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Abstract – Skin cancer is one of the most prevalent types of cancer, often caused by prolonged exposure to ultraviolet (UV) 
radiation, such as sunlight. This cancer is mainly categorized into benign and malignant lesions, where the latter could cause severe 
complications and even death. Traditional diagnostic methods, such as visual inspection and dermoscopy, often lack accuracy, while 
biopsy, though highly accurate, is invasive, time-consuming, and costly. This study aims to develop an automated deep learning 
model that leverages an ensemble of “Convolutional Neural Networks” (CNNs) to perform four-class classification of common skin 
lesions: Basal Cell Carcinoma (BCC), Benign Keratosis Lesion (BKL), Melanocytic Nevus (NV), and Melanoma (MEL). Seven widely used 
CNNs in medical imaging, GoogLeNet, InceptionV3, Xception, ResNet18, ResNet50, ResNet101, and DenseNet201, were evaluated 
for their performance in this classification task. The ISIC2018 and ISIC2019 datasets were employed, and data augmentation 
techniques were applied to address dataset imbalances. The analysis identified InceptionV3, Xception, and DenseNet201 as the top-
performing networks. Therefore, they are utilized for the ensemble model. These networks were used as feature extractors, and their 
output features were combined and classified using a “Support Vector Machine” (SVM) algorithm. This approach demonstrates the 
potential of combining CNNs and SVM in an ensemble framework to enhance the accuracy and reliability of automated skin cancer 
classification. The proposed model achieved an accuracy of 94.46%, outperforming individual CNNs (93.27%) and existing ensemble 
methods such as Max Voting (94.12%) and hybrid models like DenseNet201 with Random Forest (91.28%).  
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1.	 	INTRODUCTION

Skin cancer is one of the most common cancers and 
was the fourth most diagnosed cancer in 2020 [1]. In the 
United States, 9,500 persons are diagnosed with skin can-
cer every day [2]. It is mainly caused by ultraviolet (UV) ra-
diation from sources such as sunlight or tanning devices, 
leading to DNA mutations and consequently to abnormal 
growth of skin cells [3]. This type of carcinoma common-
ly occurs in fair-skinned individuals due to their lack of 
melanin pigmentation, which protects the skin from UV 

light [3]. There are many types of this cancer according 
to malignancy and origin. Melanoma is considered the 
most dangerous lesion, and early detection of this type 
is critical because it is highly malignant and can cause se-
vere complications or even death. Statistics show that one 
person dies from every 7.8 melanoma cases [4]. Diagnosis 
typically begins with visual inspection of the lesion, but its 
accuracy is below 60%, even among experienced derma-
tologists [5]. Dermoscopy, a non-invasive procedure using 
a light source and magnifying lenses, was introduced to 
improve diagnostic accuracy by enhancing visualization 
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of tumor features achieving diagnostic accuracy between 
75% and 84% [6]. Accurate diagnosis often requires a bi-
opsy, an invasive procedure in which a skin sample is ex-
tracted and examined microscopically [7]. A biopsy is an 
expensive and time-consuming procedure, making early 
diagnosis of this serious disease difficult and sometimes 
inaccessible in rural or underserved areas [7].

Computer-Aided Diagnosis (CAD) systems were devel-
oped to assist dermatologists in accurately diagnosing 
skin lesions [8]. Early systems employed machine learning 
(ML) algorithms such as logistic regression, KNN, decision 
trees, random forest, SVM, and ANN, relying on manually 
inserted ABCDE features. This manual feature extraction 
was tedious and limited, especially since certain mela-
noma types, such as nodular melanoma, do not conform 
to the ABCDE criteria [9]. Later, convolutional neural net-
works (CNNs) were introduced as automated feature ex-
tractors, using convolutional filters trained via backpropa-
gation to identify patterns[10]. The increased availability 
of GPUs in personal computers enabled researchers to 
efficiently train CNNs on dermoscopic images [11].

Bazgir et al. [12] conducted a binary classification to 
differentiate between benign and malignant skin lesions 
using a modified version of the InceptionV3 network. The 
modification involved adding an extra dense layers at the 
end of the original architecture. They achieved a maxi-
mum classification accuracy of 85.94%, which is relatively 
low for a binary classification task. We believe this is be-
cause they trained their modified network from scratch, 
without utilizing the pre-trained weights of InceptionV3. 

Dahdouh et al. [13] conducted a seven-class skin can-
cer classification using the HAM10000 dataset. They in-
tegrated a convolutional neural network (CNN) with re-
inforcement learning (RL), where a Q-network replaced 
the CNN's dense layer. Preprocessing and segmenta-
tion steps were also applied. The model achieved a 
classification accuracy of approximately 80%. However, 
the proposed CNN architecture was not reported, and 
the specific contribution of the Q-network remains un-
clear, as the results section did not present the CNN's 
performance without RL integration. 

Dogan and Ozdemir [14] developed a hybrid model 
to distinguish benign lesions from melanoma by evalu-
ating multiple pre-trained CNNs, ResNet152V2, VGG16, 
Xception, InceptionV3, MobileNetV2, DenseNet201, In-
ceptionResNetV2, and EfficientNetB2, in combination 
with machine learning algorithms such as K-Nearest 
Neighbors (KNN) and Random Forest (RF). The best 
performance was achieved using DenseNet201 as a 
feature extractor combined with Random Forest as 
the classifier, yielding an accuracy of approximately 
91.28%. This result highlights the effectiveness of using 
a hybrid approach that integrates CNN-based feature 
extraction with traditional ML classifiers.

Natha et al. [15] conducted a seven-class skin cancer 
classification using three machine learning algorithms: 
Random Forest (RF), Multi-layer Perceptron Neural 

Network (MLPN), and Support Vector Machine (SVM), 
which were used as classifiers and combined using the 
Max Voting method. Color and texture features were 
extracted using basic image processing techniques, 
and a genetic algorithm was employed to optimize 
the feature vector by selecting the most relevant fea-
tures extracted from the ISIC2018 dataset. The study 
achieved a classification accuracy of approximately 
94.70%, demonstrating the effectiveness of an ensem-
ble approach that combines multiple algorithms. 

Researchers achieved relatively high diagnostic accu-
racy compared to traditional methods, but they remain 
far from achieving 100% accuracy. This challenge arises 
due to the high visual similarity between different skin 
lesions. For instance, melanocytic nevi look similar to 
melanoma, but the two lesion types differ in their ma-
lignancy. Another limitation is the lack of sufficient and 
balanced dermoscopic image datasets. This research 
aims to address these limitations by introducing the 
following contributions:

•	 Eliminating rare skin lesion types from the data-
set to increase the diagnostic performance on the 
common types, BCC, BKL, MEL, and NV.

•	 Introducing a new data balancing approach that 
combines external dermoscopic images from mul-
tiple datasets with targeted augmentation tech-
niques to address the class imbalance problem 
inherent in dermatological datasets.

•	 Utilizing a distinctive feature-level fusion method 
that directly concatenates high-dimensional deep 
features extracted from three diverse CNN architec-
tures without dimensionality reduction, preserving 
the complete feature information for classification. 

•	 Utilization of a computationally efficient SVM clas-
sifier that leverages the concatenated feature vec-
tor rather than traditional voting-based ensemble 
methods or prediction score fusion approaches.

The rest of the paper is organized as follows: Section 
2 describes the methodology, including the dataset, 
preprocessing techniques, CNN model, support vector 
machine model, and ensemble model. Section 3 pres-
ents the results, and Section 4 provides the conclusion, 
discussion, and directions for future work. 

2.	 METHODOLOGY

2.1.	 Dataset

The ISIC2018 dataset [16]  was used to train the CNN 
models. It contains seven lesion classes: vascular lesion 
(VASC), dermatofibroma (DF), “benign keratosis lesion” 
(BKL), “actinic Keratoses and intraepithelial carcinoma” 
(AKIEK), “Melanocytic Nevus” (NV), melanoma (MEL), 
and “basal cell carcinoma” (BCC). The ISIC2018 dataset 
is divided into training, validation, and test sets con-
taining 10,015; 193; and 1,512 dermoscopic images, 
respectively. This dataset suffers from class imbalance, 
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with the NV class comprising 67% of the total images, 
while the DF class accounts for only 1%. 

This imbalance is addressed in this work through two 
main contributions. The first approach involves two steps: 
first, excluding rare lesion types from the classification 
task due to their uncommon occurrence. This results in 
focusing on four common classes: BCC, BKL, NV, and MEL. 

Secondly, additional images are imported from the 
ISIC2019 dataset. Since the ISIC2019 dataset includes all 
images from ISIC2018, the import process ensures that 
no duplicate images are included in the combined data-
set. The distribution of the resulting dataset, referred to 
as “ISIC2018+” for simplicity, is illustrated in Fig. 1.

Fig. 1. The percentage of classes in the ISIC2018+ 
dataset

The second contribution involves data augmentation 
to increase the number of images for underrepresented 
classes. The augmentations include image scaling in the 
range of 1 to 1.2, image flipping along the x-axis and 
y-axis, and image rotation from -90° to 90°. All these 
augmentations are applied with random parameters to 
balance the dataset equally across the four classes. As a 
result, the augmented dataset achieves an equal distri-
bution, with each class representing 25% of the data.

As a result, the ISIC2018+ dataset contains 16,787 im-
ages, while the ISIC2018+(augmented) comprises 26,819 
images. Fig. 2 shows an example of augmented images 
generated by the augmentation process. The validation 
and test sets remained unchanged after excluding the un-
derrepresented categories, AKIEC, DF, and VASC, from the 
original dataset. This study adheres to using the official 
test set provided by the ISIC archive to ensure the validity 
and comparability of evaluation results. Randomly select-
ing a test subset from the resulting dataset is discouraged, 
as it does not meet strict evaluation standards.

Fig. 2. Example of image augmentation process

2.2.	 Peprocessing Techniques

The preprocessing procedure in this work includes im-
age resizing and normalization. Image resizing is essen-
tial to adapt dermoscopic images to the required input 
dimensions of the CNN model. For example, GoogLeNet 
requires input images of size 224×224 pixels. Normal-
ization converts pixel intensity values from the [0,255] 
range to the [0,1] range. This process helps prevent issues 
such as exploding gradients and ensures that all features 
contribute equally to gradient updates. By scaling pixel 
intensities, brighter pixels do not overpower dimmer 
ones, which stabilizes and accelerates the training pro-
cess. Normalization is performed using Eq. (1) [10].

(1)

Here, x represents the pixel intensity of the input image.

2.3.	 CNN Model

This research utilizes CNN as an automated feature ex-
tractor. CNN captures image patterns at various layers, 
extracting features ranging from low-level details to high-
level abstractions. Filters (kernels) with initially random 
weights are updated during training to minimize the error 
between true labels and predicted probabilities [10]. For 
classification tasks, the “Cross-Entropy Loss Function” is 
preferred over “Mean Squared Error” (MSE) because it pe-
nalizes confident incorrect predictions more heavily, en-
abling faster convergence during training. “Cross-Entropy 
Loss Function” is computed in Eq. (2) [10].

(2)

Here, N is the total number of samples. C is the num-
ber of classes. yi, c is the true label for the ith sample and 
cth class. yî, c is the predicted probabilty for (i, c) indices.

The convolution process is mathematically expressed 
in Eq. (3) [10].

(3)

Here, x[i, j, d] represents the pixel value at indices (i, j) in 
the dth channel of the input feature map. Similarly, y[i, j, c] 
represents the pixel value at indices (i, j) in the cth chan-
nel of the output feature map.

The weight tensor, w[m, n, d, c], corresponds to the filter 
indexed by (m, n), which defines the kernel dimen-
sions, and (d, c), which specifies the input and output 
channels of the feature maps. K is the kernel size, D is 
number of input channels, b[c] is the bias term which is 
added to each output channel.

The spatial size of the output feature map of every 
convolution process is governed by Eq. (4) [10].

(4)

Here, Z is the spatial size of the output feature map. 
I is the spatial size of the input matrix. K is the kernel 
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size. P is the padding applied around the input matrix. 
S is the stride value.

In this research, seven commonly used CNNs are 
employed for transfer learning to perform skin can-
cer classification: GoogLeNet, InceptionV3, Xception, 
ResNet18, ResNet50, ResNet101, and DenseNet201. 
Their selection is justified by their architectural diver-
sity, varying depths, and proven success in medical 
imaging applications [17, 18]. These models represent 
distinct design philosophies in deep learning, each of-
fering unique strengths. The CNN models are custom-
ized to perform a four-class classification task. This cus-
tomization involves replacing the dense layer with one 
having four outputs, and the classification layer with 
one that outputs four class probabilities. The properties 
of those seven models are detailed in Table 1.

Table 1. Properties of CNN models

Network 
name Depth Input size Parameter 

memory

No. of 
parameters 

(millions)

GoogLeNet 22 224×224 27 MB 7.0

InceptionV3 48 299×299 91 MB 23.9

Xception 71 299×299 88 MB 22.9

DenseNet201 201 224×224 77 MB 20.0

ResNet18 18 224×224 45 MB 11.7

ResNet50 50 224×224 98 MB 25.6

ResNet101 101 224×224 171 MB 44.6

2.4.	 Support Vector Machine Model

Support Vector Machine (SVM) is a widely used ma-
chine learning algorithm primarily designed for binary 
classification tasks. It can also be extended to multi-class 
classification by employing a one-vs-all approach. The 
core concept involves using a hyperplane to separate 
data points into two classes within a high-dimensional 
space. The hyperplane is represented by Eq. (5) [19].

(5)

Here, W is the weight vector normal to the hyper-
plain. Xi is the feature vector for the ith point. b is the 
bias term.

The weight vector is optimized to maximize the mar-
gin, defined as the perpendicular distance between the 
hyperplane and the nearest data points. This margin is 
symmetric on both sides of the hyperplane and is given 
by (2/‖W‖), as illustrated in a 2-dimensional perspec-
tive in Fig. 3.

To maximize the margin, the denominator term (‖W‖) 
of the margin should be minimized. For mathematical 
convenience, the term ((1/2)‖W‖2) is used instead for 
two key reasons. First, the squared term simplifies opti-
mization by enabling the use of “Convex Optimization 
Techniques,” Second, the constant factor (1/2) makes 
the calculation of derivatives with respect to (W) more 
efficient. To train the model, each data point should be 

considered with its true label (yi), where yi∈{1,-1} repre-
sents the class labels for binary classification. For a cor-
rectly classified point, the following constraint must be 
satisfied as expressed in Eq. (6) [19].

Fig. 3. Two-dimensional perspective of the 
hyperplane of SVM

(6)

The “Lagrange Multipliers” method is utilized to op-
timize the model and update weights, where the loss 
function L is introduced by Eq. (7) [19].

(7)

Where the first term ((1/2)‖W‖2) measures the value 
responsible for maximizing the margin, while the sec-
ond term adds a penalty for violating the constraint in 
Eq. (6). This penalty is scaled by the Lagrange multipli-
ers (αi). This method focuses on points near the hyper-
plane, known as support vectors while excluding other 
points. This property makes it computationally efficient 
during the optimization process. As a result, a new data 
point (X) is classified based on the sign of the hyper-
plane equation as expressed in Eq. (8) [19].

(8)

2.5.	 Ensemble Model

In this work, an ensembled model has been pro-
posed which includes three main steps. First, seven 
CNN architectures are trained on the ISIC2018+ dataset 
to identify the top-performing models. Second, the 
best-performing models from the previous step are 
trained on the ISIC2018+(augmented) dataset individu-
ally. Finally, The output features from the top-perform-
ing models in the first two steps are concatenated into 
a single matrix with full dimensionality, which serves 
as the input to an SVM model for generating the final 
predictions. In essence, the proposed ensemble model 
leverages CNNs as feature extractors and utilizes an 
SVM for classification. The CNN features are extracted 
from the inputs to the dense layers of each network. 
The complete methodology for this work is illustrated 
in Fig. 4, where the chosen models are justified in the 
results section.



701Volume 16, Number 9, 2025

Fig. 4. The proposed ensemble model architecture

2.6.	 Training Process

The training is conducted in a MATLAB environment 
using the Deep Learning Toolbox (version 14.3) to cus-
tomize and train the CNN architectures. Additionally, 
the Statistics and Machine Learning Toolbox (version 
12.2) is employed to implement the SVM classifier. All 
experiments are performed on a “Dell Precision 7740” 
laptop equipped with an “NVIDIA Quadro RTX 5000” 
featuring 16 GB of GDDR6 VRAM. The CNN training pro-
cess utilizes a scheduled learning rate, which starts at 
0.01 and decays by a factor of 1/10 every 10 epochs, 
over a total of 30 epochs. Training is carried out using 
the “Stochastic Gradient Descent with momentum” 
(SGDM) optimizer, configured with a momentum value 
of 0.9. All hyperparameters are detailed in Table 2.

Table 2. Training hyperparameters

Hyperparameter Value
Learning rate (0.01), (0.001), (0.0001)

epochs 30

Optimizer SGDM

Batch size 64

Momentum 0.9

L2 Regularization 0.0001

The same augmentation techniques used in the 
ISIC2018+(augmented) dataset are employed during the 
training of the CNN models to mitigate overfitting and 
enhance the model's generalization. However, the aug-
mentation process is explained in details in Section 2.1.

2.7.	 Evaluation Metrics

In this task, evaluation metrics are essential to rate the 
performance of the deep learning model. The test set is 
imported from the ISIC archive, which has 1512 dermo-
scopic images for seven classes. After the elimination of 
the minor classes, a test set is achieved with four classes, 
BCC, NV, BKL, and MEL, forming 1390 images in total. In 
this section, accuracy, recall, precision, F1-score, ROC 
(“Receiver Operating Characteristic”) curve, AUC (“Area 
Under Curve”), and the confusion matrix are explained.

Accuracy is the main evaluation metric used in a 
deep learning context. It is simply the ratio of the cor-

rect predictions to the total number of predictions. It’s 
expressed further in Eq. (9) as muti-class accuracy.

(9)

Here, TP is true positive predictions. TN is true nega-
tive predictions. FN is false negative predictions. FP is 
false positive predictions.

Since multi-class accuracy could be misleading for 
imbalanced datasets, another accuracy metric is con-
sidered in this research, the mean accuracy, which is 
expressed in Eq. (10).

(10)

Precision is another metric that expresses the ratio of 
the positive predictions over all positive predictions. as 
expressed in Eq. (11).

(11)

Recall gives the indication of how the actual positive 
predictions are correctly identified as expressed in Eq. 
(12).

(12)

F1-Score balances precision and recall by taking the 
harmonic mean as expressed in Eq. (13).

(13)

A confusion matrix summarizes true positives, true 
negatives, false positives, and false negatives to evalu-
ate classification performance. The ROC curve shows 
the trade-off between the true positive and false nega-
tive rates across thresholds, while the AUC represents 
the area under the ROC curve.

3.	 RESULTS

3.1. Performance Evaluation

This section outlines the evaluation process of this 
work, which is divided into three steps. The first step 
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evaluates the performance of seven CNN models with 
softmax classifier trained on the ISIC2018+ to identify 
the best-performing networks. In the second step, only 
the top-performing models from the previous step are 
trained individually on the ISIC2018+(augmented) da-
taset. This approach avoids the need to train all seven 
models on the larger dataset, saving time and effort. 
The third step involves selecting the best models from 
the previous steps to be used as feature extractors for 

the ensemble model. Table 3 summarizes the evalua-
tion results. InceptionV3, Xception, and DenseNet201 
achieved the highest accuracy. 

Their superior performance is attributed to architec-
tural strengths: InceptionV3 and Xception combine 
depth and width to capture multi-scale lesion features, 
while DenseNet201’s dense connections promote fea-
ture reuse and reduce redundancy.

Table 3. The evaluation metrics for the experienced CNN models.

Dataset CNN model Precision Recall F1-Score AUC Mean Accuracy Multi-Class Accuracy

ISIC2018+

ResNet18 77.47% 75.71% 76.50% 95.17% 92.09% 84.17%

ResNet50 75.25% 74.42% 74.73% 93.94% 91.55% 83.10%

ResNet101 75.54% 75.47% 75.33% 94.48% 91.40% 82.80%

GoogLeNet 77.42% 74.52% 75.79% 94.48% 92.13% 84.25%

InceptionV3 77.97% 81.01% 79.20% 95.65% 92.56% 85.10%

Xception 80.00% 83.31% 80.95% 96.27% 92.82% 85.54%

DenseNet201 80.45% 78.75% 79.19% 95.59% 92.95% 85.90%

ISIC2018+ 
(augmented)

InceptionV3 80.78% 80.80% 80.50% 95.75% 93.27% 86.55%

Xception 77.94% 80.95% 78.98% 96.11% 92.30% 84.60%

DenseNet201 78.74% 77.94% 78.16% 95.75% 92.77% 85.54%

The ISIC2018+(augmented) dataset proved to be ben-
eficial in improving the performance of InceptionV3 
but did not yield similar enhancements for the other 
two networks. Subsequently, the three best-performing 
models from the first dataset, along with the top-per-

forming model from the second dataset, were selected 
as feature extractors for the ensemble model. Due to 
space constraints, results charts are provided only for 
the two best-performing models from the first dataset. 
Training accuracy and loss curves are shown in Fig. 5.

(a) (b)

Fig. 5. The accuracy and loss curves for (a) Xception. (b) DenseNet201.

Fig. 6. The confusion matrix for Xception Fig. 7. The confusion matrices for DenseNet201
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Fig. 8 shows the ROC curves for the designated models.

SVM classifier is applied to the best three CNNs indi-
vidually to study its impact to boost the Performance. 
And lastly, the esemble model is restructed from the 
best models as previously illustrated in Fig. 4 to en-
hance the model further. Table 4 shows the evaluation 
metrics for the best-performing CNNs combined with 
SVM individually, along with the ensemble model that 
resulted from the combination of the four selected 
models. The ensemble model demonstrated improved 
performance by combining the strengths of the se-
lected individual models into a single framework. Fig. 9 
illustrates the confusion matrix of the ensemble model.

(a) (b)

Fig. 8. The ROC curves for (a) Xception. (b) DenseNet201

Table 4. The evaluation metrics for the best-
performing CNNs combined with SVM classifier in 

comparison with the ensemble model

Model / 
[Dataset] Precision Recall F1-

Score
Mean 

Accuracy
Muti-Class 
Accuracy

InceptionV3 
/ [ISIC2018+ 

(augmented)]
81.72% 79.56% 80.33% 91.45% 86.50%

Xception / 
[ISIC2018+] 82.77% 82.12% 82.31% 93.89% 87.77%

DenseNet201 
/ [ISIC2018+] 79.79% 78.72% 78.91% 88.38% 85.76%

Ensemble 84.25% 83.01% 83.45% 94.46% 88.90%

Fig. 9. The confusion matrix of the ensemble model

3.2. Comparison With Other Works

The methodology employed in this research contrib-
uted to improving the classification of common skin 
cancer types compared to other researchers' models. 
Table 5 presents a comparison of the results with pre-
vious works. However, this comparison is not strictly 
one-to-one, as some of the previous studies did not 
utilize the test set provided by the ISIC archive. Addi-
tionally, while some researchers performed multi-class 
classification on two, seven or eight classes, while this 
research focuses on only four classes.

Table 5. Results comparison with other researchers

Reference Dataset Model Accuracy

Alwakid  
et al. [20] HAM10000 ResNet50 86%

Jain  
et al. [21] HAM10000

Multiple CNNs, with 
Xception as the top-
performing model

90.48%

Alam 
 et al. [22] HAM10000 S2C-DeLeNet 91.03%

Dogan and 
Ozdemir 

[14]
ISIC archive

Hybrid model of 
DenseNet201 with 

Random Forest.
91.28%

Natha  
et al. [15] ISIC2018

Max Voting ensemble 
method includes 
Random Forest, 

(MLPN), and SVM

94.12%

Proposed 
method

ISIC2018 and 
ISIC2019

Proposed ensemble 
model 94.46%

4.	 CONCLUSION

The ensemble model demonstrated performance 
enhancements over the best individual CNNs by lever-
aging the strengths of multiple architectures. Applying 
image augmentation techniques to balance the data-
set proved beneficial for the InceptionV3 model, but 
no significant improvement was observed in the other 
two CNNs, Xception and DenseNet201. 
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Despite the high performance of this framework in the 
skin cancer classification task, its computational complex-
ity is a notable limitation. The proposed model was trained 
exclusively on dermoscopic images captured under con-
trolled conditions, with high clarity and specific lighting 
provided by dermoscopic equipment. This limitation 
may affect its performance when applied to real-world 
data captured under varying conditions. Furthermore, 
the dataset lacks diversity in terms of skin tones and age 
groups, potentially introducing biases in predictions and 
reducing the generalizability of the model. Additionally, 
the exclusion of the AKIEC, DF, and VASC classes further 
reduces the model's applicability across the full spectrum 
of skin lesion types. Nevertheless, the proposed ensemble 
model holds promise for integration into clinical decision 
support systems. It can be deployed in modest comput-
ing environments within dermatology clinics to assist 
practitioners or be incorporated into teledermatology 
platforms, extending diagnostic support to patients in re-
mote or underserved areas. In the future, expanding the 
dataset with a greater number of image samples catego-
rized by ethnicity and skin tone could enable the develop-
ment of a two-level model. The first level would classify 
images by ethnicity, and the second would perform skin 
lesion classification within each group. This approach has 
the potential to mitigate skin color biases and improve 
classification accuracy.
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