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Abstract - Skin cancer is one of the most prevalent types of cancer, often caused by prolonged exposure to ultraviolet (UV)
radiation, such as sunlight. This cancer is mainly categorized into benign and malignant lesions, where the latter could cause severe
complications and even death. Traditional diagnostic methods, such as visual inspection and dermoscopy, often lack accuracy, while
biopsy, though highly accurate, is invasive, time-consuming, and costly. This study aims to develop an automated deep learning
model that leverages an ensemble of “Convolutional Neural Networks” (CNNs) to perform four-class classification of common skin
lesions: Basal Cell Carcinoma (BCC), Benign Keratosis Lesion (BKL), Melanocytic Nevus (NV), and Melanoma (MEL). Seven widely used
CNNs in medical imaging, GoogleNet, InceptionV3, Xception, ResNet18, ResNet50, ResNet101, and DenseNet201, were evaluated
for their performance in this classification task. The ISIC2018 and ISIC2019 datasets were employed, and data augmentation
techniques were applied to address dataset imbalances. The analysis identified InceptionV3, Xception, and DenseNet201 as the top-
performing networks. Therefore, they are utilized for the ensemble model. These networks were used as feature extractors, and their
output features were combined and classified using a “Support Vector Machine” (SVM) algorithm. This approach demonstrates the
potential of combining CNNs and SVM in an ensemble framework to enhance the accuracy and reliability of automated skin cancer
classification. The proposed model achieved an accuracy of 94.46%, outperforming individual CNNs (93.27%) and existing ensemble
methods such as Max Voting (94.12%) and hybrid models like DenseNet201 with Random Forest (91.28%).
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1. INTRODUCTION light [3]. There are many types of this cancer according
to malignancy and origin. Melanoma is considered the
most dangerous lesion, and early detection of this type

is critical because it is highly malignant and can cause se-

Skin cancer is one of the most common cancers and
was the fourth most diagnosed cancer in 2020 [1]. In the

United States, 9,500 persons are diagnosed with skin can-
cer every day [2]. It is mainly caused by ultraviolet (UV) ra-
diation from sources such as sunlight or tanning devices,
leading to DNA mutations and consequently to abnormal
growth of skin cells [3]. This type of carcinoma common-
ly occurs in fair-skinned individuals due to their lack of
melanin pigmentation, which protects the skin from UV

Volume 16, Number 9, 2025

vere complications or even death. Statistics show that one
person dies from every 7.8 melanoma cases [4]. Diagnosis
typically begins with visual inspection of the lesion, but its
accuracy is below 60%, even among experienced derma-
tologists [5]. Dermoscopy, a non-invasive procedure using
a light source and magnifying lenses, was introduced to
improve diagnostic accuracy by enhancing visualization
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of tumor features achieving diagnostic accuracy between
75% and 84% [6]. Accurate diagnosis often requires a bi-
opsy, an invasive procedure in which a skin sample is ex-
tracted and examined microscopically [7]. A biopsy is an
expensive and time-consuming procedure, making early
diagnosis of this serious disease difficult and sometimes
inaccessible in rural or underserved areas [7].

Computer-Aided Diagnosis (CAD) systems were devel-
oped to assist dermatologists in accurately diagnosing
skin lesions [8]. Early systems employed machine learning
(ML) algorithms such as logjistic regression, KNN, decision
trees, random forest, SVM, and ANN, relying on manually
inserted ABCDE features. This manual feature extraction
was tedious and limited, especially since certain mela-
noma types, such as nodular melanoma, do not conform
to the ABCDE criteria [9]. Later, convolutional neural net-
works (CNNs) were introduced as automated feature ex-
tractors, using convolutional filters trained via backpropa-
gation to identify patterns[10]. The increased availability
of GPUs in personal computers enabled researchers to
efficiently train CNNs on dermoscopic images [11].

Bazgir et al. [12] conducted a binary classification to
differentiate between benign and malignant skin lesions
using a modified version of the InceptionV3 network. The
modification involved adding an extra dense layers at the
end of the original architecture. They achieved a maxi-
mum classification accuracy of 85.94%, which is relatively
low for a binary classification task. We believe this is be-
cause they trained their modified network from scratch,
without utilizing the pre-trained weights of InceptionV3.

Dahdouh et al. [13] conducted a seven-class skin can-
cer classification using the HAM10000 dataset. They in-
tegrated a convolutional neural network (CNN) with re-
inforcement learning (RL), where a Q-network replaced
the CNN's dense layer. Preprocessing and segmenta-
tion steps were also applied. The model achieved a
classification accuracy of approximately 80%. However,
the proposed CNN architecture was not reported, and
the specific contribution of the Q-network remains un-
clear, as the results section did not present the CNN's
performance without RL integration.

Dogan and Ozdemir [14] developed a hybrid model
to distinguish benign lesions from melanoma by evalu-
ating multiple pre-trained CNNs, ResNet152V2, VGG16,
Xception, InceptionV3, MobileNetV2, DenseNet201, In-
ceptionResNetV2, and EfficientNetB2, in combination
with machine learning algorithms such as K-Nearest
Neighbors (KNN) and Random Forest (RF). The best
performance was achieved using DenseNet201 as a
feature extractor combined with Random Forest as
the classifier, yielding an accuracy of approximately
91.28%. This result highlights the effectiveness of using
a hybrid approach that integrates CNN-based feature
extraction with traditional ML classifiers.

Natha et al. [15] conducted a seven-class skin cancer
classification using three machine learning algorithms:
Random Forest (RF), Multi-layer Perceptron Neural
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Network (MLPN), and Support Vector Machine (SVM),
which were used as classifiers and combined using the
Max Voting method. Color and texture features were
extracted using basic image processing techniques,
and a genetic algorithm was employed to optimize
the feature vector by selecting the most relevant fea-
tures extracted from the ISIC2018 dataset. The study
achieved a classification accuracy of approximately
94.70%, demonstrating the effectiveness of an ensem-
ble approach that combines multiple algorithms.

Researchers achieved relatively high diagnostic accu-
racy compared to traditional methods, but they remain
far from achieving 100% accuracy. This challenge arises
due to the high visual similarity between different skin
lesions. For instance, melanocytic nevi look similar to
melanoma, but the two lesion types differ in their ma-
lignancy. Another limitation is the lack of sufficient and
balanced dermoscopic image datasets. This research
aims to address these limitations by introducing the
following contributions:

Eliminating rare skin lesion types from the data-
set to increase the diagnostic performance on the
common types, BCC, BKL, MEL, and NV.

Introducing a new data balancing approach that
combines external dermoscopic images from mul-
tiple datasets with targeted augmentation tech-
niques to address the class imbalance problem
inherent in dermatological datasets.

Utilizing a distinctive feature-level fusion method
that directly concatenates high-dimensional deep
features extracted from three diverse CNN architec-
tures without dimensionality reduction, preserving
the complete feature information for classification.

«  Utilization of a computationally efficient SVM clas-
sifier that leverages the concatenated feature vec-
tor rather than traditional voting-based ensemble
methods or prediction score fusion approaches.

The rest of the paper is organized as follows: Section
2 describes the methodology, including the dataset,
preprocessing techniques, CNN model, support vector
machine model, and ensemble model. Section 3 pres-
ents the results, and Section 4 provides the conclusion,
discussion, and directions for future work.

2. METHODOLOGY

2.1. DATASET

The ISIC2018 dataset [16] was used to train the CNN
models. It contains seven lesion classes: vascular lesion
(VASC), dermatofibroma (DF), “benign keratosis lesion”
(BKL), “actinic Keratoses and intraepithelial carcinoma”
(AKIEK), “Melanocytic Nevus” (NV), melanoma (MEL),
and “basal cell carcinoma” (BCC). The ISIC2018 dataset
is divided into training, validation, and test sets con-
taining 10,015; 193; and 1,512 dermoscopic images,
respectively. This dataset suffers from class imbalance,
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with the NV class comprising 67% of the total images,
while the DF class accounts for only 1%.

This imbalance is addressed in this work through two
main contributions. The first approach involves two steps:
first, excluding rare lesion types from the classification
task due to their uncommon occurrence. This results in
focusing on four common classes: BCC, BKL, NV, and MEL.

Secondly, additional images are imported from the
ISIC2019 dataset. Since the I1SIC2019 dataset includes all
images from 1SIC2018, the import process ensures that
no duplicate images are included in the combined data-
set. The distribution of the resulting dataset, referred to
as“ISIC2018*" for simplicity, is illustrated in Fig. 1.

= BCC
= BKL
= MEL
aNV

o

Fig. 1. The percentage of classes in the ISIC2018*
dataset

The second contribution involves data augmentation
to increase the number of images for underrepresented
classes. The augmentations include image scaling in the
range of 1 to 1.2, image flipping along the x-axis and
y-axis, and image rotation from -90° to 90°. All these
augmentations are applied with random parameters to
balance the dataset equally across the four classes. As a
result, the augmented dataset achieves an equal distri-
bution, with each class representing 25% of the data.

As a result, the ISIC2018* dataset contains 16,787 im-
ages, while the 1SIC2018*(augmented) comprises 26,819
images. Fig. 2 shows an example of augmented images
generated by the augmentation process. The validation
and test sets remained unchanged after excluding the un-
derrepresented categories, AKIEC, DF, and VASC, from the
original dataset. This study adheres to using the official
test set provided by the ISIC archive to ensure the validity
and comparability of evaluation results. Randomly select-
ing a test subset from the resulting dataset is discouraged,
as it does not meet strict evaluation standards.

Augmented_1

Original Augmented_2

"

-
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Fig. 2. Example of image augmentation process
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2.2, PEPROCESSING TECHNIQUES

The preprocessing procedure in this work includes im-
age resizing and normalization. Image resizing is essen-
tial to adapt dermoscopic images to the required input
dimensions of the CNN model. For example, GooglLeNet
requires input images of size 224x224 pixels. Normal-
ization converts pixel intensity values from the [0,255]
range to the [0,1] range. This process helps prevent issues
such as exploding gradients and ensures that all features
contribute equally to gradient updates. By scaling pixel
intensities, brighter pixels do not overpower dimmer
ones, which stabilizes and accelerates the training pro-
cess. Normalization is performed using Eq. (1) [10].

X
Xnormalized = 255 (1)

Here, x represents the pixel intensity of the inputimage.

2.3. CNN MODEL

This research utilizes CNN as an automated feature ex-
tractor. CNN captures image patterns at various layers,
extracting features ranging from low-level details to high-
level abstractions. Filters (kernels) with initially random
weights are updated during training to minimize the error
between true labels and predicted probabilities [10]. For
classification tasks, the “Cross-Entropy Loss Function” is
preferred over “Mean Squared Error” (MSE) because it pe-
nalizes confident incorrect predictions more heavily, en-
abling faster convergence during training. “Cross-Entropy
Loss Function”is computed in Eq. (2) [10].

L= —%Zﬁvzl i Yic(logdic) (2)

Here, N is the total number of samples. C is the num-
ber of classes. y, is the true label for the i sample and
cth class.ﬁi .is the predicted probabilty for (i, c) indices.

The convolution process is mathematically expressed
in Eq. (3) [10].

Viije] = b3S Y B
X[i+m-1,j+n-1d] " Wimna.c] T D[c]

3)

Here, X represents the pixel value at indices (i, j) in
the d channel of the input feature map. Similarly,y[” g
represents the pixel value at indices (i, j) in the ¢ chan-

nel of the output feature map.

The weight tensor, Wi o corresponds to the filter
indexed by (m, n), which defines the kernel dimen-
sions, and (d, c), which specifies the input and output
channels of the feature maps. K is the kernel size, D is
number of input channels, bm is the bias term which is
added to each output channel.

The spatial size of the output feature map of every
convolution process is governed by Eq. (4) [10].

__I-K+2P
T s

A

+1 4)

Here, Z is the spatial size of the output feature map.
I is the spatial size of the input matrix. K is the kernel
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size. P is the padding applied around the input matrix.
S is the stride value.

In this research, seven commonly used CNNs are
employed for transfer learning to perform skin can-
cer classification: GooglLeNet, InceptionV3, Xception,
ResNet18, ResNet50, ResNet101, and DenseNet201.
Their selection is justified by their architectural diver-
sity, varying depths, and proven success in medical
imaging applications [17, 18]. These models represent
distinct design philosophies in deep learning, each of-
fering unique strengths. The CNN models are custom-
ized to perform a four-class classification task. This cus-
tomization involves replacing the dense layer with one
having four outputs, and the classification layer with
one that outputs four class probabilities. The properties
of those seven models are detailed in Table 1.

Table 1. Properties of CNN models

Rt Depth Input size Parameter pa:::.\:tfers
name memory (millions)

GoogleNet 22 224x224 27 MB 7.0
InceptionV3 48 299%299 91 MB 239
Xception 71 299%299 88 MB 229
DenseNet201 201 224%x224 77 MB 20.0
ResNet18 18 224x224 45 MB 1.7
ResNet50 50 224x224 98 MB 25.6
ResNet101 101 224x224 171 MB 44.6

2.4, SUPPORT VECTOR MACHINE MODEL

Support Vector Machine (SVM) is a widely used ma-
chine learning algorithm primarily designed for binary
classification tasks. It can also be extended to multi-class
classification by employing a one-vs-all approach. The
core concept involves using a hyperplane to separate
data points into two classes within a high-dimensional
space. The hyperplane is represented by Eq. (5) [19].

WT-X;+b=0 (5)

Here, W is the weight vector normal to the hyper-
plain. X is the feature vector for the i point. b is the
bias term.

The weight vector is optimized to maximize the mar-
gin, defined as the perpendicular distance between the
hyperplane and the nearest data points. This margin is
symmetric on both sides of the hyperplane and is given
by (2/||W]|]), as illustrated in a 2-dimensional perspec-
tive in Fig. 3.

To maximize the margin, the denominator term (|| W]|)
of the margin should be minimized. For mathematical
convenience, the term ((1/2)||W]]?) is used instead for
two key reasons. First, the squared term simplifies opti-
mization by enabling the use of “Convex Optimization
Techniques,” Second, the constant factor (1/2) makes
the calculation of derivatives with respect to (W) more
efficient. To train the model, each data point should be
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considered with its true label v Whereyl.e{1 ~1} repre-
sents the class labels for binary classification. For a cor-
rectly classified point, the following constraint must be
satisfied as expressed in Eq. (6) [19].

X [2]

Xlll
Fig. 3. Two-dimensional perspective of the
hyperplane of SVM
yiWT-X;+b) 21 (6)

The “Lagrange Multipliers” method is utilized to op-
timize the model and update weights, where the loss
function L is introduced by Eq. (7) [19].

Lwpa) = é”W”Z Y iy (WX, +b) = 1) (7)

Where the first term ((1/2)||W]|?) measures the value
responsible for maximizing the margin, while the sec-
ond term adds a penalty for violating the constraint in
Eq. (6). This penalty is scaled by the Lagrange multipli-
ers (a). This method focuses on points near the hyper-
plane, known as support vectors while excluding other
points. This property makes it computationally efficient
during the optimization process. As a result, a new data
point (X) is classified based on the sign of the hyper-

plane equation as expressed in Eq. (8) [19].
y(X) = sign(WT - X + b) (8)
2.5. ENSEMBLE MODEL

In this work, an ensembled model has been pro-
posed which includes three main steps. First, seven
CNN architectures are trained on the ISIC2018* dataset
to identify the top-performing models. Second, the
best-performing models from the previous step are
trained on the ISIC2018*(augmented) dataset individu-
ally. Finally, The output features from the top-perform-
ing models in the first two steps are concatenated into
a single matrix with full dimensionality, which serves
as the input to an SVM model for generating the final
predictions. In essence, the proposed ensemble model
leverages CNNs as feature extractors and utilizes an
SVM for classification. The CNN features are extracted
from the inputs to the dense layers of each network.
The complete methodology for this work is illustrated
in Fig. 4, where the chosen models are justified in the
results section.
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Fig. 4. The proposed ensemble model architecture

2.6. TRAINING PROCESS

The training is conducted in a MATLAB environment
using the Deep Learning Toolbox (version 14.3) to cus-
tomize and train the CNN architectures. Additionally,
the Statistics and Machine Learning Toolbox (version
12.2) is employed to implement the SVM classifier. All
experiments are performed on a “Dell Precision 7740”
laptop equipped with an “NVIDIA Quadro RTX 5000”
featuring 16 GB of GDDR6 VRAM. The CNN training pro-
cess utilizes a scheduled learning rate, which starts at
0.01 and decays by a factor of 1/10 every 10 epochs,
over a total of 30 epochs. Training is carried out using
the “Stochastic Gradient Descent with momentum”
(SGDM) optimizer, configured with a momentum value
of 0.9. All hyperparameters are detailed in Table 2.

Table 2. Training hyperparameters

Hyperparameter Value
Learning rate (0.01), (0.001), (0.0001)
epochs 30
Optimizer SGDM
Batch size 64
Momentum 0.9
L2 Regularization 0.0001

The same augmentation techniques used in the
ISIC2018*(augmented) dataset are employed during the
training of the CNN models to mitigate overfitting and
enhance the model's generalization. However, the aug-
mentation process is explained in details in Section 2.1.

2.7. EVALUATION METRICS

In this task, evaluation metrics are essential to rate the
performance of the deep learning model. The test set is
imported from the ISIC archive, which has 1512 dermo-
scopic images for seven classes. After the elimination of
the minor classes, a test set is achieved with four classes,
BCC, NV, BKL, and MEL, forming 1390 images in total. In
this section, accuracy, recall, precision, F1-score, ROC
(“Receiver Operating Characteristic”) curve, AUC (“Area
Under Curve”), and the confusion matrix are explained.

Accuracy is the main evaluation metric used in a
deep learning context. It is simply the ratio of the cor-
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rect predictions to the total number of predictions. It's
expressed further in Eq. (9) as muti-class accuracy.

TP+TN

Multi Class Accuracy = P 9)

Here, TP is true positive predictions. TN is true nega-
tive predictions. FN is false negative predictions. FP is
false positive predictions.

Since multi-class accuracy could be misleading for
imbalanced datasets, another accuracy metric is con-
sidered in this research, the mean accuracy, which is
expressed in Eq. (10).

TPcluss(k)
Total number of prediction per class(k)

Accuracyciassry = (10
Precision is another metric that expresses the ratio of
the positive predictions over all positive predictions. as
expressed in Eq. (11).
TP
TP+FP

Precision =

(1)

Recall gives the indication of how the actual positive
predictions are correctly identified as expressed in Eq.
(12).

TP
TP+FN

Recall =

(12)

F1-Score balances precision and recall by taking the
harmonic mean as expressed in Eq. (13).

Precision-Recall

F1 Score = 2 X (13)

Precision+Recall

A confusion matrix summarizes true positives, true
negatives, false positives, and false negatives to evalu-
ate classification performance. The ROC curve shows
the trade-off between the true positive and false nega-
tive rates across thresholds, while the AUC represents
the area under the ROC curve.

3. RESULTS

3.1. PERFORMANCE EVALUATION

This section outlines the evaluation process of this
work, which is divided into three steps. The first step
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evaluates the performance of seven CNN models with
softmax classifier trained on the ISIC2018* to identify
the best-performing networks. In the second step, only
the top-performing models from the previous step are
trained individually on the ISIC2018*(augmented) da-
taset. This approach avoids the need to train all seven
models on the larger dataset, saving time and effort.
The third step involves selecting the best models from
the previous steps to be used as feature extractors for

the ensemble model. Table 3 summarizes the evalua-
tion results. InceptionV3, Xception, and DenseNet201
achieved the highest accuracy.

Their superior performance is attributed to architec-
tural strengths: InceptionV3 and Xception combine
depth and width to capture multi-scale lesion features,
while DenseNet201's dense connections promote fea-
ture reuse and reduce redundancy.

Table 3. The evaluation metrics for the experienced CNN models.

Dataset CNN model Precision Recall F1-Score AUC Mean Accuracy Multi-Class Accuracy
ResNet18 77.47% 75.71% 76.50% 95.17% 92.09% 84.17%
ResNet50 75.25% 74.42% 74.73% 93.94% 91.55% 83.10%
ResNet101 75.54% 75.47% 75.33% 94.48% 91.40% 82.80%
ISIC2018* GooglLeNet 77.42% 74.52% 75.79% 94.48% 92.13% 84.25%
InceptionV3 77.97% 81.01% 79.20% 95.65% 92.56% 85.10%
Xception 80.00% 83.31% 80.95% 96.27% 92.82% 85.54%
DenseNet201 80.45% 78.75% 79.19% 95.59% 92.95% 85.90%
InceptionV3 80.78% 80.80% 80.50% 95.75% 93.27% 86.55%
(aljécnfé):\tsg d) Xception 77.94% 80.95% 78.98% 96.11% 92.30% 84.60%
DenseNet201 78.74% 77.94% 78.16% 95.75% 92.77% 85.54%

The ISIC2018*(augmented) dataset proved to be ben-
eficial in improving the performance of InceptionV3
but did not yield similar enhancements for the other
two networks. Subsequently, the three best-performing
models from the first dataset, along with the top-per-

Training accuracy curve
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—Training Accuracy
— Validation Accuracy

Accuracy(%)

0 1000 2000 3000 4000 5000 6000 7000 8000
iteration
Loss curve

—Training Loss
1 —ValidationLoss| |

Loss

0 1000 2000 3000 4000 5000 6000 7000 8000
iteration

(a)

forming model from the second dataset, were selected
as feature extractors for the ensemble model. Due to
space constraints, results charts are provided only for
the two best-performing models from the first dataset.
Training accuracy and loss curves are shown in Fig. 5.

Training accuracy curve

80
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— Training Accuracy | |
— Validation Accuracy

Accuracy (%)

40

20 v
0 1000 2000 3000 4000 5000 6000 7000 8000
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Fig. 5. The accuracy and loss curves for (a) Xception. (b) DenseNet201.

Confusion Matrix

BCC 78 4 7 4
n
& BKL 5 173 25 14
o
S
= MEL 1 5 140 25
BCC BKL MEL NV

Predicted Class

Fig. 6. The confusion matrix for Xception
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Fig. 7. The confusion matrices for DenseNet201
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Fig. 8 shows the ROC curves for the designated models.
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ROC Curve with Thresholds
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Fig. 8. The ROC curves for (a) Xception. (b) DenseNet201

SVM classifier is applied to the best three CNNs indi-
vidually to study its impact to boost the Performance.
And lastly, the esemble model is restructed from the
best models as previously illustrated in Fig. 4 to en-
hance the model further. Table 4 shows the evaluation
metrics for the best-performing CNNs combined with
SVM individually, along with the ensemble model that
resulted from the combination of the four selected
models. The ensemble model demonstrated improved
performance by combining the strengths of the se-
lected individual models into a single framework. Fig. 9
illustrates the confusion matrix of the ensemble model.

Table 4. The evaluation metrics for the best-
performing CNNs combined with SVM classifier in
comparison with the ensemble model

Model / Precision Recall F1- Mean  Muti-Class
[Dataset] Score Accuracy Accuracy
InceptionV3
/[ISIC2018* 81.72% 79.56% 80.33%  91.45% 86.50%
(augmented)]
Xception/ gy 770 82120 8231% 93.89%  87.77%
[|S|C201 8+] . 0 . (] . (] o 0 . (]
DenseNet201 o o o o o
/1SIC20187] 79.79% 78.72% 7891%  88.38% 85.76%
Ensemble 84.25% 83.01% 83.45% 94.46% 88.90%
Confusion Matrix
BCC 82 3 5 3
3 BKL| 7 161 19 30
[}
S
= MEL 2 6 128 35
BCC BKL MEL NV

Predicted Class

Fig. 9. The confusion matrix of the ensemble model
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3.2. COMPARISON WITH OTHER WORKS

The methodology employed in this research contrib-
uted to improving the classification of common skin
cancer types compared to other researchers' models.
Table 5 presents a comparison of the results with pre-
vious works. However, this comparison is not strictly
one-to-one, as some of the previous studies did not
utilize the test set provided by the ISIC archive. Addi-
tionally, while some researchers performed multi-class
classification on two, seven or eight classes, while this
research focuses on only four classes.

Table 5. Results comparison with other researchers

Reference Dataset Model Accuracy
Alwakid
0,
etal. [20] HAM10000 ResNet50 86%
Jain Multiple CNNs, with
HAM10000 Xception as the top- 90.48%
etal [21] .
performing model
Alam
- 0
etal.[22] HAM10000 S2C-DelLeNet 91.03%
Dogan and Hybrid model of
Ozdemir ISIC archive DenseNet201 with 91.28%
[14] Random Forest.
Max Voting ensemble
Natha method includes o
etal [15] bIC2013 Random Forest, Sl
(MLPN), and SVM
Proposed ISIC2018 and  Proposed ensemble 04.46%
method ISIC2019 model

4. CONCLUSION

The ensemble model demonstrated performance
enhancements over the best individual CNNs by lever-
aging the strengths of multiple architectures. Applying
image augmentation techniques to balance the data-
set proved beneficial for the InceptionV3 model, but
no significant improvement was observed in the other
two CNNs, Xception and DenseNet201.
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Despite the high performance of this framework in the
skin cancer classification task, its computational complex-
ity is a notable limitation. The proposed model was trained
exclusively on dermoscopic images captured under con-
trolled conditions, with high clarity and specific lighting
provided by dermoscopic equipment. This limitation
may affect its performance when applied to real-world
data captured under varying conditions. Furthermore,
the dataset lacks diversity in terms of skin tones and age
groups, potentially introducing biases in predictions and
reducing the generalizability of the model. Additionally,
the exclusion of the AKIEC, DF, and VASC classes further
reduces the model's applicability across the full spectrum
of skin lesion types. Nevertheless, the proposed ensemble
model holds promise for integration into clinical decision
support systems. It can be deployed in modest comput-
ing environments within dermatology clinics to assist
practitioners or be incorporated into teledermatology
platforms, extending diagnostic support to patients in re-
mote or underserved areas. In the future, expanding the
dataset with a greater number of image samples catego-
rized by ethnicity and skin tone could enable the develop-
ment of a two-level model. The first level would classify
images by ethnicity, and the second would perform skin
lesion classification within each group. This approach has
the potential to mitigate skin color biases and improve
classification accuracy.
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