
A Scalable Distributed Approach for Exploration
Global Frequent Patterns

553

Original Scientific Paper

Abstract – Finding patterns in transactional databases regularly is an essential part of data mining since it makes it simpler to identify
significant connections and reoccurring patterns in datasets. Scalable, high-performance computing solutions that employ parallel
computing systems to optimize resource efficiency and data analysis as data volumes continue to grow are necessary for efficiently processing
large databases. To solve these issues, this paper presents Exploration Global Frequent Patterns (EGFP), a new parallel algorithm designed
to generate global frequent patterns in different distributed datasets. By facilitating the distribution of workloads and data partitioning, the
approach reduces communication costs and ensures efficient parallel execution. Our approach uses two prefix-tree structures to generate a
significantly compacted and structured representation of frequent patterns. The first structure local-tree serves to store local support values
to effectively collect and arrange transaction data. Global prefix counts are then aggregated and ranked to improve frequency-based
analysis and provide a more organized and useful representation of frequent patterns. To find the globally prevalent patterns, a Master
site develops a second structure global-tree for each prefix based on this arranged data. Experimental results on large-scale benchmark
datasets show that EGFP outperforms other existing methods including CD and PFP-tree in terms of execution time and scalability, while
incurring considerably less communication cost.

Keywords: Data mining, Parallel Processing, Frequent Patterns tree, Communication costs

Volume 16, Number 7, 2025

Houda Essalmi*
Laboratory of Engineering Sciences, Polydisciplinary Faculty of Taza,
University of Sidi Mohamed Ben Abdellah
Fez, Morocco
houda.essalmi@usmba.ac.ma

Anass El Affar
Laboratory of Engineering Sciences, Polydisciplinary Faculty of Taza,
University of Sidi Mohamed Ben Abdellah
Fez, Morocco
anass.elaffar@usmba.ac.ma

Received: March 2, 2025; Received in revised form: April 25, 2025; Accepted: April 28, 2025

*Corresponding author

1. INTRODUCTION

The great progress in technology and research in re-
cent years has greatly affected the increasing data vol-
ume. Datasets including many complex attributes usu-
ally grow exponentially. Distributed data mining is the
method of evaluating large datasets maintained across
several linked sources or servers, therefore supporting
decision-making and revealing hidden information
inside the distributed database that calls for specific
knowledge. Essential in Data Mining are classification,
association rule mining, sequential pattern detection,
and other activities [1]. In a transaction database, the
interactions among data values are complicated and
many of those relationships are effectively implicit. In
the discipline of data mining, association rule mining

[2] is a rather popular method, it aims to find relation-
ships among itemsets contained in transaction data-
bases or other data sources [3]. Effective counting of all
frequent patterns depends on Apriori methods, which
produce appropriate rule sets. To find regular patterns
inside a transactional database, Apriori algorithms [4]
require two main phases candidate generation and
pruning, i.e., the elimination of uncommon itemsets
is used in an iterative approach in the process. Initially,
it finds individual frequent items with values above a
minimum support threshold; then by combining them
with other frequent itemsets, it generates more com-
binations. The candidates are further evaluated using
the set support threshold. This process continues till no
more frequent itemsets can be generated.

554 International Journal of Electrical and Computer Engineering Systems

The sequential Apriori technique is essentially an
essential component of both parallel and distributed
algorithms. Association rule mining and optimization
depend much on parallel and distributed techniques,
thereby improving load distribution and accelerating
computation execution. Candidate Distribution (CD)
[5] among these approaches assigns the produced
candidates to several sites to reduce computational
repetition. By using transaction allocation, the Distrib-
uted Mining Algorithm (DMA) [6] improves distributed
data management. Fast Distributed Mining (FDM) [7]
maintains result accuracy while reducing communica-
tion costs across nodes, improving efficiency. Optimal
Distributed Association Mining (ODAM) [8] is interest-
ed in mitigating load imbalance and improving asso-
ciation rule computation's efficiency. The Distributed
Decision Miner (DDM) [9] addresses distributed data
analysis to boost the decision-making process in vast
settings. Distributed Decision (DD) [5], which strategi-
cally distributes tasks based on resource availability,
and Intelligent Data Distribution (IDD) [10], which flex-
ibly impacts data distribution to maximize processing
performance, are alternative techniques. Employing a
hash-based approach, hash-based Parallel Association
Rule Exploration (HPA) [11] increases the effectiveness
of parallel association rule exploration. Integration of
CD and DD approaches by Candidate Distribution (CaD)
[5] helps to effectively manage candidates and reduce
computing costs. Skew Handling (SH) [12] solves data
distribution differences to distribute the load. For en-
hanced performance in a distributed environment,
hybrid distribution (HD) [10] combines several distribu-
tion techniques.

Through tree-based approaches, such as FP-Growth
(Frequent Pattern Growth), Apriori-based methods
presently facilitate the analysis of frequent patterns.
opposed to the Apriori approach, which needs both
the generation and assessment of many candidates,
tree-based [13-16] solutions develop this process by
grouping the data in a simple and organized hierarchi-
cal structure.

Although the FP-Tree (Frequent Pattern Tree) [16] re-
duces searches for patterns and eliminates excessive
candidate generation, therefore decreasing searches
for patterns and avoiding unnecessary candidate gen-
eration, it also presents many drawbacks when used
with very large databases. Building the FP-Tree requires
maintaining all transactions in memory as a hierarchical
structure retained in a record. This structure can grow
excessively large and surpass RAM limits for large da-
tabases; therefore, it's ineffective for operation. Build-
ing an FP-Tree demands multiple processes, including
organizing frequently occurring elements and incorpo-
rating transactions into the tree. Regarding time and
resources, this approach could be very costly, particu-
larly if the database is large and contains several dif-
ferent components. Mostly operating in memory, the
FP-Growth approach, which utilizes the features of the

FP-Tree, makes implementation difficult in distributed
systems. Different versions, such as Parallel FP-Growth
[17] and Load Balancing FP-tree (LFP-tree) [18], have
been developed to advance scalability, even though
they typically involve complex changes.

LFP-Tree intelligently distributes FP subtrees and
transactions among compute sites to maximize load
balancing, avoiding bottlenecks and minimizing the
processing time. Developed for distributed systems
such as Hadoop and Spark, PFP-Tree partitions data
into subsets handled separately before the final results
are combined. Applied to large databases, both the
LFP-Tree and PFP-Tree approaches have weaknesses.
LFP-Tree maximizes load balancing; however, the issue
can find it challenging to distribute subtrees dynami-
cally in the presence of wildly different transactions,
thus generating residual problems with balance and
overloading some sites. Moreover, subtree operations
and coordination could contribute to higher comput-
ing costs. Although PFP-Tree is suitable for distributed
environments, it causes major communication expens-
es between sites during the aggregation of final results,
therefore influencing general performance.

In most cases, parallel systems in distributed environ-
ments improve scalability and performance; yet, they
also have some limitations. The communication over-
head between sites represents a main issue that may
become a limiting factor in the case of frequent essential
data exchanges. Moreover, the control of synchronizing
across operations may ultimately result in significant la-
tencies, especially when some activities need close coor-
dination. Load imbalance poses a major problem since
certain sites are unused while others show too much
demand, therefore limiting the general performance of
the system. Especially when the number of data needed
to be evaluated is significant, these algorithms often
require many database scans, therefore optimizing pro-
cessing time and resource requirements.

Designed to solve the above-mentioned problems and
efficiently uncover global frequent patterns inside distrib-
uted datasets, this paper presents a new parallel approach
called Exploration Global Frequent Patterns (EGFP). Our
approach is based on two tree structures, local and global,
including the prefix data of the global database.

Unlike most parallel approaches (peer to peer), we
first construct the Master-Slave paradigm by distribut-
ing the workload among several Slave sites, improving
execution time and system scalability. This architecture
constitutes a conscious decision in distributed systems
when efficient management of resources and central-
ized control are required. The slave sites principally aim
at building the first local tree structure based on prefix
items depending on the defined transaction sequence
in the local database. Our method simultaneously de-
velops an ancestor table for each prefix to rearrange
the locale-tree structures for all Slave sites in descend-
ing order by executing a single scan at each local data-
base. Then, depending on the ancestry information of

555Volume 16, Number 7, 2025

the initial localized tree structure, the Master site con-
structs a global tree for all prefixes, iteratively gener-
ating frequent global patterns without requiring Slave
site communication.

 Our EGFP reduces the communication load across
several sites of the system by limiting data processing
to a single pass (one scan), a crucial consideration in
distributed architectures where an excessive number of
exchanges can negatively impact performance. Com-
pared to techniques requiring multiple reads and syn-
chronizations, our method facilitates all Slave sites op-
erating their processing independently, hence reduc-
ing the need for synchronizing and temporarily storing.
We examine our EGFP algorithm's performance against
PFP-Tree and CD on actual increasing data quantities.
To develop and investigate a tree structure, PFP-Tree
and CD both need several data readings. For real-time
analytics and large-scale systems, our method maxi-
mizes processing by reducing the amount of data ac-
cessed to an alone pass.

The structure of the work is as follows: Section 2 con-
tains a review of the existing works. Section 3 presents
the notation and problem definition. In Section 4 our
proposed method of algorithm is explained. the results
with discussion are given in Section 5. Then the paper
is concluded this work in Section 6.

2. RELATED WORK

Several research works have been proposed to en-
hance the efficiency, scalability, and flexibility of pat-
tern mining algorithms in large-scale data settings. In
this section, we review seminal contributions in the
field of distributed frequent pattern mining.

Fernandez-Basso et al. [19] presented an original
method to improve the extraction of prevalent pat-
terns and association rules inside a distributed system
by using Apache Spark. The study aims to address in
the framework of large datasets the drawbacks of con-
ventional algorithms such as Apriori and FP-Growth.
The authors search for several optimizations, including
using Spark's distributed design to provide efficient in-
memory parallel computing, hence reducing scans and
improving productivity. This work simplifies the con-
sumption of resources and execution time while im-
proving the scalability and applicability of knowledge
extraction for large datasets.

The authors in [20] provided a novel method for se-
quential pattern extraction in databases using a tree
structure (SP-Tree structure). This approach applies
an optimal tree for better sequence structure, hence
reducing data redundancy and database scans. The
method advances performance on speed and memory
use by applying an effective structure; consequently,
pattern extraction becomes more suitable for large
datasets. By establishing upgraded efficiency and scal-
ability of sequential pattern analysis, this work pro-
gresses data mining methods.

Van and Josef [21] introduced a new approach for
extracting frequent itemsets inside a distributed and
parallel architecture. The FPO-Tree (Frequent Pattern
Ordered Tree) structure that the authors provided
improves memory compression and organization of
transactions, hence reducing database scans. More-
over, they developed the DP3 (Distributed Parallel
Preprocessing Pattern Mining) method, indicated to
efficiently apply distributed architectures and paral-
lelize the frequent pattern extraction. This approach
reduces data transfers between nodes and maximizes
workload distribution, thus boosting the scalability
and efficiency of Frequent Itemset Mining (FIM). By re-
ducing computational costs and improving analytical
performance, the work presents a successful method
for handling large data sets.

In [22], the researchers suggested a selective and
adaptive approach for extracting frequent patterns in
distributed transactional databases. In contrast to con-
ventional methods that generate all frequent patterns,
this particular approach operates on demand by ex-
tracting only the relevant patterns depending on user
requests. In a distributed system, this greatly reduces
computing costs and improves resource economy. This
concept depends on the quick identification of pat-
terns at the instant the analyst needs them. They offer
DDSampling, a new pattern sampling technique. This
program chooses a pattern at random from a distribut-
ed transactional database such that the selection prob-
ability corresponds to its degree of interest.

The study in [23] investigated the issues and pos-
sible solutions for parallelizing frequent itemset min-
ing algorithms in large data settings. Their discussion is
centered on enhancing the efficiency of conventional
mining methods by their execution in parallel com-
puting architectures. In particular, they suggested an
approach that splits large datasets and shares com-
putational tasks across several processing units. This
method reduces redundancy in candidate generation
and enhances overall efficiency by load balancing
and better data access patterns. The implementation,
evaluated on cloud computing setups, showed that
parallelization substantially speeds up mining with re-
sult accuracy intact. These observations highlight the
effectiveness of parallel mining techniques in manag-
ing the growing volume and velocity of data that are
characteristic of contemporary big data systems.

In [24], the authors suggested a distributed associa-
tion rule mining method named Mine-first Association
Rule Mining that solves data decentralization and priva-
cy issues in distributed networks. Their method allows
each node to mine local frequent patterns without re-
vealing raw data, thereby ensuring data confidentiality
and conserving communication overhead. The incor-
poration of local patterns into global rules is facilitated
by an effective aggregation mechanism that considers
support and confidence measures, thereby guarantee-
ing the integrity and validity of the rules discovered.

556 International Journal of Electrical and Computer Engineering Systems

The distributed framework is extremely effective when
used with decentralized data, providing a scalable and
privacy-conscious solution that is especially applicable
to multi-source environments, including cloud-based
analytics and federated platforms.

In another work authors [25] designed a parallel fre-
quent itemset mining algorithm named STB_Apriori,
which is specifically tailored for big data environments
using the Apache Spark framework. The algorithm
overcomes the drawbacks of conventional Apriori al-
gorithms, especially the computational burdens result-
ing from repetitive candidate generation and process-
ing of large datasets. The suggested approach employs
a BitSet-based compression technique to preserve
transactional data in compressed Boolean matrices to
accelerate bitwise calculation and lower memory us-
age. Further, the system cleverly takes advantage of
Spark's distributed computing framework for parallel
processing of the mining task across several nodes.
Experimental evaluations show STB_Apriori to be con-
siderably better than state-of-the-art algorithms about
execution time and scalability, positioning it in a favor-
able position for mining frequent patterns in large-
scale distributed data.

Rochd and Hafidi [26] suggested DSSS (Distributed
Single Scan on Spark), a distributed version of SSFIM
(Single Scan Frequent Itemset Mining) [27], to effi-
ciently mine frequent itemsets in big data environ-
ments with Apache Spark. DSSS conducts a single pass
over the data by broadcasting a compressed dataset to
nodes via RDDs and broadcast variables, unlike conven-
tional multi-scan approaches. It includes early elimina-
tion of infrequent items and pruning of unpromising
candidates to enhance memory and communication
overhead. The experimental results confirm its ability
for scalability and efficiency, showing its suitability for
cloud and streaming environments.

3. NOTATION AND PROBLEM DEFINITION

Let I= {x1, x2, x3,..., xn} be a collection of n distinct ele-
ments. A pattern or a collection of elements constitutes
a subset of this set, defined by X⊆ I. A database DB is
essentially a collection of transactions, where each
transaction T is a subset of I and is uniquely identified
by its transaction identifier (TID). The number of data-
base transactions presenting pattern X expressed as
sup(X), signifies its level of support value. The equation
of support is calculated as follows [2]:

sup(X) = (count(X))/N (1)

where count(X) represents the occurrence of X in the
database and N defines the entire number of transac-
tions. A pattern is considered frequent if its level of sup-
port surpasses the minimal support threshold, marked
by the symbol ξ. Frequent pattern mining essentially is
interested in identifying each pattern that frequently
appears in a transaction database while maintaining
the specified support threshold ξ.

A distributed system consists of n sites, each labeled,
S1, S2, S3,..., Sn.Under this system, the database DB is
horizontally divided into n parts, shown as DB1, DB2,
DB3,..., DBn, where each part is assigned to a particular
site for data processing (for i = 1,..., n). To measure the
frequently occurring pattern X, we indicate Supi(X) as
its local support count, and Sup(X) as its global sup-
port count in the whole distributed system. Globally
frequent a pattern X satisfying the minimal support cri-
teria ξ, determined using the formula [4]:

Sup(X) ≥ ξ ×∣DB∣ (2)

In a distributed database setting, this requirement is
essential since it ensures that the pattern shows consis-
tently over several partitions.

4. PROPOSED METHOD

This section presents our proposed method of algo-
rithm, centered on the Master/Slave paradigm in a dis-
tributed computing environment, which can efficiently
enable parallel and distributed frequent pattern min-
ing. Additionally provided is an extensive description
of the mining process and its purposes.

4.1. MASTER-SLAvE PARADIGM

Communication in distributed frequent pattern min-
ing is typically decentralized. At each phase, all of Si
shares its locally calculated support values with every
other site, which produces a rapid increase in data ex-
changes [28]. Network performance may be impacted
as a result of the higher levels of communication im-
posed by growing datasets and site interactions. An
alternative is the Master/Slave paradigm, which, as
described in [28], offers a centralized communication
mechanism. The dataset is divided into clusters by a
Master site, which then assigns each cluster to a slave
site. The Master site coordinates the entire process and
collects information from Slave sites. This operational
method is highly beneficial for distributed computing
systems because it minimizes time and space complex-
ity and maximizes resource efficiency, according to pre-
vious research by Vasoya and Koli [29].

A distributed and parallel method is examined in this
work, in which the database is split horizontally over mul-
tiple Slave sites, each of which handles an equal share of
transactions on its site. The Master site reduces the over-
head of inter-site communication by distributing and
merging processed data, functioning as the coordinator.
Each Slave site obtains unique prefixes and their associ-
ated support numbers from the dataset in a single data-
base scan to generate a Local-Tree Structure (LTS). By col-
lecting the values of local supports, the Master site ranks
prefixes in descending order of global frequency. The An-
cestor Table (AT), which is generated from this data, serves
as an essential component for the Global-Tree Structure
(GTS), which is built at the Master site. The FP-Tree tech-
nique processes a single structured tree recursively, while
the Mining Global Frequent Patterns (EGFP) approach

557Volume 16, Number 7, 2025

splits the task into multiple smaller GTSs. By investigating
patterns at different hierarchical levels without requiring
an excessive amount of inter-node communication, this
method increases computational efficiency. The follow-
ing paragraph provides a detailed description of the EGFP
algorithm and its computational elements.

4.2. CONSTRUCTION OF LOCAL-TREE
 STRUCTURE

At this stage, the Local-Tree Structure (LTS), a data
structure designed to optimize processing and storage
efficiency with a single database investigation, gets
formed. The primary LTS structure consists of a root
node, called null, and multiple child nodes, each of
which represents a different prefix subtree. Every node
contains crucial information, including the prefix name,
which identifies the associated element, the support
count, which records the frequency of occurrence of
a path segment in local transactions, and a node-link,
which connects related nodes, using a structure similar
to the FP-tree [16].

A sequential three-step process is used to construct
the LTS. The transactions from the local database are
initially added to the tree in a predefined transaction
sorting order to ensure consistency. They locate and
store local frequency counters. Then, the local coun-
ters from several Slave sites are combined into a Global
Counter Table, where their values are added up and
then arranged in decreasing order of frequency. Finally,
the LTS paths are reorganized according to these sort-
ed global prefix counters, refining the tree’s structure
for optimal efficiency. The following example illustrates
how an LTS is constructed from a local database.

Consider the database DB illustrated in Fig. 1(a),
where transaction records are distributed across two
Slave sites: DB1 and DB2, as depicted in Fig. 1(b). The
minimum support threshold is set at 𝜉=2. The initial
phase involves constructing a Local-Tree Structure
(LTS) at each Slave site by organizing transaction pre-
fixes in lexicographic order. To facilitate this process,
an empty Counter Table (CT) is first created, listing all
database prefixes alongside their respective frequency
counts. The LTS is then built using the FP-tree method-
ology, inserting transactions based on the CT structure.
Unlike the FP-tree’s vertically structured Header Table,
the CT provides a horizontal representation, mapping
elements, and their counts to their first occurrences in
the LTS. Each Slave site independently constructs its
local LTS by processing transactions from its database
segment. Every time a transaction is added, the CT up-
dates the occurrence count for each prefix. The initial
structures of LTS1 and LTS2, representing Slave sites 1
and 2, are illustrated in Fig. 1(c) and (d). Correspond-
ingly, CT1 and CT2 maintain accurate prefix frequency
counts within their respective Slave sites. Once the LTSs
are built, the contents of CT1 and CT2 are transmitted
to the Master site, which oversees system coordination
and management.

In the second phase, the Master site computes the
global support count for each prefix by aggregating
the support values from all received CTs. After sum-
ming the local counts, the prefixes are sorted in de-
scending order of frequency, prioritizing the most sig-
nificant patterns. The prefix counter structure is shown
in Fig. 1(e), while Fig. 1(f) details the computation pro-
cess for global support values. Once the support values
are consolidated, Fig. 1(g) presents the sorted global
prefix counts. This information is then redistributed to
all Slave sites, allowing them to reorganize their LTSs
accordingly, thereby streamlining subsequent pattern
analysis and extraction.

The final step aims to enhance tree efficiency by re-
structuring LTSs at each Slave site based on the sorted
global prefix order, thus avoiding redundant database
scans. Only the frequently occurring prefixes contribute
to tree reorganization. At the start of this step, each Slave
site generates an Ancestor Table (AT), which records pre-
fix frequencies alongside their ancestor relationships. As
paths are reorganized, prefix occurrences are updated
within the AT, preventing data duplication. For example,
in Slave site 1, the original transaction path (A, B, C, E) is
reordered as (B, C, E, A). The ancestor relationships are up-
dated as follows: Prefix B has no ancestors, as it serves as
the root node. Prefix C has a single ancestor, {B:2}, where
2 represents the support count of B in this path and in the
previous path (B, C, E). Prefix E has one ancestor consist-
ing of two prefixes, {B, C:1}. Prefix A has two ancestors: The
first ancestor is {C:1}, derived from the (C, A) path, and the
second ancestor is {B, C, E:1}. This restructuring allows for
more efficient pattern extraction in subsequent analyses.

 Fig. 1(h) and (j) illustrate the information repository
at Slave sites 1 and 2, detailing each prefix, its support
count, and ancestor relationships. Meanwhile, Fig. 1(i)
and (k) depict the optimized LTS structures following
reorganization at both sites.

After completing the final phase, the local LTSs attain
a highly compact structure, preserving all essential de-
tails from their respective databases. This restructured
format ensures that the ancestry of each prefix node
can be accurately retrieved via the Ancestor Table (AT).
Once the LTSs are finalized, the collected node data is
transmitted to the Master site for global frequent pat-
tern extraction. For instance, if a node X has N ances-
tors, its representation in the local AT takes the follow-
ing form: {(X. ancestor1: sup (X. ancestor1)),…,(X. ances-
torN: sup (X. ancestorN)), sup (X)} where each X. ances-
tor1 is distinct from ancestorN.

When an ancestor appears multiple times across sub-
sequent pattern analysis and extraction.

The final step aims to enhance tree efficiency by re-
structuring LTSs at each Slave site based on the sorted
global prefix order, thus avoiding redundant database
different paths, its frequency values must be consoli-
dated to maintain an accurate count. Instead of stor-
ing redundant entries, the cumulative support count is

558 International Journal of Electrical and Computer Engineering Systems

Fig. 1. Construction of Local-Tree Structure

computed as follows: {(X. ancestor1: sup (X. ancestor1)
+ sup (X. ancestorN), sup (X)}. Applying this principle to
our example, the computed values for Slave Site1 are:

B: {∅,2}, C: {B :2,3}, E: {(B, C :2),2}, A: {(C :1), (B, C, E :1),2}.
For Slave Site2, the results are: B: {∅,2}, C: {B :2,2}, E: {(B
:1), (B, C :2),3}, A: {(B, C, E :1),2}.

4.3. CONSTRUCTION OF
 GLOBAL-TREE STRUCTURE

In this section, the pattern exploration process is car-
ried out at the Master site, where we introduce a new
frequent pattern extraction technique based on a hier-
archical tree structure called the Global-Tree Structure
(GTS). Our EGFP algorithm utilizes the GTS through
multiple iteration levels K. Instead of relying on a sin-
gle tree, the approach employs multiple hierarchical
GTSs, each designed to organize frequent patterns at
different levels of granularity. Each GTS level captures
increasingly generalized patterns (e.g., pairs of ele-
ments, triplets, etc.) and facilitates targeted pattern ex-
ploration. This structured approach reduces the search
space while efficiently organizing frequent patterns
across various levels of abstraction.

The GTS construction is primarily based on informa-
tion extracted from the Ancestor Table (AT), which is re-
ceived from the Slave sites. For each prefix X, all ances-
tor information gathered from the different Slave sites
is combined to build the GTS. The nodes within a GTS
contain: all ancestor prefixes, the count of each pre-
fix, node connections, and pointers to a table named
Global Counter Table (GCT). The GCT serves as a central
repository for aggregated support information from
all ancestor prefixes. If the same ancestor elements
appear in multiple Slave sites, their support values are
accumulated within the corresponding GCT elements.
The GTS exploration procedure follows a methodol-
ogy similar to that of conditional FP-Trees but with a
reversed traversal direction. Instead of exploring ele-

ments bottom-up, as in an FP-Tree, the GTS traversal
moves from top to bottom within the Global Counter
Table (GCT). By executing this recursive exploration
process, all frequent global itemsets associated with X
are efficiently derived.

The GTS construction process is carried out itera-
tively at each level. At level K=1, a GTS is created for
each prefix of size m=1 received from the local Slave
sites, as previously described. At level K=2, a GTS is
built for each global frequent pattern derived from the
first-level patterns of size (m=2). This is achieved by in-
tersecting the paths of frequent global pattern subsets
to construct the GTS. At level K≥3, the process contin-
ues by identifying the common paths shared among
subsets of X of size (m−1) that contain the same (m−2)
prefixes at the start of frequent global patterns X. This
iterative procedure continues until no further GTSs can
be constructed, meaning that all global frequent sets in
the distributed database have been identified, and no
additional frequent patterns can be generated. If a pre-
fix X has no ancestors, its GTS cannot be constructed.
Similarly, if X belongs to a subset of a global frequent
pattern XY and X has no ancestors, then the GTS for XY
cannot be created, preventing any further global fre-
quent pattern generation.

Fig. 2 illustrates the GTS construction process for each
global frequent pattern at different iteration levels K,
based on the example provided in Fig. 1(i) and (k). For
instance, at level K=1, the GTS extraction process for the
global element A proceeds as follows: The global pattern
A shares a common ancestor (B, C, E:2) from Slave Site1

559Volume 16, Number 7, 2025

and Slave Site2, as well as a single ancestor (C:1) from
Slave Site1. Therefore, the GTS is constructed, forming
nodes B, C, and E, while accumulating support informa-
tion for all prefixes in the Global Counter Table (GCT).
Since these elements are frequent, a set of frequent item
combinations associated with A is generated: {AB:2,
AC:3, AE:2}. Next, a GTS is constructed for each derived

global frequent pattern (AB, AC, AE) enabling recursive
exploration at iteration K=2. At level K=2: The global ele-
ment AB contains the prefix B, which has no ancestors,
so its GTS cannot be built. The global element AC has
two prefixes, A and C, meaning an intersection can be
made between the paths of GTSA and GTSC to construct
associated with X are efficiently derived.

Fig. 2. Construction of Global-Tree Structure

GTSAC, leading to the derivation of frequent elements
associated with AC: {ACB:2}. The global pattern ACB
contains the prefix B, which lacks ancestors, preventing
the construction of GTSACB.

This procedure is repeated for the global patterns C
and E until all frequent global patterns are extracted. In
this example, the process converges in three iterations.

The efficiency of our global frequent pattern explo-
ration procedure lies in its ability to construct a highly
compact and optimized GTS, especially in iterations
where k≥3. At this stage, the approach focuses only
on shared paths among subsets of a global pattern
of size (m−1) that contain the same (m−2) prefixes at
the beginning of frequent patterns X. This method sig-
nificantly enhances the extraction of highly frequent
global patterns.

To execute our EGFP (Exploration Global Frequent Pat-
terns) algorithm, we implement a Master/Slave commu-
nication model within a fully distributed environment.
This intelligent data distribution strategy minimizes
communication overhead between sites. Unlike tradi-
tional distributed frequent itemset mining algorithms,
which require extensive inter-site communication,
leading to high network costs, our approach optimizes
synchronization while reducing complexity. For com-
parison, the CD (Count Distribution) algorithm follows
the Apriori logic, employing an all-to-all broadcasting
approach, which necessitates multiple database scans

and explicit candidate generation. While effective, this
method can become computationally expensive when
handling large-scale data, as it results in increased com-
munication and synchronization overhead.

Applying the above example, the CD algorithm op-
erates as follows: In the first iteration, each Slave site
computes the local support of 1-itemsets: Slave Site1:
{A:2, B:2, C:3, E:2}, Slave Site2 : {B:3, C:2, E:3}. By exchang-
ing local support counts for each candidate itemset,
the two sites can synchronize and calculate the global
support: {B:5, C:5, E:5, A:3}. The second iteration com-
putes the local support for 2-itemsets using Apriori-
based steps, producing the following outcomes: {AB,
AC, AE, BC, BE, CE}. The sites exchange these frequent
itemsets with each other. This iterative process contin-
ues for iterations 2, 3, and 4, leading to the discovery of:
{ABC, ABE, ACE, BCE}, and finally {ABCE}.

The EGFP algorithm leverages two fundamental tree
structures: LTS and GTS. Unlike conventional methods,
EGFP optimizes database scanning by requiring just a
single pass to compute prefix frequencies, significantly
enhancing efficiency. In contrast, the parallelized FP-
Growth (PFP-Tree) algorithm operates within a fully dis-
tributed Peer-to-Peer framework, necessitating two sep-
arate scans: the first to compute local frequency counts
and the second to reconstruct the local FP-Tree, where
items are ordered based on their local frequency. Once
local FP-Trees are built, they are progressively merged

560 International Journal of Electrical and Computer Engineering Systems

into a global FP-Tree. Unlike a Master-Slave model,
where coordination is centralized, PFP-Tree requires di-
rect exchanges between sites, increasing communica-
tion costs and synchronization complexity especially as
FP-Trees grow larger. After the global FP-Tree is formed,
it is partitioned into subtrees, and each site executes FP-
Growth independently. The resulting frequent patterns
are later aggregated to generate the final global set. In
contrast, EGFP optimizes communication by reducing it
to only two rounds between the Master and Slave sites.
Global frequent patterns of size (m=1) are computed in
the first round, and Ancestor Table (AT) data is sent to the
Master site in the second. To avoid inter-site exchanges
during frequent pattern extraction, EGFP uses a highly
compressed GTS structure, which reduces the redun-
dancy of frequent elements. However, FP-Growth relies
on a single tree to recursively investigate frequent sets
without the need for subtree division. EGFP has several
benefits, including simplified frequent pattern extrac-
tion without extra processing steps and less communi-
cation overhead. To maximize overall efficiency and re-
move reliance on external techniques, the GTS employs
an optimized iterative strategy to find frequent global
patterns.

4.4. PROCESS OF EGFP ALGORITHM

A detailed explanation of our methodology is provided
in Fig. 3. Its purpose is to extract the set of frequently oc-
curring global patterns in a distributed setting. A whole
database must first be horizontally divided into local da-
tabases that are assigned to various Slave sites by a Master
site. Then, using a Counter Table (CT) that determines the
elements' support numbers, an initial LTS including local
transactions will be constructed for every slave site after
calculating each prefix element's support number. To
generate the Ancestor Table (AT) and rebuild the paths of
each LTS, a global aggregating phase of the local counters
is required. The GTS that corresponds to each frequent
pattern is subsequently generated, which provides the
basis for effectively extracting global frequent patterns.

Fig. 3. Process of the Proposed EGFP Algorithm

5. RESULTS AND DISCUSSION

In order to evaluate the performance of our EGFP, we
conducted extensive experiments on two kinds of da-
tasets with different characteristics, as shown in Table
1. T10I4D100K and Kosarak are sparse large-scale data-
sets obtained from FIMI [30]. The T10I4D100K dataset
contains a Max TL (Maximum Tree Length) of 29 and
an Avg TL (Average Tree Length) of 10.1, showing rela-
tively balanced transaction sizes. Kosarak, on the other
hand, has a significantly higher Max TL of 2,498 and an
Avg TL of only 8.10, representing a dataset composed
of predominantly short transactions with some outliers
drastically contributing to tree depth.

We compared EGFP with some previously known
algorithms such as PFP-Tree, and CD. The experiments
were performed on a system with an Intel® Core™ i7-
10875H CPU running at 2.80 GHz, 16 GB of RAM, and
operating on Windows 11. To assess scalability and ef-
ficiency, the datasets were distributed across 3, 5, and
7 Slave sites. All the programs are implemented in Java
using the NetBeans IDE. Communication between sites
is facilitated through MPJ Express, a Java-based mes-
sage-passing library specifically designed for executing
parallel applications on multicore processors.

Table 1. Dataset Characteristic

Dataset Transaction Items
Max TL

(Maximum
Tree Length)

Avg TL
(Average

Tree Length)

T10I4D100K 100000 870 29 10.1

Kosarak 990002 41270 2498 8.10

5.1. ANALySIS OF RESULTS

The comparative analysis of the PFP-Tree algorithm,
CD algorithm, and our proposed EGFP algorithm reveals
significant differences in performance, scalability, and
efficiency across the T10I4D100K and Kosarak datasets.
Fig. 4 compares the execution time of EGFP, PFP-Tree,
and CD algorithms for the T10I4D100K dataset, showing
how performance scales with the number of Slave sites
and minimum support thresholds (MinSupp).

EGFP: Demonstrates superior performance with low
execution times across all configurations. For exam-
ple, with 5 Slave sites and a MinSupp% of 3,5%, EGFP
achieves an execution time of 14 seconds, compared to
21 seconds for CD and 19 seconds for PFP-Tree.

CD: Suffers from high communication overhead
and redundant computations, leading to significantly
higher execution times, especially for lower MinSupp%
values.

PFP-Tree: Performs better than CD but is outper-
formed by EGFP due to the cost of merging FP-Trees
and communication overhead.

561Volume 16, Number 7, 2025

(a)

(b)

(c)

Fig. 4. The running time of T10I4D100K with
(a) 3 numbers of Slave sites, (b) 5 numbers of Slave

sites, (c) 7 numbers of Slave sites

Fig. 5 compares the execution time of EGFP, PFP-Tree,
and CD algorithms for the Kosarak dataset, highlight-
ing the impact of dataset density on scalability.

EGFP: Maintains efficient performance even with the
sparse and large Kosarak dataset. For instance, with 7
Slave sites and a MinSupp% of 4%, EGFP achieves an
execution time of 40 seconds, compared to 60 seconds
for CD and 51 seconds for PFP-Tree.

CD: Struggles with scalability, showing poor perfor-
mance as the number of Slave sites increases.

PFP-Tree: Performs moderately but is less efficient
than EGFP, especially for larger numbers of Slave sites.

(a)

(b)

(c)

Fig. 5. The running time of Kosarak with
(a) 3 numbers of Slave sites, (b) 5 numbers of Slave

sites, (c) 7 numbers of Slave sites

The results highlight the strengths and weaknesses of
each algorithm in distributed frequent pattern mining:

•	 EGFP: The use of a Master/Slave architecture and
bidirectional communication significantly reduces
communication overhead and redundant compu-
tations. As a result, EGFP is very scalable and effi-
cient, especially for big datasets Kosarak.

•	 CD: The broadcast communication approach leads
to high communication costs and redundant calcula-
tions, making it less efficient for large-scale datasets.

•	 PFP-Tree: The combination of FP-Trees and com-
munication overhead restricts its scalability and
efficiency, even if it outperforms CD.

a) Interpretations

Efficiency of EGFP: EGFP is the most efficient algo-
rithm due to its minimization of redundant computa-
tions and concentrated pattern production at the Mas-
ter site. This is especially evident in its capacity to man-
age greater numbers of slave sites and capture global
frequent patterns using lower minimum support.

Scalability Challenges for CD and PFP-Tree: The com-
munication and computation overheads make CD and
PFP-Tree unsuitable for large-scale applications. When
the number of slave sites grows, these difficulties be-
come more prominent.

Dataset Impact: The performance gap between EGFP
and the other algorithms is more pronounced for the
large Kosarak dataset, highlighting EGFP 's ability to
handle complex datasets efficiently.

b) Scalability Analysis

The scalability analysis, as shown in Fig. 6, evaluates
the performance of EGFP and CD and PFP-Tree as the
number of nodes increases.

1. Kosarak Dataset:

•	 EGFP: Execution time increases gradually with the
number of nodes, indicating good scalability. For
example, with 5 nodes, EGFP achieves an execu-
tion time of 15 seconds, compared to 19 seconds
for CD and 18 seconds for FFP-Tree.

•	 CD and PFP-Tree: Execution time increases signifi-
cantly with the number of nodes, indicating poor
scalability.

562 International Journal of Electrical and Computer Engineering Systems

2. For T10I4D100K Dataset:

•	 EGFP: Execution time increases gradually with the
number of nodes, maintaining efficient perfor-
mance.

•	 CD and PFP-Tree: Execution time increases signifi-
cantly with the number of nodes, reflecting high
communication overhead.

The Key Insights of EGFP Demonstrate excellent scal-
ability, making it suitable for large-scale distributed sys-
tems. CD and PFP-Tree Struggle with scalability, particu-
larly for large numbers of nodes and sparse datasets.

Impact of Node Expansion: With an increasing num-
ber of Slave nodes, the EGFP algorithm maintained a
clear performance edge over PFP-Tree and CD. Even
with 7 nodes, EGFP continuously produced faster exe-
cution speeds. Although CD and PFP-Tree experienced
obvious delays as a result of the growing influence of
communication overhead. Efficient communication
minimization is a key component of EGFP 's excep-
tional scalability, enabling it to maintain performance
as the system grows.

Performance Trends at Higher Node Counts: As
nodes grew, the differences in algorithm efficiency
became more evident. At 7 nodes, the increasing com-
munication overload was significantly affecting the
performance of PFP-Tree and CD. EGFP provided a dis-
tinct advantage, as it benefited from optimized data
management and fewer synchronization requests. This
capacity allowed it to maintain its efficiency even un-
der high parallelism conditions.

(a)

Fig. 6. Scalability of EGFP by various number of
nodes for (a) T10I4D100K and (b) Kosarak with

MinSupp = 4%

(b)

5.2. DISCUSSION

Our approach employs an iterative process to gen-
erate global patterns while leveraging a highly com-
pressed and optimized GTS, ensuring efficient pattern
discovery. On the other hand, PFP-Tree relies on condi-
tional sub-tree construction, which reduces redundancy
but does not naturally minimize execution overhead.
As a result, its computational cost remains significantly
higher than that of our algorithm. Additionally, PFP-Tree
involves multiple computational steps, such as merging
local trees, partitioning the global FP-Tree into subtrees,
and executing the FP-Growth algorithm. On the other
hand, EGFP removes these complications, which signifi-
cantly increases execution time and resource efficiency.
The CD algorithm exchanges local support values using
a straightforward communication paradigm based on
all-to-all broadcasting. This strategy generates a lot of
candidate sets, which greatly raises the computational
and communication overhead even though it is effec-
tive in distributing data. A low support threshold causes
a rapid increase in the number of generated patterns.
Even if parallelization speeds up processing, a significant
number of patterns are still extracted overall. EGFP is not
a requirement for inter-site communication because it
generates all global candidates openly using the GTS.
Through the use of the GTS's compression mechanism,
this method significantly reduces duplication and com-
munication overhead.

According to the analysis, EGFP performs better on
both datasets in terms of efficiency, scalability, and per-
formance than both CD and PFP-Tree. EGFP is the best
algorithm for distributed frequent pattern mining be-
cause it uses a Master-Slave architecture and bidirec-
tional communication, which significantly reduces the
communication cost and unnecessary calculations. With
better scalability and faster calculation times than se-
quential approaches, our algorithm represents a signifi-
cant advancement in parallel frequent pattern mining.
We could focus on investigating fault tolerance strate-
gies to improve EGFP 's resilience in distributed situa-
tions and further optimize it for even larger datasets.

6. CONCLUSION

This paper presents a new EGFP algorithm for explor-
ing the discovery of frequent patterns inside a distribut-
ed system. Our EGFP remedies the important problems
of previous parallel algorithms, including the computa-
tional time and communication costs, typically obtained
via message exchanges among different sites. The EGFP
method compacts and compresses the database us-
ing two prefix tree structures. Each Slave site builds its
preliminary structure (LTS) to determine the supports of
all prefixes, which are subsequently aggregated at the
Master site to rearrange the LTS paths for each Slave site
by establishing a table including all the ancestors of the
local tree nodes. For each element in the local database,
the Master site includes ancestral data required for build-
ing the Global Tree structure (GTS). The process is car-

563Volume 16, Number 7, 2025

ried out iteratively to generate the Global Tree Structure
(GTS) for exploring all global patterns. Comparatively to
the PFP-Tree and CD algorithms, the performance evalu-
ation of our method on real-world datasets showed its
efficiency in speed and scalability.

For distributed systems, real-time data streams, and
conditions needing rapid execution, our method, with
its optimized approach that limits data processing to
a single pass, is extremely fast. In the future work, we
plan to concentrate on developing our algorithm with
association rule mining to promote efficiency, scalabil-
ity, and adaptation to complex datasets for the discov-
ery of beneficial patterns and insights.

7. REFERENCES

[1] H. Kargupta, C. Kamath, P. Chan, “Distributed and

Parallel Data Mining: Emergence, Growth, and Fu-

ture Directions”, Advances in Distributed and Par-

allel Knowledge Discovery, AAAI/MIT Press, 2000,

pp. 409-416.

[2] R. Agrawal, T. Imieliński, A. Swami, “Mining As-

sociation Rules Between Sets of Items in Large

Databases”, Proceedings of the ACM SIGMOD In-

ternational Conference on Management of Data,

Washington, USA, 25-28 May 1993, pp. 207-216.

[3] P.-N. Tan, M. Steinbach, V. Kumar, “Association

Analysis: Basic Concepts and Algorithms”, Intro-

duction to Data Mining, Pearson Addison Wesley,

2005, pp. 327-386.

[4] R. Agrawal, R. Srikant, “Fast Algorithms for Mining

Association Rules in Large Databases”, Proceed-

ings of the 20th International Conference on Very

Large Data Bases, Santiago de Chile, Chile, 12-15

September 1994, pp. 487-499.

[5] R. Agrawal, J. C. Shafer, “Parallel Mining of Associa-

tion Rules”, IEEE Transactions on Knowledge and

Data Engineering, Vol. 8, No. 6, 1996, pp. 962-969.

[6] D. W. Cheung, V. T. Ng, A. W. Fu, Y. Fu, “Efficient Min-

ing of Association Rules in Distributed Databases”,

IEEE Transactions on Knowledge and Data Engi-

neering, Vol. 8, No. 6, 1996, pp. 911-922.

[7] D. W. Cheung, J. Han, V. T. Ng, A. W. Fu, Y. Fu, “A

Fast Distributed Algorithm for Mining Association

Rules”, Proceedings of the 4th International Con-

ference on Parallel and Distributed Information

Systems, Miami Beach, FL, USA, 18-20 December

1996, pp. 31-42.

[8] M. Z. Ashrafi, D. Taniar, K. Smith, “ODAM: An Opti-

mized Distributed Association Rule Mining Algo-

rithm”, IEEE Distributed Systems Online, Vol. 5, No.

3, 2004, pp. 1-18.

[9] A. Schuster, R. Wolff, “Communication-Efficient

Distributed Mining of Association Rules”, ACM

SIGMOD Record, Vol. 30, No. 2, 2001, pp. 473-484.

[10] E.-H. Han, G. Karypis, V. Kumar, “Scalable Parallel

Data Mining for Association Rules”, ACM SIGMOD

Record, Vol. 26, No. 2, 1997, pp. 277-288.

[11] T. Shintani, M. Kitsuregawa, “Hash Based Parallel

Algorithms for Mining Association Rules”, Proceed-

ings of the 4th International Conference on Parallel

and Distributed Information Systems, Miami Beach,

FL, USA, 18-20 December 1996, pp. 19-30.

[12] L. Harada, N. Akaboshi, K. Ogihara, R. Take, “Dy-

namic Skew Handling in Parallel Mining of Associ-

ation Rules”, Proceedings of the 7th ACM Interna-

tional Conference on Information and Knowledge

Management, Bethesda, MD, USA, 3-7 November

1998, pp. 76-85.

[13] S. K. Tanbeer, C. F. Ahmed, B.-S. Jeong, Y.-K. Lee, “Ef-

ficient Single-Pass Frequent Pattern Mining Using

a Prefix-Tree”, Information Sciences, Vol. 179, No. 5,

2009, pp. 559-583.

[14] H. Huang, X. Wu, R. Relue, “Association Analysis

with One Scan of Databases”, Proceedings of the

IEEE International Conference on Data Mining,

Maebashi, Japan, 9-12 December 2002, pp. 629-

632.

[15] G. Grahne, J. Zhu, “Fast Algorithms for Frequent

Itemset Mining Using FP-Trees”, IEEE Transactions

on Knowledge and Data Engineering, Vol. 17, No.

10, 2005, pp. 1347-1362.

[16] J. Han, J. Pei, Y. Yin, “Mining Frequent Patterns

Without Candidate Generation”, Proceedings of

the ACM SIGMOD International Conference on

Management of Data, Dallas, TX, USA, 16-18 May

2000, pp. 1-12.

[17] A. Javed, A. Khokhar, “Frequent Pattern Mining on

Message Passing Multiprocessor Systems”, Distribut-

ed and Parallel Databases, Vol. 16, 2004, pp. 321-334.

[18] O. R. Zaïane, M. El-Hajj, P. Lu, “Fast Parallel Associa-

tion Rule Mining Without Candidacy Generation”,

Proceedings of the IEEE International Conference
on Data Mining, San Jose, CA, USA, 29 November
- 2 December 2001, pp. 665-668.

[19] C. Fernandez-Basso, M. D. Ruiz, M. J. Martin-Bautista,
“New Spark Solutions for Distributed Frequent Item-
set and Association Rule Mining Algorithms”, Cluster
Computing, Vol. 27, No. 2, 2023, pp. 1217-1234.

[20] R. A. Rizvee, C. F. Ahmed, M. F. Arefin, C. K. Leung,
“A New Tree-Based Approach to Mine Sequential
Patterns”, Expert Systems with Applications, Vol.
242, 2024, p. 122754.

[21] V. Q. P. Huynh, J. Küng, “FPO Tree and DP3 Algo-
rithm for Distributed Parallel Frequent Itemsets
Mining”, Expert Systems with Applications, Vol.
140, 2020, p. 112874.

[22] L. Diop, C. T. Diop, A. Giacometti, A. Soulet, “Pat-
tern on Demand in Transactional Distributed Da-
tabases”, Information Systems, Vol. 104, 2022, p.
101908.

[23] C. Wu, H. Jiang, “Research on Parallelization of Fre-
quent Itemsets Mining Algorithm”, Proceedings of
the IEEE 6th International Conference on Cloud
Computing and Big Data Analysis, Chengdu, Chi-
na, 23-25 April 2021, pp. 210-215.

[24] B. Mudumba, M. F. Kabir, “Mine-First Association
Rule Mining: An Integration of Independent Fre-

quent Patterns in Distributed Environments”, De-
cision Analytics Journal, Vol. 7, 2024, p. 100434.

[25] D. Fan, J. Wang, S. Lv, “Optimization of Frequent
Item Set Mining Parallelization Algorithm Based
on Spark Platform”, Discover Computing, Vol. 27,
No. 1, 2024, p. 38.

[26] Y. Rochd, I. Hafidi, “Frequent Itemset Mining in Big
Data with Efficient Distributed Single Scan Algo-
rithm Based on Spark”, International Journal of In-
telligent Engineering and Systems, Vol. 18, No. 2,
2025, p. 101908.

[27] Y. Djenouri, M. Comuzzi, D. Djenouri, “SS FIM: Sin-
gle Scan for Frequent Itemsets Mining in Transac-
tional Databases”, Advances in Knowledge Discov-
ery and Data Mining, Springer, 2017, pp. 644-654.

[28] T. Tassa, “Secure Mining of Association Rules in
Horizontally Distributed Databases”, IEEE Transac-
tions on Knowledge and Data Engineering, Vol.
26, No. 4, 2014, pp. 970-983.

[29] A. Vasoya, N. Koli, “Mining of Association Rules
on Large Database Using Distributed and Parallel
Computing”, Procedia Computer Science, Vol. 79,
2016, pp. 221-230.

[30] B. Goethals, M. J. Zaki, “Advances in Frequent Item-
set Mining Implementations”, ACM SIGKDD Explo-
rations Newsletter, Vol. 6, No. 1, 2004, pp. 109-117.

564 International Journal of Electrical and Computer Engineering Systems

