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Abstract – In this paper, we analyze heterogeneous performance exhibited by some popular deep learning software frameworks for 
visual inference on a resource-constrained hardware platform. Benchmarking of Caffe, OpenCV, TensorFlow, and Caffe2 is performed on 
the same set of convolutional neural networks in terms of instantaneous throughput, power consumption, memory footprint, and CPU 
utilization. To understand the resulting dissimilar behavior, we thoroughly examine how the resources in the processor are differently 
exploited by these frameworks. We demonstrate that a strong correlation exists between hardware events occurring in the processor and 
inference performance. The proposed hardware-aware analysis aims to find limitations and bottlenecks emerging from the joint interaction 
of frameworks and networks on a particular CPU-based platform. This provides insight into introducing suitable modifications in both types 
of components to enhance their global performance. It also facilitates the selection of frameworks and networks among a large diversity of 
these components available these days for visual understanding.
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1. INTRODUCTION

Convolutional neural networks (CNNs) based on deep 
learning (DL) [1] are rapidly replacing classical computer 
vision algorithms because of their superior accuracy in 
terms of several tasks such as image classification, object 
detection, and segmentation. However, this advantage 
comes at the cost of increasing memory and computa-
tional requirements [2], setting a challenge for the im-

plementation of CNN-based vision systems on resource-
constrained embedded platforms [3]. 

The popularity of the DL paradigm for computer vi-
sion has prompted the release of several software 
frameworks for CNN inference. While globally targeting 
the same functionality, each one is oriented to enhance 
certain aspects of performance, ease of use, compatibil-
ity, etc. In fact, these tools exploit particular optimization 
libraries to deal with the demanding computational re-
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quirements of CNNs. For instance, convolutional and ful-
ly-connected layers composing CNNs can be expressed 
as matrix-matrix or matrix-vector operations, respective-
ly. These operations can be optimally calculated using 
Basic Linear Algebra Subroutines (BLAS) [4]-[5], which 
are implemented by several libraries underlying the DL 
frameworks:  ATLAS [6], MKL [7], OpenBLAS [8]-[9], Eigen 
[10], cuBLAS [11], etc. This diversity of techniques con-
ducted by CNN software tools results in remarkably dif-
ferent inference performance, even running the same 
network on a particular hardware device.

In this context, most previous works have followed a 
direct constrained approach to assess this dissimilarity 
in framework performance. For instance, comparisons 
based exclusively on throughput among frameworks 
– including Caffe, TensorFlow, Torch, CNTK, and MXNet 
– have been reported [12]-[14]. Other works have as-
sessed inference performance on embedded vision 
systems through high-level metrics [15]-[18]. More 
customized and specific CNN implementations on 
CPU-based embedded systems have been published 
as well [19]-[20]. In contrast, the scope of this paper en-
compasses DL frameworks that can operate on a wide 
range of embedded devices.

All of the aforementioned contributions are focused 
on straightforward benchmarking to evaluate the dis-
similar performance exhibited by DL tools. However, 
such approach, lacking insight into how hardware and 
software interact, is not suitable to keep up with the 
rapid evolution of CNN frameworks. New network ar-
chitectures are reported almost on a daily basis and ac-
curate modeling is required to predict their behavior in 
a targeted system, thereby facilitating practical deploy-
ments. All in all, in this paper we follow a bottom-up ap-
proach to explain CNN inference performance through 
meaningful low-level metrics reflecting how hardware 
is exploited by DL software frameworks. The identified 
correlations constitute the first step in our research to 
develop the aforementioned accurate modeling. 

The rest of the paper is organized as follows. Networks, 
frameworks and the embedded platform under study 
are introduced in Section 2. We benchmark the perfor-
mance of these technological DL components in Section 
3, pointing out relevant aspects. In Section 4, we quali-
tatively examine how hardware resources are exploited 
during inference in order to explain the benchmarking 
results. Section 5 quantitatively highlights the correla-
tion of these hardware events with performance figures. 
Finally, critical remarks for framework selection accord-
ing to application requirements are described in Section 
6. Conclusions are drawn in Section 7. 

2. BENCHMARKING COMPONENTS AND SET-UP

2.1. HARDwARE PLAtFoRM

The selected CPU-based platform for our study is 
the Raspberry Pi 3 Model B [21] (RPi), an inexpensive 

embedded platform, which features a Quad Core ARM 
Cortex-A53 1.2GHz 64-bit CPU [22][23] – including four 
ARMv8-A processors – on a Broadcom BCM2837 Sys-
tem-on-a-Chip (SoC).

The ARM Cortex-A53 processor includes a two-level 
memory system. The level 1 (L1) memory system in-
cludes, per core processor, separate instruction and 
data caches (I-cache, D-cache), and a memory manage-
ment unit (MMU). The MMU includes one translation 
lookaside buffer (TLB) per core – a cache for instruction 
and data that translates between virtual and physical 
addresses. The level 2 (L2) memory system features a 
unified cache, which is shared between the cores. Spe-
cifically, on the Broadcom BCM2837 of the RPi 3B, L1 
and L2 comprise 32KB and 512KB, respectively. 

For computation acceleration, an advanced single 
instruction multiple data (SIMD) architecture – also 
known as NEON technology – is implemented on this 
SoC. Each ARMv8-A core makes use of 128-bit NEON 
and 32-bit Vector Floating-Point (VFP) registers to ac-
celerate scalar and vector operations [24]. In addition, 
instruction caching and dynamic branch prediction are 
introduced in the ARM architecture to increase overall 
performance and reduce power consumption.

Regarding the external memory where network 
weights and working data for inferencing are stored, 
the RPi features 1GB RAM LPDDR2 900MHz. An at-
tached micro-SD card provides extra non-volatile stor-
age capacity to the system.

2.2. SoFtwARE FRAMEwoRkS

On this hardware device, we employ a Raspbian v9.4 
Linux Kernel v4.14 [25] operating system and build – 
using a g++ compiler v6.3.0 – the following popular 
software tools for DL inference in order to evaluate 
their performance:

•	 Caffe [26] applies image-to-column transforma-
tion (im2col) plus General Matrix-Matrix Multipli-
cation (GEMM) to implement convolutions. On 
RPi’s CPU, two Basic Linear Algebra Subprograms 
(BLAS) can be set as the back-end for GEMM at 
compilation time, namely OpenBLAS [9] and At-
las [6]. Firstly, we carried out a preliminary test 
with different configurations in order to identify 
the best one among (a) ATLAS, (b) OpenBLAS 
configured by default, and (c) OpenBLAS estab-
lished for leveraging the four cores.  To this end, 
we run inference over a 6-minute period with 
a batch size of 1 image and measured average 
throughput obtained for each Caffe configura-
tion. To find the performance trend, we tested 
various CNNs, as reported in Table 1. According 
to these results, OpenBLAS is a BLAS library sup-
ported by RPi’s CPU and compatible with Caffe, 
that better leverages the four cores of the ARM 
Cortex-A53. We will use this configuration in the 
rest of the paper.
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•	 tensorFlow [27] builds a static graph for ex-
pressing network computation operations. Once 
built and optimized, it can be repeatedly execut-
ed for image inference. This framework makes 
use of the Eigen library [10] to generate efficient 
parallel code for multicore CPUs. We installed 
pre-built TensorFlow v1.3.0 for RPi [28], which ex-
ploits ARM hardware optimizations – NEON and 
VFP – for computational acceleration.

•	 openCV [29] library offers a module for infer-
encing using pre-trained network files from 
other frameworks. We loaded network model 
files in Caffe format. OpenCV version 3.3.1 was 
compiled to exploit both ARM NEON and VFP 
optimizations as well. 

•	 Caffe2 [30] arose as a new lightweight, modular 
and mobile-oriented framework. Different from 
Caffe, it uses static graphs for network definition 
and the Eigen library for matrix calculation. Caffe2 
is also optimized for ARM CPUs with NEON. 

Single-precision floating-point data format (float32) 
is used for data storage and computation on all of 
these frameworks.

table 1. Preliminary benchmark on throughput 
for selecting the most suitable 
 acceleration library for Caffe.

(a)  
AtLAS

(b)  
openBLAS

(c)  
openBLAS (4) 

GoogLeNet [31] 0.3 fps 0.4 fps 0.6 fps

ResNet-50 [32] 0.1 fps 0.2 fps 0.3 fps

SqueezeNet-v1.1 [33] 1.2 fps 1.5 fps 2.3 fps

MobileNet-v1-224 [34] 0.5 fps 0.7 fps 0.9 fps

2.3. ConVoLUtIonAL nEURAL nEtwoRkS

The inference performance of each software tool was 
exhaustively assessed for three networks performing 
1000-category image classification, namely GoogLeNet 
[31], ResNet-50 [32], and SqueezeNet [33]. The pre-
trained weights of these models are supplied by each 
framework, each one using a different file format [35]-
[43]. Their different architectures are highlighted in 
Table 2. Note that a tradeoff exists between complexity 
and accuracy. Although we used publicly available pre-
trained models, we run these networks for 1000-cate-
gory image classification on the ImageNet ILSVRC 2012 
validation dataset [44] – without any data augmenta-
tion – to check the reported network accuracy.  

Given that we aim at real-time applications at the 
edge where latency is critical, the batch size was set to 
1. These networks were assessed using the correspond-
ing Python API of each framework – specifically, we 
used Python 2.7.13. 

table 2. Main parameters defining CNN 
architectures

GoogLenet Resnet-50 Squeezenet-v1.1

Repository [35] - [37] [38] - [40] [41] - [43]

Top-1 (%) Acc.1 69.2 ± 0.4 72.6 ± 0.1 58.3 ± 0.0

Top-5 (%) Acc.1 89.0 ± 0.1 91.0 ± 0.0 80.0 ± 0.1

Input Size 1x224x224x3 1x224x224x3 1x227x227x3

#Outputs 1000 1000 1000

#Conv. layers 57 53 26

#Fully-C.layers 1 1 0

#weights ~7.0M ~25.6M ~1.2M

#MACs ~1.6G ~3.9G ~396M

1 As each framework provides a different pre-trained 
model file, specific details on the training parameters 
must be found in the indicated source repositories. 
Random initialization of weights leads to small devia-
tions in accuracy even if it is the same architecture but 
trained on each framework.

3. PERFORMANCE ANALYSIS

Firstly, we benchmark CNN models in terms of high-
level performance metrics required for meeting ap-
plication specifications, namely throughput, memory 
footprint, and power consumption. 

However, a preliminary evaluation of CNN inference on 
this platform evidences that the high computational de-
mand of these networks increases the SoC temperature, 
which in turn has an impact on instantaneous through-
put. To take this aspect into account, we also registered 
the high-level CPU status (temperature, frequency, and 
utilization) after each processed image on a long-term 
period (i.e., 6 minutes) of continuous inference. 

Overall, the following performance figures have 
been considered:

•	 Throughput. It was calculated as the inverse 
value of the total per-image processing time 
–including the time required to read and pre-
process the input image, perform the inference, 
extract the CPU metrics and save the long-term 
analysis results.

•	 CPU utilization. It was measured by using the Py-
thon psutil library.

•	 CPU frequency and temperature. We used the 
vcgencmd tool after each inference to monitor 
CPU frequency and temperature. Under normal 
conditions, the ARM Cortex-A53 CPU can run at 
1.2 GHz. However, a high SoC temperature will 
force CPU downclocking.

•	 Memory footprint. It was taken from the Unique 
Set Size (USS) metric provided by the psutil li-
brary. This value represents effective physical 
memory allocation for running the process – 
comprising the required memory for process-
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ing one image plus CNN weights plus unshared 
libraries, including the framework library itself.

•	 Power consumption. We employed an external 
Keysight N6705C DC Power Analyzer to measure 
the instantaneous power demanded by the net-
works.

•	 An example of the temporal evolution of CPU 
status and its instantaneous impact on through-
put is shown in Fig. 1. This plot corresponds to a 
6-minute period of SqueezeNet inference. 

•	 The average values of performance metrics for 
all network/framework pairs under study are 
shown in Fig. 2. These parameters are relevant 
for real-time applications, and some aspects 
must be remarked:

•	 Temperature increases following different patterns, 
as exemplified in Fig. 1. When the CPU reaches 80°, 
the processor protects itself by reducing its fre-
quency, which in turn decreases the throughput. 

Fig. 1. Long-term evaluation of SqueezeNet. Similar trends are observed for GoogLeNet and ResNet-50.

Fig. 2. Average values of (a) CPU utilization, (b) 
throughput, (c) power consumption, and (d) allocated 

memory1.
1MiB refers to mebibyte. It is equivalent to 220 bytes.

•	 CPU utilization and allocated memory are quite 
stable over the test period. However, particular 
acceleration libraries exploited by the tools make 
them allocate different amounts of memory – 
for instance, the well-known tradeoff between 
memory and computation speed introduced by 
im2col transformation. In fact, such diversity of 
coding techniques also explains the differences 
in CPU utilization and throughput.

•	 Average throughput differs significantly among 
frameworks. This has influence on the total num-
ber of processed images over the inference period.

•	 Both framework coding and network architec-
ture affect the instantaneous power consump-
tion.

•	 Caffe is distinguished for the highest CPU utili-
zation, what quickly increases its temperature 
and makes the system demand high power. 
However, in spite of apparently making the 
most of the CPU, Caffe’s throughput is the low-
est among the frameworks for these three CNNs.  
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Fig. 3. Per-image hardware events registered during inference: (a) instructions architecturally executed, (b) 
instructions per second, (c) data memory accesses, (d) data memory accesses per second, (e) L1 d-cache 
loads, (f ) L1 d-cache miss ratio, (g) L2 d-cache loads, (h) L2 d-cache miss ratio, (i) L2 d-cache loads per L1 

d-cache loads, (j) dTLB misses per 103 memory accesses, (k) branch speculatively executed, and (l) branch 
mispredict ratio.

Volume 11, Number 1, 2020
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Actually, the same behavior has been observed 
for other CNNs running on this framework, such 
as Network-in-Network [45] or MobileNet [34].

Thus, we propose an analysis based on hardware ex-
ploitation in order to elucidate the underlying reasons 
for these results.

4. HARDWARE EXPLOITATION ANALYSIS

We can extract aggregated statistics on both the 
processor and the memory system from six event 
counters provided by the so-called performance 
monitoring unit (PMU) available in the Cortex-A53 
processor. In particular, we employed the perf tool 
[46] to gather PMU hardware events [47]. 

For the sake of a fair comparison, we will compare 
per-image hardware statistics. To this end, we gath-
ered the metrics corresponding to the complete infer-
ence script (s1), which runs inference on N=50 images 
randomly selected from the ImageNet dataset [44]. 
Then, we singled out the statistics derived from load-
ing the network and libraries (s2) by running the same 
script but set to N=0. Thus, the per-image statistics we 
will assess are derived from the expression (s1-s2)/50.  
Moreover, we averaged values from five measure-
ments in order to reduce perf estimation errors due to 
multiplexing events [46].

Fig. 3 depicts the most representative parameters 
among all statistics gathered. Next, we will carefully 
examine them.

Let us first focus on Caffe as an example of elabo-
rating on performance behavior upon these metrics. 
Caffe’s coding strategies and underlying libraries – 
OpenBLAS for convolutions – make it demand the 
highest number of processing instructions (Fig. 3(a)) 
and data memory accesses (Fig. 3(c)) for the three net-
works. To deal with these requirements, the processor 
renders the highest rates of instructions and memory 
fetches per second (Figs. 3(b) and 3(d)). These rates 
explain the high CPU utilization of Caffe reported in 
Section 3 (Fig. 2(a)). In addition, branch prediction 
implemented on the RPi ARM processor is intensively 
applied by Caffe (Fig. 3(k)). Under branch prediction, 
instructions of a branch of code are executed before 
checking whether they need to be executed.  Suc-
ceeding in branch prediction speeds up computation. 
Nonetheless, Caffe’s poor prediction performance 
(Fig. 3(l)) forces the CPU to execute more unnecessary 
instructions. Concerning cache exploitation, keeping 
re-used data at a higher level of the memory hierar-
chy will reduce data access latency. Caffe significantly 
makes the most of level 1 and level 2 caches, loading 
high amounts of data (Figs. 3(e) and 3(g)) with low 
miss rates (Figs. 3(f ), 3(h) and 3(i)). The exploitation of 
TLB by Caffe is also significant (Fig. 3(j)). In fact, the 
OpenBLAS library underlying this framework is highly 
oriented to reduction of TLB misses by keeping part of 
one of the operands in the L1 cache. Definitely, these 

aggregated hardware metrics gathered for Caffe (ap-
propriate cache exploitation, but the highest demand 
for processing and memory) suggests unfit coding in 
this framework when it comes to leveraging RPi’s ARM 
instruction set. This explains poor throughput but 
high CPU utilization of Caffe on this platform.

Concerning the other three software tools, there 
are also remarkable results. A distinctive reduction in 
their number of executed instructions with respect to 
Caffe is highlighted in Fig. 3(a). This suggests an ef-
ficient exploitation of the processor SIMD instruction 
set – note that these three frameworks allow to lever-
age ARM hardware optimizations at compile time. 
TensorFlow coding efficiency is remarkable, as re-
vealed by its lowest number of executed instructions 
and data movements (Figs. 3(a) and 3(c)), in addition 
to high operation rates (Figs. 3(b) and 3(d)). This ex-
plains high throughput achieved by TensorFlow (Fig. 
2(b)). Regarding OpenCV, even making poor use of 
the highest level of cache, i.e., L1, it is the best by far 
on exploiting level 2 cache (Figs. 3(e) - 3(h)). This leads 
to OpenCV low memory requirements (Fig 2(d)) and 
high frame rates (Fig 2(b)) – note that external mem-
ory accesses take several CPU cycles, which OpenCV 
saves upon its efficient use of L2. The performance of 
TensorFlow and Caffe2 is similar in relation to cache 
exploitation. Finally, Caffe2 is remarkable in terms of 
effective branch prediction.

5. CORRELATIONS BASED 
ON HARDWARE METRICS

Beyond the results and discussion above, further 
conclusions can be extracted by identifying correla-
tions among the numerical results presented in sec-
tions 2, 3, and 4. 

5.1. CoRRELAtIon on AGGREGAtED 
 HARDwARE EVEntS

To start with, the network architectures can be as-
sessed from a hardware exploitation perspective. For 
each network under consideration, Fig. 4(a) reveals 
that the number of instructions executed on the pro-
cessor (shown in Fig. 3(a)) is clearly consistent with 
the amount of multiply-accumulate (MAC) operations 
required for inference (Table 2) – with each frame-
work exhibiting a distinctive relationship, as previ-
ously discussed. Similarly, data memory accesses are 
correlated with the number of parameters learnt in 
the network (Fig. 4(b)). These correlations allow us to 
extract a preliminary estimation of the expected hard-
ware resource requirements – executed instructions 
or memory accesses – simply calculating the number 
of MAC and weights of the particular network that will 
eventually run on a specific framework. Indeed, this 
a priori estimation provides insight into the expected 
CNN performance in terms of throughput or power 
consumption, as discussed in sections 4 and 5.2, re-
spectively.
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Fig. 4. Correlation between hardware statistics 
(y-axis) and parameters defining the network 

architecture (x-axis) for the three CNNs.
In addition, the specific acceleration libraries exploit-

ed by each framework give rise to a range of memory 
requirements on the system. Indeed, the amount of 
memory resources per framework roughly follows a 
linear pattern, as depicted in Fig. 5. Therefore, for each 
framework, we can estimate memory requirements 
from the number of weights in the network. The ap-
plicability is straightforward since very deep networks 
comprise a great deal of weights, and embedded plat-
forms feature limited RAM – 1GB in the case of RPi 3B 
– to be shared among running edge applications and 
services, such as sensor management or networking.

All in all, the analysis carried out demonstrates that 
concerning visual inference applications on resource-
constrained embedded platforms, optimizing hard-
ware resources – executed instructions and memory 
accesses – are mandatory in order to boost perfor-
mance. To illustrate this, a nearly linear pattern be-
tween throughput and data memory accesses is also 
identified in our platform (Fig. 6), making it possible to 
obtain good estimates of performance from this aggre-
gated hardware metric.

Fig. 5. Memory requirements vs. network weights.

5.2. CoRRELAtIon on tEMPoRAL SAMPLES

In addition to the aggregated statistics analyzed in 
Section 4, we sampled hardware metrics every 10 mil-

Fig. 6. Alignment between throughput and the 
number of memory-access hardware events for the 12 
combinations of assessed frameworks and networks. 

Square points represent SqueezeNet, circular points 
are associated to GoogLeNet, and triangular points 

refer to ResNet-50.

liseconds. Fig. 7 profiles instantaneous power vs. three 
hardware metrics simultaneously measured – namely 
L1 and L2 d-cache loads per second, and instructions 
per second – during four consecutive inferences. To ob-
tain this profiling, thorough temporal alignment was 
necessary because of different measurement sources 
employed, i.e., event counters in the processor and 
the same external power analyzer mentioned in Sec-
tion 3, that is, Keysight N6705C DC. Plots similar to that 
in Fig. 7 have been obtained for all analyzed networks 
and frameworks. The Pearson correlation coefficients 
of these aligned temporal samples of hardware statis-
tics and power consumption are presented in Table 3. It 
is worth noting that these coefficients range between 
0.54 and 0.95, being greater than 0.80 in most cases. 

Taking into account the importance of power con-
sumption in embedded vision applications, and how 
difficult its direct measurement is (supply pins must be 
accessible and special equipment like the aforemen-
tioned power analyzer is required), the proposed hard-
ware metrics constitute a simple way to model and 
characterize embedded platforms in terms of energy.

Volume 11, Number 1, 2020
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Fig. 7. Instantaneous hardware metrics and power consumption on four inferences of GoogLeNet on Caffe. 
A high correlation can be visually identified.

Fig. 8. Polar charts with the most representative results of the proposed hardware exploitation analysis .

Fig. 9. Assistance graphs for optimum framework and network selection.
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table 3. Pearson correlation coefficient between 
instantaneous power consumption and three 

hardware metrics.

L1 d-cache 
loads/sec

L2 d-cache 
loads/sec

Instructions 
/sec

G
oo

gL
en

et

Caffe 0.85 0.72 0.94

TensorFlow 0.95 0.88 0.92

OpenCV 0.89 0.66 0.89

Caffe2 0.82 0.79 0.80

Re
sn

et
-5

0

Caffe 0.79 0.61 0.78

TensorFlow 0.76 0.68 0.73

OpenCV 0.86 0.54 0.85

Caffe2 0.67 0.73 0.61

Sq
ue

ez
en

et

Caffe 0.94 0.82 0.95

TensorFlow 0.80 0.80 0.80

OpenCV 0.94 0.70 0.94

Caffe2 0.86 0.81 0.86

6. APPLICABILITY OF THE STUDY: NETWORK/
FRAMEWORK SELECTION

The extracted hardware information can be wisely 
used to facilitate the selection of optimum DL compo-
nents according to application specifications. To sim-
plify this task, Fig. 8 provides insight into a quick visual 
comparison of hardware exploitation on the bench-
marked components. Five hardware metrics have been 
particularly selected and compared in these charts. For 
each metric, represented values have been normal-
ized with respect to the maximum measured value 
(indicated on the external circumference) and there is 
a scale factor along the radial axis. Thus, for example, 
the branch mispredict ratio for GoogLeNet/TensorFlow 
(Fig. 8, left chart, orange line) is around 0.6 times 7.5%, 
which is the maximum measured for this metric. There-
fore, the value of the metric at that point is 4.5%. Fig. 8 
immediately suggests the bottlenecks of each frame-
work on this CPU-based platform: the higher the values 
of these metrics, the worse the performance we must 
expect. For instance, Caffe is defined for executing more 
instructions (aggravated with more branch mispredic-
tions) in the three network cases. On the other hand, 
TensorFlow, OpenCV and Caffe2 stand out in terms of 
requiring fewer instructions, low L2 cache misses, and 
reduced branch mispredict rates, respectively.

Finally, another graphical comparison, in this case in 
terms of high-level performance metrics, is presented 
in Fig. 9. Once again, the values have been normalized 
with respect to the measured maxima. It is straightfor-
ward to match low latency with TensorFlow, minimum 
memory allocation with OpenCV, and reduced power 
consumption with Caffe2. Comparing the networks 
globally, note that low latency, memory footprint, and 
power consumption of SqueezeNet (Fig. 9, right chart) 
are traded off with a reduced inference accuracy.

7. CONCLUSIONS

This paper demonstrates that low-level hardware ex-
ploitation parameters can be effectively used to model 
the expected behavior of CNNs running on DL frame-
works built on a CPU-based embedded platform. The 
identified correlations between such parameters and 
performance metrics allow us to highlight bottlenecks 
and limitations in the interaction between hardware 
and software. This is critical to selecting the most suit-
able components according to prescribed specifica-
tions. The proposed graphical representations prove 
the validity of these considerations in practical terms. 
In the near future, we will be reporting the analytical 
models for accurate performance prediction we are de-
veloping upon the results presented herein. 
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