	 Feature Selection, Dataset 
	 Splitting, Hyperparameter tuning, 
	 Model training and Testing

Once the dataset is being preprocessed, the core part 
of the machine learning implementation begins to pro-

cess. The initial step is to select the certain set of lettuce 
growing features such as pH, EC, light, turbidity, tem-
perature, TDS, turbidity, humidity and growth.

All these growing factors were considered as the inde-
pendent variables. When the values of these individual 
crop growth variables changes, it has the significant im-
pact on the lettuce cultivation. The strength and nature 
of their interrelationships with each other and the out-
put variable can be graphically represented through the 
correlogram image as represented in Fig. 8.  

Fig. 8. Correlation diagram of input variables

The next step is the dataset splitting where the pre-
processed dataset was split into training and testing 
datasets in the ratio of 80:20 (where 80% of data uti-
lized for training and 20% of data utilized for testing) 
for efficient model building. 

Once the splitting process is done, the training phase 
starts. The ElNetRM model was trained on the lettuce 
dataset for learning the underlying patterns. The per-
formance is being measured and kept aside. Obviously, 
for the first time, the performance would be poor which 
has to fine-tuned for the further improvements in the 
yield prediction.

So, the hyperparameter tuning process gets initiated. 
As the ElasticNet regression is the combination of Lasso 
and Ridge regression, after performing hyperparame-
ter tuning, the values of the regularization parameters 
such as Alpha and L1ratio are fixed to 0.5 i.e moderate 
regularization for alpha and equal contribution of [L1 
and L2] penalties. 

After the model gets trained with the training dataset, 
the model is exposed to the testing dataset where the real 
research work was concentrated to prove the efficiency 

(17)

Root Mean Squared Error (RMSE)

It is the square root of the average of the squared dif-
ferences between the predicted and the actual values.

(18)

of the improved model. Here, hyper-parameter tuning 
via cross-validation was not utilized as the fixed threshold 
“0.5” provides the least error metric and higher accuracy. 

4.4.	 Performance metrics used for 
	model  evaluation

This is the final phase of the regression model where 
various performance metrics were highly utilized for 
evaluating the ElNetRM model’s performance. They are 
listed below in an elaborated manner.

Mean Squared Error (MSE)

It is the average of the squared differences between 
the predicted (ŷi) and the actual values (yi). 
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(26)

where, yi is the actual values, ŷi is the predicted values 
and y̅ is the mean of actual values.

Adjusted R-Squared metrics

Adjusted R2 is a metric that addresses the limitations of 
R2 metrics by accounting for the number of predictors 
in a regression model. It penalizes the inclusion of un-
necessary predictors that do not significantly improve 
the model, providing a more realistic measure of a 
model's explanatory power. This metric is particularly 
useful in preventing inflation of R2 due to the inclusion 
of irrelevant predictors, making it a more accurate mea-
sure of a model's explanatory power.

(27)

where, R2 is the regular R-squared, n is the number of 
observations and p is the number of predictors.

Explained Variance Score (EVS)

EVS is a metric that assesses the variance in depen-
dent variables explained by a regression model, similar 
to R-squared metrics. It prioritizes the model's ability 
to capture target variable variability, considering both 
bias and variance of predictions. Its scale differs from 
R-squared metrics, ensuring a more accurate under-
standing of the model's performance.

(28)

where, y is the actual values, ŷ is the predicted values 
and var is the variance of actual values.

4.5.	 Performance Analysis

Table 1 Represents the lettuce yield prediction perfor-
mance analysis using the improved ElNetRM model with 
the help of number of distinct performance metrices.

Normalized Root Mean Squared Error (nRMSE)

It differs from the RMSE metric that normalizes the 
RMSE by dividing it by the range of the target variable. 
This normalization allows for comparing the performance 
of the models on the datasets with different scales.

Mean Absolute Error (MAE)

It measures the average absolute differences be-
tween the predicted and the actual values. It provides 
the more interpretable measures of the average mag-
nitude of errors.

(19)

Mean Bias Error (MBE)

It is used to evaluate the bias or systematic error in a 
regression model. It measures the average difference 
between the predicted and the actual values. This met-
ric does not provide the information about the spread 
or variability of errors, so it is often used in conjunction 
with other metrics like MAE or RMSE.

(20)

(21)

Median Absolute Percentage Error (MedAPE)

The metric measures the median of absolute percent-
age differences between predicted and actual values, 
providing a reliable measure of prediction accuracy, 
especially in the presence of outliers. It is scale-inde-
pendent and suitable for comparing models across dif-
ferent datasets, allowing understanding of typical error 
magnitudes in terms of percentages of actual values.

(22)

Absolute Percentage Error (MAPE)

It measures the average percentage error between 
the predicted and the actual values. A lower MAPE in-
dicates better model performance.

(23)

Mean Percentage Error (MPE)

This metric is used to evaluate the accuracy of pre-
dictions in a regression model. It measures the average 
percentage difference between the predicted and the 
actual values. It is similar to MBE which provides the in-
formation on whether the model tends to overestimate 
or underestimate the actual values.

(24)

Symmetric Mean Absolute Percentage Error 
(SMAPE)

It addresses some of the limitations of other percent-
age-based metrics by providing a symmetric view of 

(25)

R-Squared metrics

R2 metrics or the coefficient of determination used to 
evaluate the goodness of fit of a regression model. It is the 
widely used metric for prediction and regression models, 
but it has limitations such as its sensitivity to the number 
of predictors and inability to distinguish between the 
good and bad predictions in certain rare cases. 

It represents the proportion of the variance in the de-
pendent variable that is explained by the independent 
variables.

the percentage errors that is not affected by the scale 
of the data. This metric is expressed as a percentage 
and it ranges from 0 to 200%. A lower the SMAPE score, 
better the performance of the model.
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Table 1. Performance Analysis of ElasticNet regression with other Regression methodologies

Performance Measurements

Regression Type MSE RMSE nRMSE MAE MBE MedAPE MAPE MPE SMAPE R-squared Adjusted R-squared EVS

Linear Regression 8.591 2.931 0.3094 7.667 0.58 4.85 4.20 1.41 46.332 0.89 0.90 0.721

Lasso Regression 8.640 2.94 0.3012 7.64 0.47 4.15 4.07 1.27 43.076 0.84 0.85 0.703

Ridge Regression 8.591 2.931 0.2012 6.73 0.40 4.03 4.07 1.63 41.375 0.87 0.88 0.83

Support Vector 7.246 2.691 0.1922 6.67 0.406 4.026 4.06 1.59 41.026 0.88 0.89 0.8256

Random Forest 6.875 2.622 0.1568 6.49 0.391 4.006 3.99 1.48 40.368 0.90 0.906 0.854

ElasticNet regression 5.239 2.288 0.1015 6.24 0.38 3.92 3.74 1.04 39.51 0.91 0.92 0.88

The use of the ElNetRM in predicting lettuce pro-
duction in controlled indoor aeroponic environments 
produced valuable findings in this carried out research. 
The Mean Squared Error (MSE) of 5.239 is the average 
of the squared differences between the predicted and 
actual yields. The Root Mean Squared Error (RSME) 
of 2.288, calculated as the square root of the Mean 
Squared Error (MSE), represents the standard deviation 
of the residuals and indicates the accuracy of the mod-
el. The NRMSE of 0.1015 indicated the model's high 
accuracy in predicting the yield range. The Mean Ab-
solute Error (MAE) of 6.24 is the average absolute differ-
ence between the predicted and actual values, serving 
as a concise measure of the model's performance. The 
model's predictions showed a small Mean Bias Error 
(MBE) of 0.38, indicating a minor tendency to underes-
timate. The investigation also found a Median Absolute 
percentage Error (MedAPE) of 3.92, indicating that the 
minimum number of the predictions differed from the 
actual values by this proportion. The Mean Absolute 
Percentage Error (MAPE) of 3.74 indicates the average 
percentage difference, while the Mean Percentage Er-
ror (MPE) of 1.04 suggests a tiny value of underesti-
mate. The Symmetric Mean Absolute Percentage Error 
(SMAPE) of 39.51 represented a measure of symmetric 
percentage difference where, this minimum symmetric 

error showcases the better training and testing of the 
model on the data. The R-squared value of 0.91 dem-
onstrates a strong correlation between the model and 
the real data, indicating its strength on lettuce yield 
prediction. The ElNetRM demonstrated resilience, as 
shown by its Adjusted R-squared value of 0.92, which 
takes into account the number of predictors. In addi-
tion, the Explained variance Score (EVS) of 0.88 accu-
rately quantified the amount of fluctuation in lettuce 
production that was successfully accounted for by the 
ElNetRM. In conclusion, these results collectively sug-
gest that the ElNetRM stands out as a promising and 
accurate approach for predicting indoor aeroponic let-
tuce yield, substantiated by a comprehensive evalua-
tion of diverse metrics.

4.6.	 Feature Importance Visualization

The visualization of feature importance for the pro-
posed research work has been represented using the 
Coefficient bar plot which is useful when many number 
of input features were being utilized for predictions. 
Here, from the plot we can observe and interpret the 
most influential variables that affects the growth of let-
tuce crop based on the positive (bars >0) and the nega-
tive impact (bars <0) as represented in Fig. 9.

Fig. 9. Coefficient magnitude diagram of input variables
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4.7.	 Prediction graph

In the context of aeroponic lettuce yield prediction by the improved ElNetRM model, the prediction graph as 
represented in Fig. 10. highlights the efficiency of utilizing the regression model using the scatter plot. 

Fig. 10. Lettuce Yield Prediction Graph (Scatter Plot)

The blue line in the prediction graph represents the 
original values or the actual values (input parameters) 
of the lettuce dataset and the other color represents 
the predicted values (lettuce yield in weights) by the 
ElNetRM model. As the predicted values overlaps with 
the actual values, the successful prediction by the 
model is highly depicted while the small discrepancies 
highlight the areas of further improvement in the pre-
diction process.

5.	 CONCLUSION AND FUTURE SCOPE

Ultimately, this research work evaluates the Elastic 
Net machine learning regression model's effectiveness 
in accurately forecasting lettuce production in indoor 
aeroponic systems. The model effectively handles the 
complex dynamics of indoor aeroponic settings, ad-
dressing multicollinearity and balancing sparsity and 
variable relevance. The results show superior perfor-
mance compared to conventional models like linear 
regression and Ridge regression. The model's inter-
pretability enhances its usefulness by providing valu-
able insights for decision-making in indoor aeroponic 
lettuce growth. The study also contributes to precision 
agriculture knowledge by highlighting the special ben-
efits of Elastic Net in indoor aeroponic systems. The 
findings have practical applications for farmers, agron-
omists, and researchers involved in enhancing agricul-
tural yield in controlled settings.

The Future research should focus on fine-tuning 
parameters, integrating additional variables, dynamic 
model adaptation, ensemble approaches, practical im-

plementation, and extension to other crops. The mod-
el's performance can be improved by incorporating 
environmental and nutrient variables and advanced 
sensor data. On-farm trials and validations should as-
sess the model's feasibility in real-world indoor aero-
ponic farming scenarios. The ongoing exploration and 
refinement of machine learning models will contribute 
to precision farming, resource utilization, and sustain-
able food production.
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