
Performance Assessment of Deep Learning
Frameworks through Metrics of CPU Hardware
Exploitation on an Embedded Platform

1Volume 11, Number 1, 2020

Original Scientific Paper

Delia Velasco-Montero
Instituto de Microelectrónica de Sevilla
Universidad de Sevilla-CSIC
Sevilla, Spain
delia@imse-cnm.csic.es

Jorge Fernández-Berni
Instituto de Microelectrónica de Sevilla
Universidad de Sevilla-CSIC
Sevilla, Spain
berni@imse-cnm.csic.es

Ricardo Carmona-Galán
Instituto de Microelectrónica de Sevilla
Universidad de Sevilla-CSIC
Sevilla, Spain
rcarmona@imse-cnm.csic.es

Ángel Rodríguez-Vázquez
Instituto de Microelectrónica de Sevilla
Universidad de Sevilla-CSIC
Sevilla, Spain
angel@imse-cnm.csic.es

Abstract – In this paper, we analyze heterogeneous performance exhibited by some popular deep learning software frameworks for
visual inference on a resource-constrained hardware platform. Benchmarking of Caffe, OpenCV, TensorFlow, and Caffe2 is performed on
the same set of convolutional neural networks in terms of instantaneous throughput, power consumption, memory footprint, and CPU
utilization. To understand the resulting dissimilar behavior, we thoroughly examine how the resources in the processor are differently
exploited by these frameworks. We demonstrate that a strong correlation exists between hardware events occurring in the processor and
inference performance. The proposed hardware-aware analysis aims to find limitations and bottlenecks emerging from the joint interaction
of frameworks and networks on a particular CPU-based platform. This provides insight into introducing suitable modifications in both types
of components to enhance their global performance. It also facilitates the selection of frameworks and networks among a large diversity of
these components available these days for visual understanding.

Keywords – convolutional neural networks, deep learning, edge inference, embedded vision, hardware performance, software frameworks

1. INTRODUCTION

Convolutional neural networks (CNNs) based on deep
learning (DL) [1] are rapidly replacing classical computer
vision algorithms because of their superior accuracy in
terms of several tasks such as image classification, object
detection, and segmentation. However, this advantage
comes at the cost of increasing memory and computa-
tional requirements [2], setting a challenge for the im-

plementation of CNN-based vision systems on resource-
constrained embedded platforms [3].

The popularity of the DL paradigm for computer vi-
sion has prompted the release of several software
frameworks for CNN inference. While globally targeting
the same functionality, each one is oriented to enhance
certain aspects of performance, ease of use, compatibil-
ity, etc. In fact, these tools exploit particular optimization
libraries to deal with the demanding computational re-

2 International Journal of Electrical and Computer Engineering Systems

quirements of CNNs. For instance, convolutional and ful-
ly-connected layers composing CNNs can be expressed
as matrix-matrix or matrix-vector operations, respective-
ly. These operations can be optimally calculated using
Basic Linear Algebra Subroutines (BLAS) [4]-[5], which
are implemented by several libraries underlying the DL
frameworks: ATLAS [6], MKL [7], OpenBLAS [8]-[9], Eigen
[10], cuBLAS [11], etc. This diversity of techniques con-
ducted by CNN software tools results in remarkably dif-
ferent inference performance, even running the same
network on a particular hardware device.

In this context, most previous works have followed a
direct constrained approach to assess this dissimilarity
in framework performance. For instance, comparisons
based exclusively on throughput among frameworks
– including Caffe, TensorFlow, Torch, CNTK, and MXNet
– have been reported [12]-[14]. Other works have as-
sessed inference performance on embedded vision
systems through high-level metrics [15]-[18]. More
customized and specific CNN implementations on
CPU-based embedded systems have been published
as well [19]-[20]. In contrast, the scope of this paper en-
compasses DL frameworks that can operate on a wide
range of embedded devices.

All of the aforementioned contributions are focused
on straightforward benchmarking to evaluate the dis-
similar performance exhibited by DL tools. However,
such approach, lacking insight into how hardware and
software interact, is not suitable to keep up with the
rapid evolution of CNN frameworks. New network ar-
chitectures are reported almost on a daily basis and ac-
curate modeling is required to predict their behavior in
a targeted system, thereby facilitating practical deploy-
ments. All in all, in this paper we follow a bottom-up ap-
proach to explain CNN inference performance through
meaningful low-level metrics reflecting how hardware
is exploited by DL software frameworks. The identified
correlations constitute the first step in our research to
develop the aforementioned accurate modeling.

The rest of the paper is organized as follows. Networks,
frameworks and the embedded platform under study
are introduced in Section 2. We benchmark the perfor-
mance of these technological DL components in Section
3, pointing out relevant aspects. In Section 4, we quali-
tatively examine how hardware resources are exploited
during inference in order to explain the benchmarking
results. Section 5 quantitatively highlights the correla-
tion of these hardware events with performance figures.
Finally, critical remarks for framework selection accord-
ing to application requirements are described in Section
6. Conclusions are drawn in Section 7.

2. BENCHMARKING COMPONENTS AND SET-UP

2.1. HARDwARE PLAtFoRM

The selected CPU-based platform for our study is
the Raspberry Pi 3 Model B [21] (RPi), an inexpensive

embedded platform, which features a Quad Core ARM
Cortex-A53 1.2GHz 64-bit CPU [22][23] – including four
ARMv8-A processors – on a Broadcom BCM2837 Sys-
tem-on-a-Chip (SoC).

The ARM Cortex-A53 processor includes a two-level
memory system. The level 1 (L1) memory system in-
cludes, per core processor, separate instruction and
data caches (I-cache, D-cache), and a memory manage-
ment unit (MMU). The MMU includes one translation
lookaside buffer (TLB) per core – a cache for instruction
and data that translates between virtual and physical
addresses. The level 2 (L2) memory system features a
unified cache, which is shared between the cores. Spe-
cifically, on the Broadcom BCM2837 of the RPi 3B, L1
and L2 comprise 32KB and 512KB, respectively.

For computation acceleration, an advanced single
instruction multiple data (SIMD) architecture – also
known as NEON technology – is implemented on this
SoC. Each ARMv8-A core makes use of 128-bit NEON
and 32-bit Vector Floating-Point (VFP) registers to ac-
celerate scalar and vector operations [24]. In addition,
instruction caching and dynamic branch prediction are
introduced in the ARM architecture to increase overall
performance and reduce power consumption.

Regarding the external memory where network
weights and working data for inferencing are stored,
the RPi features 1GB RAM LPDDR2 900MHz. An at-
tached micro-SD card provides extra non-volatile stor-
age capacity to the system.

2.2. SoFtwARE FRAMEwoRkS

On this hardware device, we employ a Raspbian v9.4
Linux Kernel v4.14 [25] operating system and build –
using a g++ compiler v6.3.0 – the following popular
software tools for DL inference in order to evaluate
their performance:

•	 Caffe [26] applies image-to-column transforma-
tion (im2col) plus General Matrix-Matrix Multipli-
cation (GEMM) to implement convolutions. On
RPi’s CPU, two Basic Linear Algebra Subprograms
(BLAS) can be set as the back-end for GEMM at
compilation time, namely OpenBLAS [9] and At-
las [6]. Firstly, we carried out a preliminary test
with different configurations in order to identify
the best one among (a) ATLAS, (b) OpenBLAS
configured by default, and (c) OpenBLAS estab-
lished for leveraging the four cores. To this end,
we run inference over a 6-minute period with
a batch size of 1 image and measured average
throughput obtained for each Caffe configura-
tion. To find the performance trend, we tested
various CNNs, as reported in Table 1. According
to these results, OpenBLAS is a BLAS library sup-
ported by RPi’s CPU and compatible with Caffe,
that better leverages the four cores of the ARM
Cortex-A53. We will use this configuration in the
rest of the paper.

3

•	 tensorFlow [27] builds a static graph for ex-
pressing network computation operations. Once
built and optimized, it can be repeatedly execut-
ed for image inference. This framework makes
use of the Eigen library [10] to generate efficient
parallel code for multicore CPUs. We installed
pre-built TensorFlow v1.3.0 for RPi [28], which ex-
ploits ARM hardware optimizations – NEON and
VFP – for computational acceleration.

•	 openCV [29] library offers a module for infer-
encing using pre-trained network files from
other frameworks. We loaded network model
files in Caffe format. OpenCV version 3.3.1 was
compiled to exploit both ARM NEON and VFP
optimizations as well.

•	 Caffe2 [30] arose as a new lightweight, modular
and mobile-oriented framework. Different from
Caffe, it uses static graphs for network definition
and the Eigen library for matrix calculation. Caffe2
is also optimized for ARM CPUs with NEON.

Single-precision floating-point data format (float32)
is used for data storage and computation on all of
these frameworks.

table 1. Preliminary benchmark on throughput
for selecting the most suitable
 acceleration library for Caffe.

(a)
AtLAS

(b)
openBLAS

(c)
openBLAS (4)

GoogLeNet [31] 0.3 fps 0.4 fps 0.6 fps

ResNet-50 [32] 0.1 fps 0.2 fps 0.3 fps

SqueezeNet-v1.1 [33] 1.2 fps 1.5 fps 2.3 fps

MobileNet-v1-224 [34] 0.5 fps 0.7 fps 0.9 fps

2.3. ConVoLUtIonAL nEURAL nEtwoRkS

The inference performance of each software tool was
exhaustively assessed for three networks performing
1000-category image classification, namely GoogLeNet
[31], ResNet-50 [32], and SqueezeNet [33]. The pre-
trained weights of these models are supplied by each
framework, each one using a different file format [35]-
[43]. Their different architectures are highlighted in
Table 2. Note that a tradeoff exists between complexity
and accuracy. Although we used publicly available pre-
trained models, we run these networks for 1000-cate-
gory image classification on the ImageNet ILSVRC 2012
validation dataset [44] – without any data augmenta-
tion – to check the reported network accuracy.

Given that we aim at real-time applications at the
edge where latency is critical, the batch size was set to
1. These networks were assessed using the correspond-
ing Python API of each framework – specifically, we
used Python 2.7.13.

table 2. Main parameters defining CNN
architectures

GoogLenet Resnet-50 Squeezenet-v1.1

Repository [35] - [37] [38] - [40] [41] - [43]

Top-1 (%) Acc.1 69.2 ± 0.4 72.6 ± 0.1 58.3 ± 0.0

Top-5 (%) Acc.1 89.0 ± 0.1 91.0 ± 0.0 80.0 ± 0.1

Input Size 1x224x224x3 1x224x224x3 1x227x227x3

#Outputs 1000 1000 1000

#Conv. layers 57 53 26

#Fully-C.layers 1 1 0

#weights ~7.0M ~25.6M ~1.2M

#MACs ~1.6G ~3.9G ~396M

1 As each framework provides a different pre-trained
model file, specific details on the training parameters
must be found in the indicated source repositories.
Random initialization of weights leads to small devia-
tions in accuracy even if it is the same architecture but
trained on each framework.

3. PERFORMANCE ANALYSIS

Firstly, we benchmark CNN models in terms of high-
level performance metrics required for meeting ap-
plication specifications, namely throughput, memory
footprint, and power consumption.

However, a preliminary evaluation of CNN inference on
this platform evidences that the high computational de-
mand of these networks increases the SoC temperature,
which in turn has an impact on instantaneous through-
put. To take this aspect into account, we also registered
the high-level CPU status (temperature, frequency, and
utilization) after each processed image on a long-term
period (i.e., 6 minutes) of continuous inference.

Overall, the following performance figures have
been considered:

•	 Throughput. It was calculated as the inverse
value of the total per-image processing time
–including the time required to read and pre-
process the input image, perform the inference,
extract the CPU metrics and save the long-term
analysis results.

•	 CPU utilization. It was measured by using the Py-
thon psutil library.

•	 CPU frequency and temperature. We used the
vcgencmd tool after each inference to monitor
CPU frequency and temperature. Under normal
conditions, the ARM Cortex-A53 CPU can run at
1.2 GHz. However, a high SoC temperature will
force CPU downclocking.

•	 Memory footprint. It was taken from the Unique
Set Size (USS) metric provided by the psutil li-
brary. This value represents effective physical
memory allocation for running the process –
comprising the required memory for process-

Volume 11, Number 1, 2020

4 International Journal of Electrical and Computer Engineering Systems

ing one image plus CNN weights plus unshared
libraries, including the framework library itself.

•	 Power consumption. We employed an external
Keysight N6705C DC Power Analyzer to measure
the instantaneous power demanded by the net-
works.

•	 An example of the temporal evolution of CPU
status and its instantaneous impact on through-
put is shown in Fig. 1. This plot corresponds to a
6-minute period of SqueezeNet inference.

•	 The average values of performance metrics for
all network/framework pairs under study are
shown in Fig. 2. These parameters are relevant
for real-time applications, and some aspects
must be remarked:

•	 Temperature increases following different patterns,
as exemplified in Fig. 1. When the CPU reaches 80°,
the processor protects itself by reducing its fre-
quency, which in turn decreases the throughput.

Fig. 1. Long-term evaluation of SqueezeNet. Similar trends are observed for GoogLeNet and ResNet-50.

Fig. 2. Average values of (a) CPU utilization, (b)
throughput, (c) power consumption, and (d) allocated

memory1.
1MiB refers to mebibyte. It is equivalent to 220 bytes.

•	 CPU utilization and allocated memory are quite
stable over the test period. However, particular
acceleration libraries exploited by the tools make
them allocate different amounts of memory –
for instance, the well-known tradeoff between
memory and computation speed introduced by
im2col transformation. In fact, such diversity of
coding techniques also explains the differences
in CPU utilization and throughput.

•	 Average throughput differs significantly among
frameworks. This has influence on the total num-
ber of processed images over the inference period.

•	 Both framework coding and network architec-
ture affect the instantaneous power consump-
tion.

•	 Caffe is distinguished for the highest CPU utili-
zation, what quickly increases its temperature
and makes the system demand high power.
However, in spite of apparently making the
most of the CPU, Caffe’s throughput is the low-
est among the frameworks for these three CNNs.

5

Fig. 3. Per-image hardware events registered during inference: (a) instructions architecturally executed, (b)
instructions per second, (c) data memory accesses, (d) data memory accesses per second, (e) L1 d-cache
loads, (f) L1 d-cache miss ratio, (g) L2 d-cache loads, (h) L2 d-cache miss ratio, (i) L2 d-cache loads per L1

d-cache loads, (j) dTLB misses per 103 memory accesses, (k) branch speculatively executed, and (l) branch
mispredict ratio.

Volume 11, Number 1, 2020

6 International Journal of Electrical and Computer Engineering Systems

Actually, the same behavior has been observed
for other CNNs running on this framework, such
as Network-in-Network [45] or MobileNet [34].

Thus, we propose an analysis based on hardware ex-
ploitation in order to elucidate the underlying reasons
for these results.

4. HARDWARE EXPLOITATION ANALYSIS

We can extract aggregated statistics on both the
processor and the memory system from six event
counters provided by the so-called performance
monitoring unit (PMU) available in the Cortex-A53
processor. In particular, we employed the perf tool
[46] to gather PMU hardware events [47].

For the sake of a fair comparison, we will compare
per-image hardware statistics. To this end, we gath-
ered the metrics corresponding to the complete infer-
ence script (s1), which runs inference on N=50 images
randomly selected from the ImageNet dataset [44].
Then, we singled out the statistics derived from load-
ing the network and libraries (s2) by running the same
script but set to N=0. Thus, the per-image statistics we
will assess are derived from the expression (s1-s2)/50.
Moreover, we averaged values from five measure-
ments in order to reduce perf estimation errors due to
multiplexing events [46].

Fig. 3 depicts the most representative parameters
among all statistics gathered. Next, we will carefully
examine them.

Let us first focus on Caffe as an example of elabo-
rating on performance behavior upon these metrics.
Caffe’s coding strategies and underlying libraries –
OpenBLAS for convolutions – make it demand the
highest number of processing instructions (Fig. 3(a))
and data memory accesses (Fig. 3(c)) for the three net-
works. To deal with these requirements, the processor
renders the highest rates of instructions and memory
fetches per second (Figs. 3(b) and 3(d)). These rates
explain the high CPU utilization of Caffe reported in
Section 3 (Fig. 2(a)). In addition, branch prediction
implemented on the RPi ARM processor is intensively
applied by Caffe (Fig. 3(k)). Under branch prediction,
instructions of a branch of code are executed before
checking whether they need to be executed. Suc-
ceeding in branch prediction speeds up computation.
Nonetheless, Caffe’s poor prediction performance
(Fig. 3(l)) forces the CPU to execute more unnecessary
instructions. Concerning cache exploitation, keeping
re-used data at a higher level of the memory hierar-
chy will reduce data access latency. Caffe significantly
makes the most of level 1 and level 2 caches, loading
high amounts of data (Figs. 3(e) and 3(g)) with low
miss rates (Figs. 3(f), 3(h) and 3(i)). The exploitation of
TLB by Caffe is also significant (Fig. 3(j)). In fact, the
OpenBLAS library underlying this framework is highly
oriented to reduction of TLB misses by keeping part of
one of the operands in the L1 cache. Definitely, these

aggregated hardware metrics gathered for Caffe (ap-
propriate cache exploitation, but the highest demand
for processing and memory) suggests unfit coding in
this framework when it comes to leveraging RPi’s ARM
instruction set. This explains poor throughput but
high CPU utilization of Caffe on this platform.

Concerning the other three software tools, there
are also remarkable results. A distinctive reduction in
their number of executed instructions with respect to
Caffe is highlighted in Fig. 3(a). This suggests an ef-
ficient exploitation of the processor SIMD instruction
set – note that these three frameworks allow to lever-
age ARM hardware optimizations at compile time.
TensorFlow coding efficiency is remarkable, as re-
vealed by its lowest number of executed instructions
and data movements (Figs. 3(a) and 3(c)), in addition
to high operation rates (Figs. 3(b) and 3(d)). This ex-
plains high throughput achieved by TensorFlow (Fig.
2(b)). Regarding OpenCV, even making poor use of
the highest level of cache, i.e., L1, it is the best by far
on exploiting level 2 cache (Figs. 3(e) - 3(h)). This leads
to OpenCV low memory requirements (Fig 2(d)) and
high frame rates (Fig 2(b)) – note that external mem-
ory accesses take several CPU cycles, which OpenCV
saves upon its efficient use of L2. The performance of
TensorFlow and Caffe2 is similar in relation to cache
exploitation. Finally, Caffe2 is remarkable in terms of
effective branch prediction.

5. CORRELATIONS BASED
ON HARDWARE METRICS

Beyond the results and discussion above, further
conclusions can be extracted by identifying correla-
tions among the numerical results presented in sec-
tions 2, 3, and 4.

5.1. CoRRELAtIon on AGGREGAtED
 HARDwARE EVEntS

To start with, the network architectures can be as-
sessed from a hardware exploitation perspective. For
each network under consideration, Fig. 4(a) reveals
that the number of instructions executed on the pro-
cessor (shown in Fig. 3(a)) is clearly consistent with
the amount of multiply-accumulate (MAC) operations
required for inference (Table 2) – with each frame-
work exhibiting a distinctive relationship, as previ-
ously discussed. Similarly, data memory accesses are
correlated with the number of parameters learnt in
the network (Fig. 4(b)). These correlations allow us to
extract a preliminary estimation of the expected hard-
ware resource requirements – executed instructions
or memory accesses – simply calculating the number
of MAC and weights of the particular network that will
eventually run on a specific framework. Indeed, this
a priori estimation provides insight into the expected
CNN performance in terms of throughput or power
consumption, as discussed in sections 4 and 5.2, re-
spectively.

7

Fig. 4. Correlation between hardware statistics
(y-axis) and parameters defining the network

architecture (x-axis) for the three CNNs.
In addition, the specific acceleration libraries exploit-

ed by each framework give rise to a range of memory
requirements on the system. Indeed, the amount of
memory resources per framework roughly follows a
linear pattern, as depicted in Fig. 5. Therefore, for each
framework, we can estimate memory requirements
from the number of weights in the network. The ap-
plicability is straightforward since very deep networks
comprise a great deal of weights, and embedded plat-
forms feature limited RAM – 1GB in the case of RPi 3B
– to be shared among running edge applications and
services, such as sensor management or networking.

All in all, the analysis carried out demonstrates that
concerning visual inference applications on resource-
constrained embedded platforms, optimizing hard-
ware resources – executed instructions and memory
accesses – are mandatory in order to boost perfor-
mance. To illustrate this, a nearly linear pattern be-
tween throughput and data memory accesses is also
identified in our platform (Fig. 6), making it possible to
obtain good estimates of performance from this aggre-
gated hardware metric.

Fig. 5. Memory requirements vs. network weights.

5.2. CoRRELAtIon on tEMPoRAL SAMPLES

In addition to the aggregated statistics analyzed in
Section 4, we sampled hardware metrics every 10 mil-

Fig. 6. Alignment between throughput and the
number of memory-access hardware events for the 12
combinations of assessed frameworks and networks.

Square points represent SqueezeNet, circular points
are associated to GoogLeNet, and triangular points

refer to ResNet-50.

liseconds. Fig. 7 profiles instantaneous power vs. three
hardware metrics simultaneously measured – namely
L1 and L2 d-cache loads per second, and instructions
per second – during four consecutive inferences. To ob-
tain this profiling, thorough temporal alignment was
necessary because of different measurement sources
employed, i.e., event counters in the processor and
the same external power analyzer mentioned in Sec-
tion 3, that is, Keysight N6705C DC. Plots similar to that
in Fig. 7 have been obtained for all analyzed networks
and frameworks. The Pearson correlation coefficients
of these aligned temporal samples of hardware statis-
tics and power consumption are presented in Table 3. It
is worth noting that these coefficients range between
0.54 and 0.95, being greater than 0.80 in most cases.

Taking into account the importance of power con-
sumption in embedded vision applications, and how
difficult its direct measurement is (supply pins must be
accessible and special equipment like the aforemen-
tioned power analyzer is required), the proposed hard-
ware metrics constitute a simple way to model and
characterize embedded platforms in terms of energy.

Volume 11, Number 1, 2020

8 International Journal of Electrical and Computer Engineering Systems

Fig. 7. Instantaneous hardware metrics and power consumption on four inferences of GoogLeNet on Caffe.
A high correlation can be visually identified.

Fig. 8. Polar charts with the most representative results of the proposed hardware exploitation analysis .

Fig. 9. Assistance graphs for optimum framework and network selection.

9

table 3. Pearson correlation coefficient between
instantaneous power consumption and three

hardware metrics.

L1 d-cache
loads/sec

L2 d-cache
loads/sec

Instructions
/sec

G
oo

gL
en

et

Caffe 0.85 0.72 0.94

TensorFlow 0.95 0.88 0.92

OpenCV 0.89 0.66 0.89

Caffe2 0.82 0.79 0.80

Re
sn

et
-5

0

Caffe 0.79 0.61 0.78

TensorFlow 0.76 0.68 0.73

OpenCV 0.86 0.54 0.85

Caffe2 0.67 0.73 0.61

Sq
ue

ez
en

et

Caffe 0.94 0.82 0.95

TensorFlow 0.80 0.80 0.80

OpenCV 0.94 0.70 0.94

Caffe2 0.86 0.81 0.86

6. APPLICABILITY OF THE STUDY: NETWORK/
FRAMEWORK SELECTION

The extracted hardware information can be wisely
used to facilitate the selection of optimum DL compo-
nents according to application specifications. To sim-
plify this task, Fig. 8 provides insight into a quick visual
comparison of hardware exploitation on the bench-
marked components. Five hardware metrics have been
particularly selected and compared in these charts. For
each metric, represented values have been normal-
ized with respect to the maximum measured value
(indicated on the external circumference) and there is
a scale factor along the radial axis. Thus, for example,
the branch mispredict ratio for GoogLeNet/TensorFlow
(Fig. 8, left chart, orange line) is around 0.6 times 7.5%,
which is the maximum measured for this metric. There-
fore, the value of the metric at that point is 4.5%. Fig. 8
immediately suggests the bottlenecks of each frame-
work on this CPU-based platform: the higher the values
of these metrics, the worse the performance we must
expect. For instance, Caffe is defined for executing more
instructions (aggravated with more branch mispredic-
tions) in the three network cases. On the other hand,
TensorFlow, OpenCV and Caffe2 stand out in terms of
requiring fewer instructions, low L2 cache misses, and
reduced branch mispredict rates, respectively.

Finally, another graphical comparison, in this case in
terms of high-level performance metrics, is presented
in Fig. 9. Once again, the values have been normalized
with respect to the measured maxima. It is straightfor-
ward to match low latency with TensorFlow, minimum
memory allocation with OpenCV, and reduced power
consumption with Caffe2. Comparing the networks
globally, note that low latency, memory footprint, and
power consumption of SqueezeNet (Fig. 9, right chart)
are traded off with a reduced inference accuracy.

7. CONCLUSIONS

This paper demonstrates that low-level hardware ex-
ploitation parameters can be effectively used to model
the expected behavior of CNNs running on DL frame-
works built on a CPU-based embedded platform. The
identified correlations between such parameters and
performance metrics allow us to highlight bottlenecks
and limitations in the interaction between hardware
and software. This is critical to selecting the most suit-
able components according to prescribed specifica-
tions. The proposed graphical representations prove
the validity of these considerations in practical terms.
In the near future, we will be reporting the analytical
models for accurate performance prediction we are de-
veloping upon the results presented herein.

ACknowLEDGMEnt

The current archival periodical article is based on the
conference presentation [48].

This work was supported by the Spanish Government
MICINN (European Region Development Fund, ERDF/
FEDER) through project RTI2018-097088-B-C31, by the
Spanish Government through FPU Grant FPU17/02804,
by the European Union H2020 MSCA through project
ACHIEVE-ITN (Grant No. 765866), and by the US Office
of Naval Research through Grant No. N00014-19-1-2156.

8. REFERENCES:

[1] Y. LeCun, Y. Bengio, G. Hinton, “Deep Learning”,

Nature, Vol. 521, No. 7553, 2015, pp. 436–444.

[2] M. Verhelst and B. Moons, “Embedded Deep Neu-

ral Network Processing”, IEEE Solid-State Circuits

Magazine, Vol. 9, No. 4, 2017, pp. 55–65.

[3] V. Sze, “Designing Hardware for Machine Learn-

ing”, IEEE Solid-State Circuits Magazine, Vol. 9, No.

4, 2017, pp. 46–54.

[4] C. L. Lawson, R. J. Hanson, D. R. Kincaid, F. T. Krogh,

“Basic Linear Algebra Subprograms for FORTRAN

Usage”, ACM Transactions Mathematical Software,

Vol. 5, No. 3, 1979, pp. 308–323.

[5] T. Kielmann, Basic Linear Algebra Subprograms

(BLAS), 2011.

[6] Automatically Tuned Linear Algebra Software (AT-

LAS), http://math-atlas.sourceforge.net (accessed:

2019)

[7] Intel Math Kernel Library, https://software.intel.

com/en-us/mkl (accessed: 2019)

[8] K. Goto, R. A. van de Gejin, “Anatomy of high-

performance matrix multiplication”, ACM Transac-

Volume 11, Number 1, 2020

10 International Journal of Electrical and Computer Engineering Systems

tions Mathematical Software, Vol. 34, No. 3, 2008,

pp. 12:1–12:25.

[9] OpenBLAS, optimized BLAS library based on Go-

toBLAS2 1.13 BSD version, https://github.com/

xianyi/OpenBLAS (accessed: 2018)

[10] Eigen, http://eigen.tuxfamily.org/ (accessed: 2019)

[11] Dense Linear Algebra on GPUs, https://developer.

nvidia.com/cublas (accessed: 2019)

[12] S. Bahrampour, N. Ramakrishnan, L. Schott, M.

Shah, “Comparative Study of Caffe, Neon, The-

ano, and Torch for Deep Learning”, arXiv, No.

1511.06435, 2015.

[13] J. Hanhirova et al., “Latency and Throughput Char-

acterization of Convolutional Neural Networks for

Mobile Computer Vision”, arXiv, No. 1803.09492,

2018.

[14] S Shi, Q. Wang, P. Xu, X. Chu, “Benchmarking State-

of-the-Art Deep Learning Software Tools”, arXiv,

No. 1608.07249, 2016.

[15] A. Ignatov et al. “AI Benchmark: Running Deep

Neural Networks on Android Smartphones”, arXiv,

No. abs/1810.01109, 2018.

[16] D. Velasco-Montero, J. Fernandez-Berni, R. Carmo-

na-Galan, A. Rodriquez-Vazquez, “Optimum Selec-

tion of DNN Model and Framework for Edge Infer-

ence”, IEEE Access, Vol. 6, 2018, pp. 51680–51692.

[17] X. Zhang, Y. Wang, W. Shi, “pCAMP: Performance

Comparison of Machine Learning Packages on the

Edges”, USENIX Workshop on Hot Topics in Edge

Computing, Boston, MA, USA, 10.7.2018.

[18] D. Pena, A. Forembski, X. Xu, D. Moloney, “Bench-

marking of CNNs for Low-Cost, Low-Power Ro-

botics Applications”, RSS Workshop: New Frontier

for Deep Learning in Robotics, Boston, MA, USA,

15.7.2017.

[19] S.-J. Lee, S.-S. Park, K.-S. Chung, “Efficient SIMD im-

plementation for accelerating convolutional neu-

ral network”, Proceedings of the 4th International

Conference on Communication and Information,

Qingdao, China, 2-4.11.2018, pp. 174–179.

[20] L. Liangzhen, N. Suda, V. Chandra, “CMSIS-NN: Ef-

ficient Neural Network Kernels for Arm Cortex-M

CPUs”, arXiv, No. 1801.06601, 2018.

[21] Raspberry Pi 3 Model B, https://www.raspberrypi.

org/products/raspberry-pi-3-model-b/ (accessed:

2019)

[22] ARM, ARM Cortex-A53 MPCore Processor, Tech-

nical Reference Manual, https://developer.arm.

com/docs/ddi0500/g (accessed: 2019)

[23] ARM Processors. Cortex-A53, https://developer.

arm.com/products/processors/cortex-a/cortex-

a53 (accessed: 2019)

[24] ARM, ARM Cortex-A53 MPCore Processor Ad-

vanced SIMD and Floating-point Extension. Tech-

nical Reference Manual.

[25] Raspbian, https://www.raspberrypi.org/down-

loads/raspbian/ (accessed: 2018)

[26] Y. Jia et al., “Caffe: Convolutional architecture for fast

feature embedding”, arXiv, No. 1408.5093, 2014.

[27] Abadi, M. et al., “Tensorflow: A system for large-

scale machine learning,” Proceedings of the 12th

USENIX Symposium on Operating Systems De-

sign and Implementation, Savannah, GA, USA,

2-4.11.2016, pp. 265–283.

[28] A Docker image for Tensorflow, https://github.

com/DeftWork/rpi-tensorflow (accessed: 2018)

[29] OpenCV, https://opencv.org/ (accessed: 2018)

[30] Caffe2, https://caffe2.ai/ (accessed: 2018)

[31] C. Szegedy et al., “Going deeper with convolu-

tions”, arXiv, No. 1409.4842, 2014.

[32] H. Kaiming, X. Zhang, S. Ren, J. Sun, “Deep re-

sidual learning for image recognition”, arXiv, No.

1512.03385, 2015.

[33] F. Iandola et al., “Squeezenet: Alexnet-level accu-

racy with 50x fewer parameters and <1MB model

size”, arXiv, No. 1602.07360, 2016.

[34] A. Howard, “Mobilenets: Efficient convolutional

neural networks for mobile vision applications”,

arXiv, No. 1704.04861, 2017.

[35] BAIR/BVLC GoogLeNet Model, https://github.

com/BVLC/caffe/tree/master/models/bvlc_

googlenet (accessed: 2018)

[36] Inception V1, http://download.tensorflow.org/

models/inception_v1_2016_08_28.tar.gz (ac-

cessed: 2018)

11

[37] Caffe2 Models, BVLC GoogLeNet, https://github.
com/caffe2/models/tree/master/bvlc_googlenet
(accessed: 2018)

[38] Deep Residual Learning for Image Recognition,
https://github.com/KaimingHe/deep-residual-
networks (accessed: 2018)

[39] ResNet V1 50, http://download.tensorflow.org/
models/resnet_v1_50_2016_08_28.tar.gz (ac-
cessed: 2018)

[40] Caffe2 Models, ResNet50, https://github.com/
caffe2/models/tree/master/resnet50 (accessed:
2018)

[41] SqueezeNet v1.1, https://github.com/DeepScale/
SqueezeNet/tree/master/SqueezeNet_v1.1 (ac-
cessed: 2018)

[42] Caffe to TensorFlow, https://github.com/ethere-
on/caffe-tensorflow (accessed: 2018)

[43] Caffe2 Models, SqueezeNet, https://github.
com/caffe2/models/tree/master/squeezenet
(accessed: 2018)

[44] O. Russakovsky et al., “ImageNet Large Scale Visual
Recognition Challenge”, International Journal of
Computer Vision, Vol. 115, No. 3, 2015, pp. 211–
252.

[45] M. Lin, Q. Chen, S. Yan, “Network in network,” arXiv,
No. 1312.4400, 2013.

[46] perf: Linux profiling with performance counters,
https://perf.wiki.kernel.org/index.php/Main_
Page (accessed: 2019)

[47] ARM, ARM Architecture Reference Manual.
ARMv8, for ARMv8-A architecture profile, 2017.

[48] D. Velasco-Montero, J. Fernandez-Bemi, R. Carmo-
na-Galan, A. Rodriquez-Vazquez, “On the Correla-
tion of CNN Performance and Hardware Metrics
for Visual Inference on a Low-Cost CPU-based Plat-
form”, Proceedings of the 26th IEEE International
Conference on Systems, Signals and Image Pro-
cessing, Osijek, Croatia, 5-7.6.2019, pp. 249–254.

Volume 11, Number 1, 2020

