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Abstract – Finding patterns in transactional databases regularly is an essential part of data mining since it makes it simpler to identify 
significant connections and reoccurring patterns in datasets. Scalable, high-performance computing solutions that employ parallel 
computing systems to optimize resource efficiency and data analysis as data volumes continue to grow are necessary for efficiently processing 
large databases. To solve these issues, this paper presents Exploration Global Frequent Patterns (EGFP), a new parallel algorithm designed 
to generate global frequent patterns in different distributed datasets. By facilitating the distribution of workloads and data partitioning, the 
approach reduces communication costs and ensures efficient parallel execution. Our approach uses two prefix-tree structures to generate a 
significantly compacted and structured representation of frequent patterns. The first structure local-tree serves to store local support values 
to effectively collect and arrange transaction data. Global prefix counts are then aggregated and ranked to improve frequency-based 
analysis and provide a more organized and useful representation of frequent patterns. To find the globally prevalent patterns, a Master 
site develops a second structure global-tree for each prefix based on this arranged data. Experimental results on large-scale benchmark 
datasets show that EGFP outperforms other existing methods including CD and PFP-tree in terms of execution time and scalability, while 
incurring considerably less communication cost.
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1.  INTRODUCTION

The great progress in technology and research in re-
cent years has greatly affected the increasing data vol-
ume. Datasets including many complex attributes usu-
ally grow exponentially. Distributed data mining is the 
method of evaluating large datasets maintained across 
several linked sources or servers, therefore supporting 
decision-making and revealing hidden information 
inside the distributed database that calls for specific 
knowledge. Essential in Data Mining are classification, 
association rule mining, sequential pattern detection, 
and other activities [1]. In a transaction database, the 
interactions among data values are complicated and 
many of those relationships are effectively implicit. In 
the discipline of data mining, association rule mining 

[2] is a rather popular method, it aims to find relation-
ships among itemsets contained in transaction data-
bases or other data sources [3]. Effective counting of all 
frequent patterns depends on Apriori methods, which 
produce appropriate rule sets. To find regular patterns 
inside a transactional database, Apriori algorithms [4] 
require two main phases candidate generation and 
pruning, i.e., the elimination of uncommon itemsets 
is used in an iterative approach in the process. Initially, 
it finds individual frequent items with values above a 
minimum support threshold; then by combining them 
with other frequent itemsets, it generates more com-
binations. The candidates are further evaluated using 
the set support threshold. This process continues till no 
more frequent itemsets can be generated.
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The sequential Apriori technique is essentially an 
essential component of both parallel and distributed 
algorithms. Association rule mining and optimization 
depend much on parallel and distributed techniques, 
thereby improving load distribution and accelerating 
computation execution. Candidate Distribution (CD) 
[5] among these approaches assigns the produced 
candidates to several sites to reduce computational 
repetition. By using transaction allocation, the Distrib-
uted Mining Algorithm (DMA) [6] improves distributed 
data management. Fast Distributed Mining (FDM) [7] 
maintains result accuracy while reducing communica-
tion costs across nodes, improving efficiency. Optimal 
Distributed Association Mining (ODAM) [8] is interest-
ed in mitigating load imbalance and improving asso-
ciation rule computation's efficiency. The Distributed 
Decision Miner (DDM) [9] addresses distributed data 
analysis to boost the decision-making process in vast 
settings. Distributed Decision (DD) [5], which strategi-
cally distributes tasks based on resource availability, 
and Intelligent Data Distribution (IDD) [10], which flex-
ibly impacts data distribution to maximize processing 
performance, are alternative techniques. Employing a 
hash-based approach, hash-based Parallel Association 
Rule Exploration (HPA) [11] increases the effectiveness 
of parallel association rule exploration. Integration of 
CD and DD approaches by Candidate Distribution (CaD) 
[5] helps to effectively manage candidates and reduce 
computing costs. Skew Handling (SH) [12] solves data 
distribution differences to distribute the load. For en-
hanced performance in a distributed environment, 
hybrid distribution (HD) [10] combines several distribu-
tion techniques. 

Through tree-based approaches, such as FP-Growth 
(Frequent Pattern Growth), Apriori-based methods 
presently facilitate the analysis of frequent patterns. 
opposed to the Apriori approach, which needs both 
the generation and assessment of many candidates, 
tree-based [13-16] solutions develop this process by 
grouping the data in a simple and organized hierarchi-
cal structure.

Although the FP-Tree (Frequent Pattern Tree) [16] re-
duces searches for patterns and eliminates excessive 
candidate generation, therefore decreasing searches 
for patterns and avoiding unnecessary candidate gen-
eration, it also presents many drawbacks when used 
with very large databases. Building the FP-Tree requires 
maintaining all transactions in memory as a hierarchical 
structure retained in a record. This structure can grow 
excessively large and surpass RAM limits for large da-
tabases; therefore, it's ineffective for operation. Build-
ing an FP-Tree demands multiple processes, including 
organizing frequently occurring elements and incorpo-
rating transactions into the tree. Regarding time and 
resources, this approach could be very costly, particu-
larly if the database is large and contains several dif-
ferent components. Mostly operating in memory, the 
FP-Growth approach, which utilizes the features of the 

FP-Tree, makes implementation difficult in distributed 
systems. Different versions, such as Parallel FP-Growth 
[17] and Load Balancing FP-tree (LFP-tree) [18], have 
been developed to advance scalability, even though 
they typically involve complex changes.

LFP-Tree intelligently distributes FP subtrees and 
transactions among compute sites to maximize load 
balancing, avoiding bottlenecks and minimizing the 
processing time. Developed for distributed systems 
such as Hadoop and Spark, PFP-Tree partitions data 
into subsets handled separately before the final results 
are combined. Applied to large databases, both the 
LFP-Tree and PFP-Tree approaches have weaknesses. 
LFP-Tree maximizes load balancing; however, the issue 
can find it challenging to distribute subtrees dynami-
cally in the presence of wildly different transactions, 
thus generating residual problems with balance and 
overloading some sites. Moreover, subtree operations 
and coordination could contribute to higher comput-
ing costs. Although PFP-Tree is suitable for distributed 
environments, it causes major communication expens-
es between sites during the aggregation of final results, 
therefore influencing general performance.

In most cases, parallel systems in distributed environ-
ments improve scalability and performance; yet, they 
also have some limitations. The communication over-
head between sites represents a main issue that may 
become a limiting factor in the case of frequent essential 
data exchanges. Moreover, the control of synchronizing 
across operations may ultimately result in significant la-
tencies, especially when some activities need close coor-
dination. Load imbalance poses a major problem since 
certain sites are unused while others show too much 
demand, therefore limiting the general performance of 
the system. Especially when the number of data needed 
to be evaluated is significant, these algorithms often 
require many database scans, therefore optimizing pro-
cessing time and resource requirements.

Designed to solve the above-mentioned problems and 
efficiently uncover global frequent patterns inside distrib-
uted datasets, this paper presents a new parallel approach 
called Exploration Global Frequent Patterns (EGFP). Our 
approach is based on two tree structures, local and global, 
including the prefix data of the global database.

Unlike most parallel approaches (peer to peer), we 
first construct the Master-Slave paradigm by distribut-
ing the workload among several Slave sites, improving 
execution time and system scalability. This architecture 
constitutes a conscious decision in distributed systems 
when efficient management of resources and central-
ized control are required. The slave sites principally aim 
at building the first local tree structure based on prefix 
items depending on the defined transaction sequence 
in the local database. Our method simultaneously de-
velops an ancestor table for each prefix to rearrange 
the locale-tree structures for all Slave sites in descend-
ing order by executing a single scan at each local data-
base. Then, depending on the ancestry information of 
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the initial localized tree structure, the Master site con-
structs a global tree for all prefixes, iteratively gener-
ating frequent global patterns without requiring Slave 
site communication.

 Our EGFP reduces the communication load across 
several sites of the system by limiting data processing 
to a single pass (one scan), a crucial consideration in 
distributed architectures where an excessive number of 
exchanges can negatively impact performance. Com-
pared to techniques requiring multiple reads and syn-
chronizations, our method facilitates all Slave sites op-
erating their processing independently, hence reduc-
ing the need for synchronizing and temporarily storing. 
We examine our EGFP algorithm's performance against 
PFP-Tree and CD on actual increasing data quantities. 
To develop and investigate a tree structure, PFP-Tree 
and CD both need several data readings. For real-time 
analytics and large-scale systems, our method maxi-
mizes processing by reducing the amount of data ac-
cessed to an alone pass. 

The structure of the work is as follows: Section 2 con-
tains a review of the existing works. Section 3 presents 
the notation and problem definition. In Section 4 our 
proposed method of algorithm is explained. the results 
with discussion are given in Section 5. Then the paper 
is concluded this work in Section 6.

2.  RELATED WORK

Several research works have been proposed to en-
hance the efficiency, scalability, and flexibility of pat-
tern mining algorithms in large-scale data settings. In 
this section, we review seminal contributions in the 
field of distributed frequent pattern mining.

Fernandez-Basso et al. [19] presented an original 
method to improve the extraction of prevalent pat-
terns and association rules inside a distributed system 
by using Apache Spark. The study aims to address in 
the framework of large datasets the drawbacks of con-
ventional algorithms such as Apriori and FP-Growth. 
The authors search for several optimizations, including 
using Spark's distributed design to provide efficient in-
memory parallel computing, hence reducing scans and 
improving productivity. This work simplifies the con-
sumption of resources and execution time while im-
proving the scalability and applicability of knowledge 
extraction for large datasets. 

The authors in [20] provided a novel method for se-
quential pattern extraction in databases using a tree 
structure (SP-Tree structure). This approach applies 
an optimal tree for better sequence structure, hence 
reducing data redundancy and database scans. The 
method advances performance on speed and memory 
use by applying an effective structure; consequently, 
pattern extraction becomes more suitable for large 
datasets. By establishing upgraded efficiency and scal-
ability of sequential pattern analysis, this work pro-
gresses data mining methods.

Van and Josef [21] introduced a new approach for 
extracting frequent itemsets inside a distributed and 
parallel architecture. The FPO-Tree (Frequent Pattern 
Ordered Tree) structure that the authors provided 
improves memory compression and organization of 
transactions, hence reducing database scans. More-
over, they developed the DP3 (Distributed Parallel 
Preprocessing Pattern Mining) method, indicated to 
efficiently apply distributed architectures and paral-
lelize the frequent pattern extraction. This approach 
reduces data transfers between nodes and maximizes 
workload distribution, thus boosting the scalability 
and efficiency of Frequent Itemset Mining (FIM). By re-
ducing computational costs and improving analytical 
performance, the work presents a successful method 
for handling large data sets.

In [22], the researchers suggested a selective and 
adaptive approach for extracting frequent patterns in 
distributed transactional databases. In contrast to con-
ventional methods that generate all frequent patterns, 
this particular approach operates on demand by ex-
tracting only the relevant patterns depending on user 
requests. In a distributed system, this greatly reduces 
computing costs and improves resource economy. This 
concept depends on the quick identification of pat-
terns at the instant the analyst needs them. They offer 
DDSampling, a new pattern sampling technique. This 
program chooses a pattern at random from a distribut-
ed transactional database such that the selection prob-
ability corresponds to its degree of interest.

The study in [23] investigated the issues and pos-
sible solutions for parallelizing frequent itemset min-
ing algorithms in large data settings. Their discussion is 
centered on enhancing the efficiency of conventional 
mining methods by their execution in parallel com-
puting architectures. In particular, they suggested an 
approach that splits large datasets and shares com-
putational tasks across several processing units. This 
method reduces redundancy in candidate generation 
and enhances overall efficiency by load balancing 
and better data access patterns. The implementation, 
evaluated on cloud computing setups, showed that 
parallelization substantially speeds up mining with re-
sult accuracy intact. These observations highlight the 
effectiveness of parallel mining techniques in manag-
ing the growing volume and velocity of data that are 
characteristic of contemporary big data systems.

In [24], the authors suggested a distributed associa-
tion rule mining method named Mine-first Association 
Rule Mining that solves data decentralization and priva-
cy issues in distributed networks. Their method allows 
each node to mine local frequent patterns without re-
vealing raw data, thereby ensuring data confidentiality 
and conserving communication overhead. The incor-
poration of local patterns into global rules is facilitated 
by an effective aggregation mechanism that considers 
support and confidence measures, thereby guarantee-
ing the integrity and validity of the rules discovered. 



556 International Journal of Electrical and Computer Engineering Systems

The distributed framework is extremely effective when 
used with decentralized data, providing a scalable and 
privacy-conscious solution that is especially applicable 
to multi-source environments, including cloud-based 
analytics and federated platforms.

In another work authors [25] designed a parallel fre-
quent itemset mining algorithm named STB_Apriori, 
which is specifically tailored for big data environments 
using the Apache Spark framework. The algorithm 
overcomes the drawbacks of conventional Apriori al-
gorithms, especially the computational burdens result-
ing from repetitive candidate generation and process-
ing of large datasets. The suggested approach employs 
a BitSet-based compression technique to preserve 
transactional data in compressed Boolean matrices to 
accelerate bitwise calculation and lower memory us-
age. Further, the system cleverly takes advantage of 
Spark's distributed computing framework for parallel 
processing of the mining task across several nodes. 
Experimental evaluations show STB_Apriori to be con-
siderably better than state-of-the-art algorithms about 
execution time and scalability, positioning it in a favor-
able position for mining frequent patterns in large-
scale distributed data.

Rochd and Hafidi [26] suggested DSSS (Distributed 
Single Scan on Spark), a distributed version of SSFIM 
(Single Scan Frequent Itemset Mining) [27], to effi-
ciently mine frequent itemsets in big data environ-
ments with Apache Spark. DSSS conducts a single pass 
over the data by broadcasting a compressed dataset to 
nodes via RDDs and broadcast variables, unlike conven-
tional multi-scan approaches. It includes early elimina-
tion of infrequent items and pruning of unpromising 
candidates to enhance memory and communication 
overhead. The experimental results confirm its ability 
for scalability and efficiency, showing its suitability for 
cloud and streaming environments.

3.  NOTATION AND PROBLEM DEFINITION

Let I= {x1, x2, x3,..., xn} be a collection of n distinct ele-
ments. A pattern or a collection of elements constitutes 
a subset of this set, defined by X⊆ I. A database DB is 
essentially a collection of transactions, where each 
transaction T is a subset of I and is uniquely identified 
by its transaction identifier (TID). The number of data-
base transactions presenting pattern X expressed as 
sup(X), signifies its level of support value. The equation 
of support is calculated as follows [2]:

sup(X) = (count(X))/N (1)

where count(X) represents the occurrence of X in the 
database and N defines the entire number of transac-
tions. A pattern is considered frequent if its level of sup-
port surpasses the minimal support threshold, marked 
by the symbol ξ. Frequent pattern mining essentially is 
interested in identifying each pattern that frequently 
appears in a transaction database while maintaining 
the specified support threshold ξ.

A distributed system consists of n sites, each labeled, 
S1, S2, S3,..., Sn.Under this system, the database DB is 
horizontally divided into n parts, shown as DB1, DB2, 
DB3,..., DBn, where each part is assigned to a particular 
site for data processing (for i = 1,..., n).  To measure the 
frequently occurring pattern X, we indicate Supi(X) as 
its local support count, and Sup(X) as its global sup-
port count in the whole distributed system. Globally 
frequent a pattern X satisfying the minimal support cri-
teria ξ, determined using the formula [4]:

Sup(X) ≥ ξ ×∣DB∣ (2)

In a distributed database setting, this requirement is 
essential since it ensures that the pattern shows consis-
tently over several partitions. 

4. PROPOSED METHOD 

This section presents our proposed method of algo-
rithm, centered on the Master/Slave paradigm in a dis-
tributed computing environment, which can efficiently 
enable parallel and distributed frequent pattern min-
ing. Additionally provided is an extensive description 
of the mining process and its purposes. 

4.1. MASTER-SLAvE PARADIGM

Communication in distributed frequent pattern min-
ing is typically decentralized. At each phase, all of Si  
shares its locally calculated support values with every 
other site, which produces a rapid increase in data ex-
changes [28]. Network performance may be impacted 
as a result of the higher levels of communication im-
posed by growing datasets and site interactions. An 
alternative is the Master/Slave paradigm, which, as 
described in [28], offers a centralized communication 
mechanism. The dataset is divided into clusters by a 
Master site, which then assigns each cluster to a slave 
site. The Master site coordinates the entire process and 
collects information from Slave sites. This operational 
method is highly beneficial for distributed computing 
systems because it minimizes time and space complex-
ity and maximizes resource efficiency, according to pre-
vious research by Vasoya and Koli [29]. 

A distributed and parallel method is examined in this 
work, in which the database is split horizontally over mul-
tiple Slave sites, each of which handles an equal share of 
transactions on its site. The Master site reduces the over-
head of inter-site communication by distributing and 
merging processed data, functioning as the coordinator. 
Each Slave site obtains unique prefixes and their associ-
ated support numbers from the dataset in a single data-
base scan to generate a Local-Tree Structure (LTS). By col-
lecting the values of local supports, the Master site ranks 
prefixes in descending order of global frequency. The An-
cestor Table (AT), which is generated from this data, serves 
as an essential component for the Global-Tree Structure 
(GTS), which is built at the Master site. The FP-Tree tech-
nique processes a single structured tree recursively, while 
the Mining Global Frequent Patterns (EGFP) approach 
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splits the task into multiple smaller GTSs. By investigating 
patterns at different hierarchical levels without requiring 
an excessive amount of inter-node communication, this 
method increases computational efficiency. The follow-
ing paragraph provides a detailed description of the EGFP 
algorithm and its computational elements.

4.2. CONSTRUCTION OF LOCAL-TREE 
 STRUCTURE

At this stage, the Local-Tree Structure (LTS), a data 
structure designed to optimize processing and storage 
efficiency with a single database investigation, gets 
formed. The primary LTS structure consists of a root 
node, called null, and multiple child nodes, each of 
which represents a different prefix subtree. Every node 
contains crucial information, including the prefix name, 
which identifies the associated element, the support 
count, which records the frequency of occurrence of 
a path segment in local transactions, and a node-link, 
which connects related nodes, using a structure similar 
to the FP-tree [16].

A sequential three-step process is used to construct 
the LTS. The transactions from the local database are 
initially added to the tree in a predefined transaction 
sorting order to ensure consistency. They locate and 
store local frequency counters. Then, the local coun-
ters from several Slave sites are combined into a Global 
Counter Table, where their values are added up and 
then arranged in decreasing order of frequency. Finally, 
the LTS paths are reorganized according to these sort-
ed global prefix counters, refining the tree’s structure 
for optimal efficiency. The following example illustrates 
how an LTS is constructed from a local database.

Consider the database DB illustrated in Fig. 1(a), 
where transaction records are distributed across two 
Slave sites: DB1 and DB2, as depicted in Fig. 1(b). The 
minimum support threshold is set at 𝜉=2. The initial 
phase involves constructing a Local-Tree Structure 
(LTS) at each Slave site by organizing transaction pre-
fixes in lexicographic order. To facilitate this process, 
an empty Counter Table (CT) is first created, listing all 
database prefixes alongside their respective frequency 
counts. The LTS is then built using the FP-tree method-
ology, inserting transactions based on the CT structure. 
Unlike the FP-tree’s vertically structured Header Table, 
the CT provides a horizontal representation, mapping 
elements, and their counts to their first occurrences in 
the LTS. Each Slave site independently constructs its 
local LTS by processing transactions from its database 
segment. Every time a transaction is added, the CT up-
dates the occurrence count for each prefix. The initial 
structures of LTS1 and LTS2, representing Slave sites 1 
and 2, are illustrated in Fig. 1(c) and (d). Correspond-
ingly, CT1 and CT2 maintain accurate prefix frequency 
counts within their respective Slave sites. Once the LTSs 
are built, the contents of CT1 and CT2 are transmitted 
to the Master site, which oversees system coordination 
and management.

In the second phase, the Master site computes the 
global support count for each prefix by aggregating 
the support values from all received CTs. After sum-
ming the local counts, the prefixes are sorted in de-
scending order of frequency, prioritizing the most sig-
nificant patterns. The prefix counter structure is shown 
in Fig. 1(e), while Fig. 1(f ) details the computation pro-
cess for global support values. Once the support values 
are consolidated, Fig. 1(g) presents the sorted global 
prefix counts. This information is then redistributed to 
all Slave sites, allowing them to reorganize their LTSs 
accordingly, thereby streamlining subsequent pattern 
analysis and extraction.

The final step aims to enhance tree efficiency by re-
structuring LTSs at each Slave site based on the sorted 
global prefix order, thus avoiding redundant database 
scans. Only the frequently occurring prefixes contribute 
to tree reorganization. At the start of this step, each Slave 
site generates an Ancestor Table (AT), which records pre-
fix frequencies alongside their ancestor relationships. As 
paths are reorganized, prefix occurrences are updated 
within the AT, preventing data duplication. For example, 
in Slave site 1, the original transaction path (A, B, C, E) is 
reordered as (B, C, E, A). The ancestor relationships are up-
dated as follows: Prefix B has no ancestors, as it serves as 
the root node. Prefix C has a single ancestor, {B:2}, where 
2 represents the support count of B in this path and in the 
previous path (B, C, E). Prefix E has one ancestor consist-
ing of two prefixes, {B, C:1}. Prefix A has two ancestors: The 
first ancestor is {C:1}, derived from the (C, A) path, and the 
second ancestor is {B, C, E:1}. This restructuring allows for 
more efficient pattern extraction in subsequent analyses.

 Fig. 1(h) and (j) illustrate the information repository 
at Slave sites 1 and 2, detailing each prefix, its support 
count, and ancestor relationships. Meanwhile, Fig. 1(i) 
and (k) depict the optimized LTS structures following 
reorganization at both sites.  

After completing the final phase, the local LTSs attain 
a highly compact structure, preserving all essential de-
tails from their respective databases. This restructured 
format ensures that the ancestry of each prefix node 
can be accurately retrieved via the Ancestor Table (AT). 
Once the LTSs are finalized, the collected node data is 
transmitted to the Master site for global frequent pat-
tern extraction. For instance, if a node X has N ances-
tors, its representation in the local AT takes the follow-
ing form: {(X. ancestor1: sup (X. ancestor1)),…,(X. ances-
torN: sup (X. ancestorN)), sup (X)} where each X. ances-
tor1 is distinct from ancestorN.

When an ancestor appears multiple times across sub-
sequent pattern analysis and extraction.

The final step aims to enhance tree efficiency by re-
structuring LTSs at each Slave site based on the sorted 
global prefix order, thus avoiding redundant database 
different paths, its frequency values must be consoli-
dated to maintain an accurate count. Instead of stor-
ing redundant entries, the cumulative support count is 
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Fig. 1. Construction of Local-Tree Structure

computed as follows: {(X. ancestor1: sup (X. ancestor1) 
+ sup (X. ancestorN), sup (X)}. Applying this principle to 
our example, the computed values for Slave Site1 are:  

B: {∅,2}, C: {B :2,3}, E: {(B, C :2),2}, A: {(C :1), (B, C, E :1),2}. 
For Slave Site2, the results are: B: {∅,2}, C: {B :2,2}, E: {(B 
:1), (B, C :2),3}, A: {(B, C, E :1),2}.

4.3. CONSTRUCTION OF 
 GLOBAL-TREE STRUCTURE

In this section, the pattern exploration process is car-
ried out at the Master site, where we introduce a new 
frequent pattern extraction technique based on a hier-
archical tree structure called the Global-Tree Structure 
(GTS). Our EGFP algorithm utilizes the GTS through 
multiple iteration levels K. Instead of relying on a sin-
gle tree, the approach employs multiple hierarchical 
GTSs, each designed to organize frequent patterns at 
different levels of granularity. Each GTS level captures 
increasingly generalized patterns (e.g., pairs of ele-
ments, triplets, etc.) and facilitates targeted pattern ex-
ploration. This structured approach reduces the search 
space while efficiently organizing frequent patterns 
across various levels of abstraction.

The GTS construction is primarily based on informa-
tion extracted from the Ancestor Table (AT), which is re-
ceived from the Slave sites. For each prefix X, all ances-
tor information gathered from the different Slave sites 
is combined to build the GTS. The nodes within a GTS 
contain: all ancestor prefixes, the count of each pre-
fix, node connections, and pointers to a table named 
Global Counter Table (GCT). The GCT serves as a central 
repository for aggregated support information from 
all ancestor prefixes. If the same ancestor elements 
appear in multiple Slave sites, their support values are 
accumulated within the corresponding GCT elements. 
The GTS exploration procedure follows a methodol-
ogy similar to that of conditional FP-Trees but with a 
reversed traversal direction. Instead of exploring ele-

ments bottom-up, as in an FP-Tree, the GTS traversal 
moves from top to bottom within the Global Counter 
Table (GCT). By executing this recursive exploration 
process, all frequent global itemsets associated with X 
are efficiently derived.

The GTS construction process is carried out itera-
tively at each level. At level K=1, a GTS is created for 
each prefix of size m=1 received from the local Slave 
sites, as previously described. At level K=2, a GTS is 
built for each global frequent pattern derived from the 
first-level patterns of size (m=2). This is achieved by in-
tersecting the paths of frequent global pattern subsets 
to construct the GTS. At level K≥3, the process contin-
ues by identifying the common paths shared among 
subsets of X of size (m−1) that contain the same (m−2) 
prefixes at the start of frequent global patterns X. This 
iterative procedure continues until no further GTSs can 
be constructed, meaning that all global frequent sets in 
the distributed database have been identified, and no 
additional frequent patterns can be generated. If a pre-
fix X has no ancestors, its GTS cannot be constructed. 
Similarly, if X belongs to a subset of a global frequent 
pattern XY and X has no ancestors, then the GTS for XY 
cannot be created, preventing any further global fre-
quent pattern generation.

Fig. 2 illustrates the GTS construction process for each 
global frequent pattern at different iteration levels K, 
based on the example provided in Fig. 1(i) and (k). For 
instance, at level K=1, the GTS extraction process for the 
global element A proceeds as follows: The global pattern 
A shares a common ancestor (B, C, E:2) from Slave Site1 
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and Slave Site2, as well as a single ancestor (C:1) from 
Slave Site1. Therefore, the GTS is constructed, forming 
nodes B, C, and E, while accumulating support informa-
tion for all prefixes in the Global Counter Table (GCT). 
Since these elements are frequent, a set of frequent item 
combinations associated with A is generated: {AB:2, 
AC:3, AE:2}. Next, a GTS is constructed for each derived 

global frequent pattern (AB, AC, AE) enabling recursive 
exploration at iteration K=2. At level K=2: The global ele-
ment AB contains the prefix B, which has no ancestors, 
so its GTS cannot be built. The global element AC has 
two prefixes, A and C, meaning an intersection can be 
made between the paths of GTSA and GTSC to construct 
associated with X are efficiently derived.

Fig. 2. Construction of Global-Tree Structure

GTSAC, leading to the derivation of frequent elements 
associated with AC: {ACB:2}. The global pattern ACB 
contains the prefix B, which lacks ancestors, preventing 
the construction of GTSACB.

This procedure is repeated for the global patterns C 
and E until all frequent global patterns are extracted. In 
this example, the process converges in three iterations.

The efficiency of our global frequent pattern explo-
ration procedure lies in its ability to construct a highly 
compact and optimized GTS, especially in iterations 
where k≥3. At this stage, the approach focuses only 
on shared paths among subsets of a global pattern 
of size (m−1) that contain the same (m−2) prefixes at 
the beginning of frequent patterns X. This method sig-
nificantly enhances the extraction of highly frequent 
global patterns.

To execute our EGFP (Exploration Global Frequent Pat-
terns) algorithm, we implement a Master/Slave commu-
nication model within a fully distributed environment. 
This intelligent data distribution strategy minimizes 
communication overhead between sites. Unlike tradi-
tional distributed frequent itemset mining algorithms, 
which require extensive inter-site communication, 
leading to high network costs, our approach optimizes 
synchronization while reducing complexity. For com-
parison, the CD (Count Distribution) algorithm follows 
the Apriori logic, employing an all-to-all broadcasting 
approach, which necessitates multiple database scans 

and explicit candidate generation. While effective, this 
method can become computationally expensive when 
handling large-scale data, as it results in increased com-
munication and synchronization overhead.

Applying the above example, the CD algorithm op-
erates as follows: In the first iteration, each Slave site 
computes the local support of 1-itemsets: Slave Site1: 
{A:2, B:2, C:3, E:2}, Slave Site2 : {B:3, C:2, E:3}. By exchang-
ing local support counts for each candidate itemset, 
the two sites can synchronize and calculate the global 
support: {B:5, C:5, E:5, A:3}. The second iteration com-
putes the local support for 2-itemsets using Apriori-
based steps, producing the following outcomes: {AB, 
AC, AE, BC, BE, CE}. The sites exchange these frequent 
itemsets with each other. This iterative process contin-
ues for iterations 2, 3, and 4, leading to the discovery of: 
{ABC, ABE, ACE, BCE}, and finally {ABCE}.

The EGFP algorithm leverages two fundamental tree 
structures: LTS and GTS. Unlike conventional methods, 
EGFP optimizes database scanning by requiring just a 
single pass to compute prefix frequencies, significantly 
enhancing efficiency. In contrast, the parallelized FP-
Growth (PFP-Tree) algorithm operates within a fully dis-
tributed Peer-to-Peer framework, necessitating two sep-
arate scans: the first to compute local frequency counts 
and the second to reconstruct the local FP-Tree, where 
items are ordered based on their local frequency. Once 
local FP-Trees are built, they are progressively merged 
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into a global FP-Tree. Unlike a Master-Slave model, 
where coordination is centralized, PFP-Tree requires di-
rect exchanges between sites, increasing communica-
tion costs and synchronization complexity especially as 
FP-Trees grow larger. After the global FP-Tree is formed, 
it is partitioned into subtrees, and each site executes FP-
Growth independently. The resulting frequent patterns 
are later aggregated to generate the final global set. In 
contrast, EGFP optimizes communication by reducing it 
to only two rounds between the Master and Slave sites. 
Global frequent patterns of size (m=1) are computed in 
the first round, and Ancestor Table (AT) data is sent to the 
Master site in the second. To avoid inter-site exchanges 
during frequent pattern extraction, EGFP uses a highly 
compressed GTS structure, which reduces the redun-
dancy of frequent elements. However, FP-Growth relies 
on a single tree to recursively investigate frequent sets 
without the need for subtree division. EGFP has several 
benefits, including simplified frequent pattern extrac-
tion without extra processing steps and less communi-
cation overhead. To maximize overall efficiency and re-
move reliance on external techniques, the GTS employs 
an optimized iterative strategy to find frequent global 
patterns.

4.4. PROCESS OF EGFP ALGORITHM

A detailed explanation of our methodology is provided 
in Fig. 3. Its purpose is to extract the set of frequently oc-
curring global patterns in a distributed setting. A whole 
database must first be horizontally divided into local da-
tabases that are assigned to various Slave sites by a Master 
site. Then, using a Counter Table (CT) that determines the 
elements' support numbers, an initial LTS including local 
transactions will be constructed for every slave site after 
calculating each prefix element's support number. To 
generate the Ancestor Table (AT) and rebuild the paths of 
each LTS, a global aggregating phase of the local counters 
is required. The GTS that corresponds to each frequent 
pattern is subsequently generated, which provides the 
basis for effectively extracting global frequent patterns.

Fig. 3. Process of the Proposed EGFP Algorithm

5. RESULTS AND DISCUSSION

In order to evaluate the performance of our EGFP, we 
conducted extensive experiments on two kinds of da-
tasets with different characteristics, as shown in Table 
1. T10I4D100K and Kosarak are sparse large-scale data-
sets obtained from FIMI [30]. The T10I4D100K dataset 
contains a Max TL (Maximum Tree Length) of 29 and 
an Avg TL (Average Tree Length) of 10.1, showing rela-
tively balanced transaction sizes. Kosarak, on the other 
hand, has a significantly higher Max TL of 2,498 and an 
Avg TL of only 8.10, representing a dataset composed 
of predominantly short transactions with some outliers 
drastically contributing to tree depth. 

We compared EGFP with some previously known 
algorithms such as PFP-Tree, and CD. The experiments 
were performed on a system with an Intel® Core™ i7-
10875H CPU running at 2.80 GHz, 16 GB of RAM, and 
operating on Windows 11. To assess scalability and ef-
ficiency, the datasets were distributed across 3, 5, and 
7 Slave sites. All the programs are implemented in Java 
using the NetBeans IDE. Communication between sites 
is facilitated through MPJ Express, a Java-based mes-
sage-passing library specifically designed for executing 
parallel applications on multicore processors.

Table 1. Dataset Characteristic

Dataset Transaction Items
Max TL 

(Maximum 
Tree Length)

Avg TL 
(Average 

Tree Length)

T10I4D100K 100000 870 29 10.1

Kosarak 990002 41270 2498 8.10

5.1. ANALySIS OF RESULTS

The comparative analysis of the PFP-Tree algorithm, 
CD algorithm, and our proposed EGFP algorithm reveals 
significant differences in performance, scalability, and 
efficiency across the T10I4D100K and Kosarak datasets. 
Fig. 4 compares the execution time of EGFP, PFP-Tree, 
and CD algorithms for the T10I4D100K dataset, showing 
how performance scales with the number of Slave sites 
and minimum support thresholds (MinSupp).

EGFP: Demonstrates superior performance with low 
execution times across all configurations. For exam-
ple, with 5 Slave sites and a MinSupp% of 3,5%, EGFP 
achieves an execution time of 14 seconds, compared to 
21 seconds for CD and 19 seconds for PFP-Tree.

CD: Suffers from high communication overhead 
and redundant computations, leading to significantly 
higher execution times, especially for lower MinSupp% 
values.

PFP-Tree: Performs better than CD but is outper-
formed by EGFP due to the cost of merging FP-Trees 
and communication overhead.
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(a)

(b)

(c)

Fig. 4. The running time of T10I4D100K with 
(a) 3 numbers of Slave sites, (b) 5 numbers of Slave 

sites, (c) 7 numbers of Slave sites

Fig. 5 compares the execution time of EGFP, PFP-Tree, 
and CD algorithms for the Kosarak dataset, highlight-
ing the impact of dataset density on scalability.

EGFP: Maintains efficient performance even with the 
sparse and large Kosarak dataset. For instance, with 7 
Slave sites and a MinSupp% of 4%, EGFP achieves an 
execution time of 40 seconds, compared to 60 seconds 
for CD and 51 seconds for PFP-Tree.

CD: Struggles with scalability, showing poor perfor-
mance as the number of Slave sites increases.

PFP-Tree: Performs moderately but is less efficient 
than EGFP, especially for larger numbers of Slave sites.

(a)

(b)

(c)

Fig. 5. The running time of Kosarak with 
(a) 3 numbers of Slave sites, (b) 5 numbers of Slave 

sites, (c) 7 numbers of Slave sites

The results highlight the strengths and weaknesses of 
each algorithm in distributed frequent pattern mining:

•	 EGFP: The use of a Master/Slave architecture and 
bidirectional communication significantly reduces 
communication overhead and redundant compu-
tations. As a result, EGFP is very scalable and effi-
cient, especially for big datasets Kosarak.

•	 CD: The broadcast communication approach leads 
to high communication costs and redundant calcula-
tions, making it less efficient for large-scale datasets.

•	 PFP-Tree: The combination of FP-Trees and com-
munication overhead restricts its scalability and 
efficiency, even if it outperforms CD.

a) Interpretations

Efficiency of EGFP: EGFP is the most efficient algo-
rithm due to its minimization of redundant computa-
tions and concentrated pattern production at the Mas-
ter site. This is especially evident in its capacity to man-
age greater numbers of slave sites and capture global 
frequent patterns using lower minimum support.

Scalability Challenges for CD and PFP-Tree: The com-
munication and computation overheads make CD and 
PFP-Tree unsuitable for large-scale applications. When 
the number of slave sites grows, these difficulties be-
come more prominent.

Dataset Impact: The performance gap between EGFP 
and the other algorithms is more pronounced for the 
large Kosarak dataset, highlighting EGFP 's ability to 
handle complex datasets efficiently.

b) Scalability Analysis

The scalability analysis, as shown in Fig. 6, evaluates 
the performance of EGFP and CD and PFP-Tree as the 
number of nodes increases.

1. Kosarak Dataset:

•	 EGFP: Execution time increases gradually with the 
number of nodes, indicating good scalability. For 
example, with 5 nodes, EGFP achieves an execu-
tion time of 15 seconds, compared to 19 seconds 
for CD and 18 seconds for FFP-Tree.

•	 CD and PFP-Tree: Execution time increases signifi-
cantly with the number of nodes, indicating poor 
scalability.
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2. For T10I4D100K Dataset:

•	 EGFP: Execution time increases gradually with the 
number of nodes, maintaining efficient perfor-
mance.

•	 CD and PFP-Tree: Execution time increases signifi-
cantly with the number of nodes, reflecting high 
communication overhead.

The Key Insights of EGFP Demonstrate excellent scal-
ability, making it suitable for large-scale distributed sys-
tems. CD and PFP-Tree Struggle with scalability, particu-
larly for large numbers of nodes and sparse datasets.

Impact of Node Expansion: With an increasing num-
ber of Slave nodes, the EGFP algorithm maintained a 
clear performance edge over PFP-Tree and CD. Even 
with 7 nodes, EGFP continuously produced faster exe-
cution speeds. Although CD and PFP-Tree experienced 
obvious delays as a result of the growing influence of 
communication overhead. Efficient communication 
minimization is a key component of EGFP 's excep-
tional scalability, enabling it to maintain performance 
as the system grows.

Performance Trends at Higher Node Counts: As 
nodes grew, the differences in algorithm efficiency 
became more evident. At 7 nodes, the increasing com-
munication overload was significantly affecting the 
performance of PFP-Tree and CD. EGFP provided a dis-
tinct advantage, as it benefited from optimized data 
management and fewer synchronization requests. This 
capacity allowed it to maintain its efficiency even un-
der high parallelism conditions.

(a)

Fig. 6. Scalability of EGFP by various number of 
nodes for (a) T10I4D100K and (b) Kosarak with 

MinSupp = 4%

(b)

5.2. DISCUSSION

Our approach employs an iterative process to gen-
erate global patterns while leveraging a highly com-
pressed and optimized GTS, ensuring efficient pattern 
discovery. On the other hand, PFP-Tree relies on condi-
tional sub-tree construction, which reduces redundancy 
but does not naturally minimize execution overhead. 
As a result, its computational cost remains significantly 
higher than that of our algorithm. Additionally, PFP-Tree 
involves multiple computational steps, such as merging 
local trees, partitioning the global FP-Tree into subtrees, 
and executing the FP-Growth algorithm. On the other 
hand, EGFP removes these complications, which signifi-
cantly increases execution time and resource efficiency. 
The CD algorithm exchanges local support values using 
a straightforward communication paradigm based on 
all-to-all broadcasting. This strategy generates a lot of 
candidate sets, which greatly raises the computational 
and communication overhead even though it is effec-
tive in distributing data. A low support threshold causes 
a rapid increase in the number of generated patterns. 
Even if parallelization speeds up processing, a significant 
number of patterns are still extracted overall. EGFP is not 
a requirement for inter-site communication because it 
generates all global candidates openly using the GTS. 
Through the use of the GTS's compression mechanism, 
this method significantly reduces duplication and com-
munication overhead.

According to the analysis, EGFP performs better on 
both datasets in terms of efficiency, scalability, and per-
formance than both CD and PFP-Tree. EGFP is the best 
algorithm for distributed frequent pattern mining be-
cause it uses a Master-Slave architecture and bidirec-
tional communication, which significantly reduces the 
communication cost and unnecessary calculations. With 
better scalability and faster calculation times than se-
quential approaches, our algorithm represents a signifi-
cant advancement in parallel frequent pattern mining. 
We could focus on investigating fault tolerance strate-
gies to improve EGFP 's resilience in distributed situa-
tions and further optimize it for even larger datasets.

6. CONCLUSION

This paper presents a new EGFP algorithm for explor-
ing the discovery of frequent patterns inside a distribut-
ed system. Our EGFP remedies the important problems 
of previous parallel algorithms, including the computa-
tional time and communication costs, typically obtained 
via message exchanges among different sites. The EGFP 
method compacts and compresses the database us-
ing two prefix tree structures. Each Slave site builds its 
preliminary structure (LTS) to determine the supports of 
all prefixes, which are subsequently aggregated at the 
Master site to rearrange the LTS paths for each Slave site 
by establishing a table including all the ancestors of the 
local tree nodes. For each element in the local database, 
the Master site includes ancestral data required for build-
ing the Global Tree structure (GTS). The process is car-
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ried out iteratively to generate the Global Tree Structure 
(GTS) for exploring all global patterns. Comparatively to 
the PFP-Tree and CD algorithms, the performance evalu-
ation of our method on real-world datasets showed its 
efficiency in speed and scalability.

For distributed systems, real-time data streams, and 
conditions needing rapid execution, our method, with 
its optimized approach that limits data processing to 
a single pass, is extremely fast. In the future work, we 
plan to concentrate on developing our algorithm with 
association rule mining to promote efficiency, scalabil-
ity, and adaptation to complex datasets for the discov-
ery of beneficial patterns and insights.
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