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Abstract – Battery based energy storage systems are increasingly popular in power systems as renewable energy continues to grow 
while ensuring the reliability of power supply. However, battery degradation is a significant issue that can impact power system 
operations and optimal scheduling strategies. Therefore, estimating the remaining life cycle or assessing the health of batteries due 
to the degradation process has become a new challenge and research focus in various engineering fields. This topic is relevant in the 
context of electric vehicles (EVs), where battery degradation caused by continuous and non-continuous operations (i.e., charging and 
discharging cycles). Degradation can limit the performance of batteries and occur throughout their lifespan whether they are in use 
or not. The degradation process is complex and influenced by usage and external conditions that are normally measured by state of 
health (SOH). Therefore, predicting the SOH of batteries is crucial in ensuring the safety, stability, and long-term viability of energy 
storage and EVs systems. This prediction requires a battery mechanism model that can be established from a complex electrochemical 
process. Alternatively, a rainflow cycle-counting algorithm (RCCA) has become popular among researchers for battery degradation 
estimation because of its simplicity. This paper presents a comprehensive review of the battery degradation estimation using RCCA 
to count the equivalent cycles of charging and discharging profiles.
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1.	 	INTRODUCTION

Renewable energy sources (RES) are one of the key 
solutions for global environmental pollution problems. 
However, renewable resources are intermittent, and their 
output heavily depends on weather conditions and local 

factors, thereby leading to new challenges especially in 
maintaining a good quality and reliable power supply 
[1]. In the last few years, the fluctuations in electricity 
generation from RES become a prominent issue among 
researchers and their main interest to solve. One effec-
tive solution is battery energy storage (BES) [2–5]. Cur-
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rently, research on BES in power systems mainly covers 
the characteristics of system control [4], configuration 
modes [3], and mitigation actions [6, 7]. The operating 
cost due to degradation is a critical factor for the bat-
tery applications in power system. Therefore, extend-
ing the battery life cycle can significantly reduce main-
tenance and replacement costs [8]. The idea of using 
electric vehicles (EVs) as BES in the power system under 
the concept of vehicle-to-grid (V2G) was recognized as 
early as the last decade. The practicality of using EVs 
to provide ancillary services for power system includ-
ing frequency regulation, base load fulfillment, peak 
shaving, and spinning reserve has been examined and 
tested, thereby leading to evaluations of the economic 
benefits when using different technologies such as 
battery, fuel cell, or hybrid plug-in vehicles [9].

EVs have attracted global attention due to their en-
ergy efficiency and environmentally friendly features. 
With the rapid advancement of technology, the use 
of batteries in the automotive sector has also become 
increasingly popular. As a result, the performance of 
rechargeable batteries presents a key concern for us-
ers. Furthermore, the cost of batteries contributes up to 
30% in manufacturing of an EV, thereby limiting the de-
velopment of EVs [10, 11]. Lithium-ion (Li-ion) batter-
ies are preferrable for EVs as compared to other types 
due to their superiority in terms of performance, size, 
weight, and impact on environment [12]. However, the 
main concern of EV applications using Li-ion batteries 
are their safety and reliability. Poor road conditions, 
temperature changes, and load fluctuations can de-
grade the batteries performance when they are used 
outdoors. Apart from that, the performance degrada-
tion can be caused by insulation failure, current leak-
age and short circuits, and if not addressed appropri-
ately and timely, can result in serious incidents, such as 
spontaneous combustions and explosions [12-15]. For 
that reason, monitoring the performance and estimat-
ing the degradation of batteries based on their state 
of health (SOH) are of great concern for EV users. Mea-
suring the health or feature of batteries at their current 
state are required before estimating their SOH.

Three SOH estimation approaches are commonly 
used for Li-ion batteries, namely, the battery imped-
ance method, ampere hour counting method, and cyclic 
method [16-18]. The cyclic method, which will be the 
main focus of this review, is based on a simple principle 
that does not require various measuring parameters 
[19]. However, this method requires high accuracy in 
monitoring the number of cycles. While previous studies 
on SOH primarily focused on impedance and capacity 
measurements, only few explored the life cycle of bat-
teries. Furthermore, in-depth discussions on effective 
cycle criteria are limited due to the strong nonlinear 
characteristics of batteries, with most studies relying on 
impedance and capacity criteria [20]. Therefore, the limi-
tations of the cyclic method in accurately estimating the 
number of cycles remain unsolved. This paper reviews 

the applications of the Rainflow cycle counting algo-
rithm (RCCA), which is one of the cyclic methods used 
to establish degradation models, in assessing SOH. The 
main contributions of this paper as the following:

•	 A comprehensive review on RCCA to estimate an 
equivalent cycle for battery degradation assess-
ment in electric vehicle and power system applica-
tions.

•	 The detailed calculations of the conventional and 
improved RCCA for better understanding on the 
equivalent cycle’s computation for battery degra-
dation assessment.

The remaining of this paper is organized as follows. 
Section 2 explains the concept of battery life cycle as-
sessment. Section 3 discusses the applications of RCCA 
in power systems and electric vehicles. Section 4 outlines 
the improvements to RCCA. Section 5 draws a conclusion 
for this paper and provides a direction for future works.

2.	 BATTERY DEGRADATION ASSESSMENT 

SOH is defined as a ratio between the maximum dis-
charging capacity of the batteries and their nominal 
capacity. Given that the maximum discharge capacity 
is a characteristic of battery aging, SOH is used as an 
indicator of the degree of aging. A new battery without 
any degradation has an SOH of 100%. Fig. 1 depicts a 
general SOH curve over time to visualize the degrada-
tion based on the expression in (1). 

Fig. 1. A general SOH estimation curve [21]

(1)

where, Qi refers as the battery capacity in Ampere-hour 
at i-th cycle, while Qmax is a new or fresh battery capac-
ity in Ampere-hour. The degradation curve varies and 
depends on the battery type and characteristic. Further-
more, the battery can be replaced, or cautious action 
can be taken when the SOH reaches approximately 70%. 
Meanwhile, remaining useful life (RUL) is measured from 
the caution point (~70% SOH in the figure) until the SOH 
reaches the failure point or end of life [22]. A preventa-
tive or predictive maintenance procedure is useful to re-
duce battery failure rates and maintenance costs.

Battery life cycle assessment is an important step to 
determine cost over the reliability of battery-powered 
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devices. Numerous life cycle models have been dis-
cussed in the literature, but they often require a com-
promise between precision and generality. Some mod-
els use a generalized equation which is derived from 
experimental data to evaluate the relationship be-
tween lifetime and relevant parameters such as depth 
of discharge (DOD). The relationship of battery degra-
dation to its cycle life was also studied, and one of the 
significant factors that determine degradation is the 
number of cycles. Degradation is caused by irreversible 
physical and chemical changes within the battery, most 
commonly occurring during charging or discharging. 
The most visible sign of deterioration is a decrease in 
battery capacity after repeated charge and discharge 
cycles. However, the models tend to have low accuracy, 
and the relatively accurate models that account for the 
effect of aging in an equivalent circuit are usually spe-
cific to the battery being tested and are not generally 
applicable. A new estimation model of battery cycles 
taking into account capacity loss is proposed in [23]. 
This model can effectively explain the cycling behav-
ior of batteries at different chemical compositions and 
able to make accurate battery life cycle assessment.

A reliable life cycle model is essential to accurately 
estimate the battery’s SOH during operation and en-
sure demand is met. Motapon et al. [24] has developed 
a hardware testbed to evaluate the cycle-based aging 
process of a Li-ion battery and its impact on the bat-
tery's internal resistance and capacity. This model is 
based on fatigue theory and equivalent cycle count-
ing that requires only limited data from battery data 
sheets and short-term cycle experiments to identify 
the relevant parameters. However, as batteries near 
end of life (EOL), they are prone to instability during 
charging or discharging and other problems such as 
overheating and excessive current. The temperature 
estimation method contains elements that could lead 
to errors in the battery SOH analysis, including errors 
in temperature measurement and in the predicted dy-
namic characteristics of temperature changes due to 
the state boundary. Kim et al. [25] introduced an effec-
tive approach to predict the life cycle of Li-ion batter-
ies based on the entropy law and obtained promising 
results. Although temperature and time functions play 
an important role in the estimation, voltage and cur-
rent are more responsive and effective in real-time bat-
tery state acquisition and processing. Adermann et la. 
[26] proposed a commuter cycling monitoring model 
to estimate the parameters of EV batteries. This model 
benefits from simple algorithms that work effectively 
with only a few measurements, enable real-time ap-
plication on vehicle hardware, or outsource the assess-
ment to a back end for advanced data gathering and 
processing. However, this model also requires a close 
relationship between the battery state of charge (SOC) 
and open circuit voltage (OCV) and assumes extensive 
knowledge of their relationship. This obstacle makes 
the application of this approach difficult because SOC 
is also influenced by other factors such as temperature.

An optimal scheduling strategy of renewable resourc-
es and BES in microgrid (MG) was used in [27] to mini-
mize energy costs based on forecasted data of renew-
able energy generation, electricity prices and electricity 
demand. The most useful BES measurement in this case 
is to monitor the active power transferred back into the 
power grid. The costs due to battery life cycle were also 
taken into account and a recursive cost model was de-
veloped. Battery life cycle estimation is also crucial for 
designing solar home systems (SHS) and it requires ex-
perimental data to model the electrochemical processes 
of a battery at the cell level. Narayan et al. [28] developed 
a practical approach to estimate battery life cycle with-
out having to perform experimental works or model the 
electrochemical processes in the battery. This method is 
based on battery data sheet provided by manufactur-
ers. Therefore, it does not rely on technology-specific 
electrochemical processes where it can be used in other 
battery applications subjected to similar characteristics 
without affecting its accuracy. A summary of the dis-
cussed battery life cycle assessment approaches is pre-
sented in Table 1.

Table 1. Review of battery degradation assessment 
approaches

Research 
work Highlight/Advantage Limitation

[23] Applicable for various 
chemistries

Temperature and current 
rates are fixed

[24] Degradation model 
parameters are simplified

Limited to certain types of 
batteries

[25] Model based on entropy 
law

Effect of temperature on 
degradation is not significant

[26] Fast data collection and 
processing

SOC is derived from open 
circuit voltage only

[27] Compatible with dynamic 
programming

An additional analytical 
approach is required

[28] A dynamic capacity 
fading Low C-rates are neglected

3.	 RAINFLOW CYCLE COUNTING ALGORITHM 

RCCA was introduced by Matsuishi and Endo in 1950 
to calculate a fatigue life and represent it in a load-
time curve that enables the measurement of the actual 
stress history over several cycles of damage accumula-
tion [29, 30]. RCCA uses SOC profiles to estimate bat-
tery life cycle. A SOC versus time graph is plotted and 
rotated 90 degrees clockwise where time axis is point-
ed vertically downward as depicted in Fig. 2.

In the figure, valleys are labeled with a, c, e, g, i, and k, 
while peaks are labeled with b, d, f, h, j, and l. The drop-
ping rainflows at these peaks and valleys are denoted 
by DP and DV, respectively while, the rainflow between 
the peak and valley (i.e., on the rooftop) is denoted by 
RF. The following rules are observed in RCCA:

•	 A rainflow between a peak and valley (RF) starts at 
each peak or valley and stops at the opposite end 
point if there is no obstacle in between.
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•	 A dropping rainflow is created after the RF reaches 
the end point. In this case, DP or DV is created after 
the RF reaches a peak or valley, respectively. New 
dropping rainflows are created at all valleys and 
peaks except those from the dropping rainflows at 
e and i.

•	 The dropping rainflow stops when the next drop-
ping point is greater (i.e., smaller for valleys or 
higher for peaks) than or equal to the previous 
point just before the dropping is created. In this 
case, DP stops when the next valley is smaller than 
or equal to the previous valley or DV is stopped 
when the next peak is higher than or equal to the 
previous peak. For example, DP from peak b stops 
when the valley at c is smaller than the previous 
valley at a. Meanwhile, the DP from peak f contin-
ues when the valley at g is higher than that at e and 
keeps continuing when valley at i remains higher 
than that at e.

•	 The rainflow stops upon meeting another rainflow. 
In this case, the RF stops upon meeting the drop-
ping rainflow (either DP or DV; for instance, at c', g', 
and j') and is replaced with the respective rainflow 
(i.e., DP or DV, respectively). This case also applies 
when the dropping rainflow meets an earlier drop-
ping rainflow (for example, at f'), and the current 
dropping rainflow is replaced with the earlier drop-
ping rainflow.

Fig. 2. A rotated curve of SOC over time

A half cycle is counted whenever the RF stops, and a 
full cycle is counted when the RF meets the DP or DV 
while considering a starting point from where DP or DV 
is created. Fig. 2 shows 3 full cycles for c-d-c', g-h-g', and 
j-k-j' and 5 half cycles for a-b, b-c, e-f, f-g, and i-j. There-
fore, a total of 5.5 cycles is counted, and their ampli-
tudes are recorded for further analysis. Applications of 
RCCA for battery life cycle assessment can be divided 
into power systems and EVs as will be discussed in the 
following subsections.

3.1.	 Applications in Power Systems

A large-scale BES is normally used in power sys-
tems to improve their operation. Muenzel et al. [31] 
developed a battery life cycle prediction technique 
that focuses on the operational optimization of bat-
tery management. This technique considers multiple 
changing cycling parameters of Li-ion battery cells. 
Five operating factors are considered in four sepa-
rate models, including charge and discharge currents, 
maximum and minimum operating cycle limits, and 
temperature. The models were then calibrated using 
experimental battery data. RCCA and discretization 
technique were used to incorporate dynamic factors 
into the battery cycle profiles and to solve the opti-
mal battery operation problem. Xu et al. [32] intro-
duced a semi-empirical degradation model to make 
assessment on the battery cell degradation from its 
charging and discharging profiles. This model can be 
applied for various types of Li-ion batteries by tun-
ing the model based on manufacturer's data. The in-
corporation of RCCA allows the model to determine 
stress cycles from irregular charging and discharging 
operations. Shi et al. [33] established a convex RCCA 
degradation cost with respect to BES charging and 
discharging operations. The degradation model can 
be easily incorporated into a sub-gradient of the opti-
mization algorithm due to its convexity. Shi et al. [34] 
later proposed an optimal control of BES to maximize 
profit under a “pay-for-performance” scheme where a 
payment is made when the BES operation complies 
with the utility company instructions. The degrada-
tion cost was also considered by using the convex 
RCCA as discussed in the previous work.

Assessing the economics of using batteries to reduce 
peak demand and price arbitrage is becoming attention 
among researchers and energy suppliers. Schneider et 
al. [35] developed an approach to minimize investment 
and operational costs by determining appropriate bat-
tery technology and size, and scheduling the battery 
operation, respectively. RCCA has been integrated into 
a multitasking optimization platform for battery selec-
tion and shipping. The results of a simulation study con-
ducted by a Swiss power provider showed that battery 
integration can make economic sense if its capacity 
and drive units are carefully selected, highlighting the 
importance of battery size selection. Rosewater et al. 
[36] presented an advanced optimal control method to 
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maximize the benefits of battery integration. The SOC, 
temperature and SOH of Li-ion battery cells are mod-
eled in a predictive controller that allows battery op-
eration scheduling, air conditioning and forced air con-
vection, optimizing energy consumption and reducing 
electricity bills. RCCA was also used to develop the SOH 
model that produces a linear relationship between bat-
tery usage and degradation. Singh et al. [37] proposed 
Mixed Number Linear Programming (MILP) to optimize 
the operation of home appliances and manage energy 
from distributed energy resources (DERs) and the pow-
er grid based on price-based pricing and usage hours. 
An energy management system and a load planning 
system were developed, integrated into a house. Data 
were analyzed using RCCA to assess the decline in per-
formance of residential BESs through EOL.

The financial benefits of BES are usually estimated 
based on the profits gained from system operations by 
utilizing batteries, but this approach ignores the fact 
that battery operations reduce the battery lifetime it-
self. Foggo et al. [38] developed a framework for BES 
valuation that co-optimizes with a realistic degradation 
model to maximize profits and mitigate battery degra-
dation at the same time. RCCA was used to calculate 
equivalent cycles from SOC profiles that gives the bat-
tery degradation. Lee et al. [39] proposed a new battery 
degradation cost formula for optimal BES operation 
planning. The RCCA-based mining cost was formulated 
as piecewise linearity using an auxiliary SOC. Therefore, 
the optimal scheduling of BES together with the bat-
tery life cycle characteristic can be modelled as a MILP 
problem and solved using a gradient-based solver. As 
a result, an optimal scheduling BES operation can be 
determined quickly. Soleimani et al. [40] presented an 
active distribution network (ADN) that uses an energy 
storage system (ESS) within their constraints to opti-
mize battery lifespan and minimize the operating cost. 
They found that BES is operated at a lower rate if the 
battery lifespan is taken into account, thus underutiliz-
ing the battery capacity. In their later work, Soleimani et 
al. [41] proposed a method for BES scheduling in ADN 
to minimize operating costs and reduce the impacts on 
BES lifespan. This method uses a linearized and convex 
AC-OPF model for a quick and accurate calculation. A 
two-stage stochastic optimization approach and K-
means clustering were also used to address the uncer-
tainties in different case scenarios where the battery 
degradation was determined using RCCA.

The penetration of DERs has created challenges in 
distribution network to maintain its operation within 
the statutory limits. Tang et al. [42] proposed a Lagrang-
ian-relaxation-based algorithm that solves an optimal 
BES scheduling in distribution networks with DERs by 
incorporating an RCCA-based degradation model and 
using Copula theory to capture the uncertainties of 
DERs. This algorithm allows the incorporation of more 
scenarios into the BES scheduling framework and effec-
tively captures the uncertainties of DERs. Chawla et al. 

[43] examined the major applications of energy storage 
in utilities as well as the requirements and challenges 
faced by BESs. RCCA was used to estimate the battery 
degradation under dynamic duty cycles, assuming that 
duty cycles are known in advance and that battery deg-
radation in microcycles is independent of macrocycles.  
This work illustrates the trade-off between the initial 
investment cost of BESs (i.e, battery sizing) and the bat-
tery life cycle degradation cost. Abdulla et al. [44] intro-
duced a stochastic dynamic programming approach 
that optimizes ESS performance over a shorter time ho-
rizon by leveraging available forecasts and a multifac-
tor battery degradation model that takes operational 
influences into account. This approach aims to maxi-
mize the battery life cycle based on information from 
the forecasted data and operational impacts on battery 
degradation. This degradation model uses a dynamic 
RCCA that uses the time-history of discharge profiles to 
determine the equivalent degradation cycles.

Photovoltaic (PV) energy production fluctuates 
due to high intermittent in the solar radiation inten-
sity caused by moving clouds. An ESS equipped with 
a ramp-rate (RR) control can be used to mitigate the 
fluctuations of PV output. Martins et al. [45] conducted 
a comprehensive analysis of PV power balancing tech-
niques using ESS through RR control scheme and en-
sure SOC at the end of the day is remain as the start. 
ESS capacity requirements were quantified using RCCA 
from operation profile and DOD analysis. A grid-con-
nected PV system aims to generate power according 
to the hourly production bids in the electricity market 
to avoid penalties. Beltran et al. [46] analyzed the ag-
ing of six different battery chemistries, including Li-ion, 
Sodium-sulfur, Nickel-cadmium, Nickel-metal hydride, 
Lead-acid, and Lead-gel, in a large-scale grid-connect-
ed PV system that participating in the electricity mar-
ket. A systematic annual analysis was performed using 
RCCA to determine the number of cycles experienced 
by BES. In this case, BES was used to ensure that the 
energy input from PV meets the market demand. Alam 
et al. [47] elucidated the influence of PV variability on 
the ESS life cycle using RCCA. A realistic concept of life 
cycle degradation was derived from data from a real 
PV system in Australia. Hossain et al. [48] implemented 
a preventative energy management scheme that tak-
ing into account the battery degradation costs to ac-
curately represent the actual cost of ownership. The 
management scheme considers the operation cost of 
battery from charging/discharging profiles and then, 
uses particle swarm optimization and RCCA to mini-
mize the cost.

As RES become more widespread, the need for fast 
and reliable support services increases. Ochoa-Eguile-
gor et al. [49] analyzed ESS's participation in dynamic 
storage and continuous intra-day auctions in the UK. 
A battery SOC management strategy was developed, 
and the battery life cycle was estimated using an aging 
model based on RCCA and Wöhler curves. Furthermore, 
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a techno-economic analysis was carried out to demon-
strate the technical feasibility and reliable operation of 
the BES. Karmiris et al. [50] evaluated different control 
methods for BES in renewable power smoothing ap-
plications. The effectiveness of each control algorithm 
in terms of renewable smoothing and battery stress 
was analyzed, and the battery stress and life cycle were 
estimated using RCCA. A good renewable smoothing 
strategy can negatively impact the battery life cycle. 
Bouakkaz et al. [51] proposed a strategy for maximizing 
battery life cycle by managing the battery operations. 
This strategy minimizes the number of battery cycles 
per day by scheduling adjustable loads and controlling 
the charging and discharging processes. The optimiza-
tion problem was solved using particle swarm optimi-
zation, and RCCA was used to calculate the number of 
battery cycles. Dragicevic et al. [52] proposed a tech-
nique to minimize the energy consumption of an au-
tonomous remote installation based on robust mixed-
number linear programming. This model identifies the 
optimal combination of renewable energy and ESS, 
considering the service life of the telecommunications 
system and the attractiveness of different battery tech-
nologies. This technique shows flexibility in solution ac-
curacy and computational load, and RCCA was applied 
to account for the DOD-related cycles.

Lee et al. [53] presented an optimal scheduling 
framework for BES in MG to address the uncertainties 
in RES and load demand. This framework minimizes 
BES service life degradation and ensures economic vi-
ability of MG operations. Monte Carlo simulation and 
K-means clustering algorithm were used to deal with 
the uncertainties, while RCCA was used to process the 
BES charging/discharging profiles. In isolated MGs, the 
integration of RES, diesel generators and storage bat-
teries are necessary to minimize fuel consumption and 
ensure continuous power supply. Boqtob et al. [54] in-
vestigated the optimal power distribution for MG en-
gines and used RCCA to count charge/discharge cycles 
and quantify battery degradation. Li-ion batteries are 
widely used for real-time power balancing to ensure 
the economic operations in islanded MGs. With respect 
to battery degradation, Lyu et al. [55] proposed a novel 
degradation model for Li-ion batteries in islanded MGs 
that considers real-time management using RCCA and 
an online auction system. This model was formulated 
as a mixed integer non-linear programming (MINLP) 
and used weighted model predictive control to ad-
dress uncertainties in the look ahead window.

The future of smart grids highly depends on large 
battery storage. As the use of batteries in energy mar-
kets continues to increase, the need for an optimal bid-
ding strategy becomes increasingly important. Batter-
ies can increase profitability through a rapid regulation 
service based on their performance. However, frequent 
charge/discharge cycles can shorten battery life, espe-
cially with quick setup services. He et al. [56] developed 
an auction model that takes battery life cycle into ac-

count for profit maximization in the energy market bid-
ding. This model determines optimal bids in energy, 
reserve trading and day-ahead regulatory markets and 
uses an online distributed calculation method to de-
crease its complexity. The model offers battery storage 
investors a valuable tool to make decisions about ten-
ders and operating programs and to assess economic 
feasibility. Correa-Florez et al. [57] proposed a stochas-
tic approach for home energy management systems 
(HEMS) that considers BESs, PV resources and electric 
water heaters in daily operation framework. A swarm 
optimizer minimizes operating costs by considering 
the purchase of energy from the wholesale market and 
the corresponding cost of battery aging. This approach 
takes into account uncertainties in PV production and 
charging and is a valuable tool for optimizing HEMS 
operations. The cost of cyclic battery aging was consid-
ered using a memory disaggregation algorithm based 
on Lagrangian relaxation and RCCA. This approach can 
handle complex switching behavior and reduces the 
search space in optimization problem. Therefore, the 
decomposition strategy is supplemented by a compet-
itive swarm optimizer.

Rapid charge/discharge operation in off-grid wind 
energy systems and high discharge currents during 
motor start-up and other high-load scenarios can re-
duce the battery life cycle. Li et al. [58] attempted to 
solve this issue by integrating superconducting mag-
netic energy storage into conventional batteries to 
minimize short-term power cycling and high discharge 
currents. The wind power was incorporated with ESS, 
load fluctuations and wind turbulence to demonstrate 
system performance. A battery life model was also 
used to estimate the improvement in battery life due 
to the reduction of charge/discharge cycles and dis-
charge rate, while RCCA was used to isolate irregular 
charge cycles and discharges experienced by the bat-
tery within the simulation period. Pan et al. [59] inte-
grated cyber-physical systems (CPS) into the control 
framework of hybrid energy storage system (HESS) and 
used multi-objective optimization to solve the prob-
lem. The performance of HESS can be significantly im-
proved by incorporating physical models and real-time 
data through CPS. The multi-objective optimization 
control scheme was developed for the HESS battery su-
percapacitor that considers component characteristics, 
reduces power consumption and maintains SOC within 
the required limits. RCCA was used to predict battery 
life and quantify the benefits of using HESS as part of 
the control plan.

Open cycle gas turbines (OCGTs) are often used to 
provide fast-frequency regulation in maintaining the 
system frequency within the required limits. However, 
these OCGTs are expensive. As an alternative, frequen-
cy regulation can be provided using ESS due to its 
quick response capability. Lian et al. [60] proposed a 
suitable size of OCGTs and ESSs to provide frequency 
regulation in response to load fluctuations. RCCA was 
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used to determine the battery life cycle, and to ac-
curately determine the cost savings from ESS specifi-
cally for frequency regulation, hence highlighting the 
advantages of ESS over OCGTs. Loew et al. [61] imple-
mented a cycle identification system using RCCA in 
model predictive controller for Li-ion batteries to ac-
curately estimates the revenue of ESS by considering 
the cost of aging. Anand et al. [62] improved the large-
scale integration of wind energy into the power grid. 
An economical nonlinear model predictive controller 
(ENMPC) was developed to operate a wind turbine 
and a battery as a hybrid system to supply energy to 
the grid. ENMPC calculates the revenue from electric-
ity generation considering the costs associated with 
mechanical fatigue damage to the wind turbine tower 
and the cyclical loss of Li-ion battery capacity. An on-
line parametric RCCA was implemented to determine 
the cyclical loss. 

Traditional energy generation facilities have exhib-
ited a marked dependence on hydrocarbon resources 
to meet the increasing energy requirements prompted 
by accelerated demographic expansion and an array 
of technological advancements. Obaro et al. [63] mod-
elled an optimal energy framework and power manage-
ment strategy for an off-grid distributed energy system 
(DES). The management strategy is co-optimized with 
various energy generation modalities as a fundamen-
tal objective to guarantee reliable and cost-effective 
power delivery to electrical loads, whilst conforming 
to a defined set of operational system requirements. 
Furthermore, the MINLP optimization methodology is 
applied to improve the generation efficiency of power 
systems that are interconnected with diverse energy 
sources and variable electrical demands. Considering 
the recurrent cycling behavior of batteries within the 
DES, the RCCA is implemented to calculate the cumula-
tive number of cycles.

The cost function of Li-ion battery within the elec-
tricity market necessitates an optimal equilibrium be-
tween the maximization of revenue derived from en-
ergy arbitrage and the minimization of capacity deg-
radation resulting from operational usage. The optimal 
equilibrium can be attained by integrating the stresses 
associated with DOD and thermal conditions of the bat-
tery into the optimal economic dispatch framework. A 
series of physics-based sufficient conditions have been 
formulated to effectively manage the non-analytical 
nature of RCCA, while simultaneously accounting for 
temperature variations at the cell level. The suggested 
stress-conscious optimal battery dispatch (SC-OBD) 
paradigm is executed within the framework of a bat-
tery operating in both day-ahead and real-time bal-
ancing market environments. Furthermore, Singh et al. 
[64] introduced a predictive control-based framework 
model to address the unpredictability of real-time elec-
tricity pricing and the need to guarantee adherence 
to agreements made in the day-ahead market. Table 2 
summarizes the applications of RCCA for battery deg-
radation assessment in power systems.

Table 2. RCCA applications in power systems

Research 
work Highlight/Advantage Limitation

[31] Multiple changing cycling 
parameters are considered

A fixed operating 
temperature

[32] Adaptable degradation model 
to various Li-ion batteries

Extreme conditions (i.e, 
low SOC, over-voltage, 
etc.) are not considered

[33] A convex degradation model
Underestimate the 
actual degradation 

effects

[34] An online model for market 
bidding

Uncertainties of loads 
are not considered

[35] An optimal sizing of battery for 
investment

A calendar aging is 
neglected

[36] A linear degradation 
relationship with battery usage

A specific usage 
behavior  

(air-conditioning)

[37] A smart residential energy 
management system

Open loop battery 
capacity assessment

[38] An improved battery lifetime 
framework

A pre-determined set of 
battery actions

[39] A piecewise linear degradation 
cost

High computational 
cost

[40] Battery utilization in power grid 
ancillary services

A specific type of 
batteries

[41] A linear and convex AC-OPF 
model

High C-rates are 
neglected

[42]
A correlation between 

degradation cost and DER 
uncertainties

The potential voltage 
instability of DERs is 

underestimated

[43] Battery degradation accounted 
in micro cycle

Internal battery 
resistance is neglected

[44] A multi-factor battery 
degradation model

A time value-of-money 
is not accounted

[45] Constraints on RR and SOC 
endpoint are included

Battery capacitance is 
neglected

[46] Various battery chemistries for a 
large-scale PV

Operating temperature 
is fixed

[47] A realistic life cycle degradation 
for PV plant

Low DOD is not 
considered

[48]
An optimal energy 

management for PV and ESS 
system

High computational 
time

[49] Wöhler curves are integrated for 
aging evaluation

Variation of DODs is not 
considered

[50] Various battery stress conditions 
including low DOD

Variation of C-rates is 
neglected

[51] Optimal scheduling of shiftable 
loads and battery operation

Intermittent of 
resources and loads is 

not considered

[52]
Lifespan of the 

telecommunications facility is 
considered

Time consuming due to 
integer variables

[53] A Monte Carlo simulation is 
used to consider uncertainties

Applicability to real 
system is not tested

[54] Battery degradation in optimal 
energy dispatch framework

Tested on a specific type 
of batteries

[55] Energy market bidding during 
an islanded operation

Irregular life cycle 
profiles

[56] A fast market bidding decision 
for battery owners

Appropriate size of 
battery is not identified

[57] Lagrangian relaxation is used 
for model simplification

Limited for planning 
perspective

[58]
Integrated with 

superconducting magnetic 
energy storage

Effect on different 
temperature is ignored

[59] Actual field data is considered 
using CPS platform

Multiple units require 
additional scheduling 

framework
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[60] A cost saving of ESS for 
frequency regulation

Huge deviation 
between actual and 

projection loads

[61] A moving horizon of cyclic 
aging based on MPC

Not tested on real-life 
battery storage

[62] Non-linear characteristics of 
degradation are considered

Micro cyclic damage is 
not considered

[63] A modular multi-energy sources 
to improved power reliability

Micro cycling operation 
is neglected

[64] A stress-aware optimal battery 
system dispatcher

Low DOD C-rates are 
neglected

3.2.	 Applications in EVs

EVs primarily rely on batteries for operation, neces-
sitating an effective management system to enhance 
their performance. Muenzel et al. [31] developed a bat-
tery life cycle prediction technique that focuses on the 
operational optimization of battery management. The 
life cycle discussions presented in the previous sub-
section are mainly based on the planning perspective, 
which uses a large time interval spanning 15-60 min-
utes. However, the battery charging and discharging 
profiles for EVs have a much shorter time interval that 
depends on the driver's action to accelerate (discharg-
ing) or decelerate the vehicle through regenerative 
braking (charging). In 2010, the Racing Green Endur-
ance project designed and built the world’s largest EV 
with a range of over 514 km [65]. Operational data of 
battery usage from the Racing Green Endurance proj-
ect was used to develop a new battery degradation 
model. This model uses the RCCA method to produce 
highly reliable and accurate predictions of capacity 
and power losses in vehicle traction batteries. Li et al. 
[66] introduced a CPS-based electric vehicle platform 
to collect and store battery consumption data in the 
cloud, which can be used for battery degradation as-
sessment. Support vector regression algorithm and 
RCCA were used to develop a battery degradation 
model and study the dynamic characteristics of the 
batteries. In their subsequent work, Li et al. [67] used 
RCCA with a deep learning algorithm to estimate the 
aging of EV's batteries. The RCCA-based approach ef-
fectively extracts the aging history of the battery and 
provides an aging index to evaluate the degradation.

EVs are becoming popular for public transportation 
because of target to reduce greenhouse gas emissions. 
Bai et al. [68] proposed a hierarchical optimization of 
energy management strategies using HESS to reduce 
the impact of battery aging in plug-in hybrid electric 
buses. This strategy includes a power limit management 
module that controls the flow rate of the supercapacitor 
and battery by redistributing power between them to 
drive the motor. A simple but effective battery life cycle 
model based on RCCA was used to quantify the rate of 
degradation in a battery performance control strategy. 
In another work [69], a low profit margin was identified 
as the main challenge in managing a fleet of EVs. A con-
trol strategy was proposed for managing a fleet of EVs 
in terms of charging and discharging for grid ancillary 
services. This strategy minimizes the operational cost by 

simultaneously determining the wear of batteries in EVs 
and assigning suitable routes for the ancillary services. 
The wear of battery was calculated using RCCA and the 
integral of the wear density function. Sandelic et al. [70] 
proposed an incremental degradation cost using RCCA 
to allow for a real-time evaluation of the true cost of 
battery operation while considering the degradation ef-
fects in a specific time interval.

An aggregator can achieve frequency regulation by 
controlling its generation and demand to cater the 
fluctuations in the electricity market due to increasing 
contributions from RESs. Vatandoust et al. [71] studied 
the participation of an aggregator to manage a fleet of 
EVs and ESS operations in a day-ahead energy market 
regulation framework. The fleet of EVs and ESSs pro-
vide unidirectional (charging) and bidirectional (charg-
ing and discharging) regulations, respectively. Risk-free 
mixed-integer stochastic linear programming was then 
applied to plan aggregator participation, and RCCA-
based linear degradation was formulated to account 
for the expected degradation costs incurred by EVs 
participation. The degradation cost is a key concern for 
EV owners that discourages their participation in vehi-
cle-to-grid (V2G) services for regulation purposes. Li et 
al. [72] proposed a novel anti-aging V2G active battery 
planning approach, which quantified battery degrada-
tion using RCCA during V2G services. The V2G schedul-
ing problem is modelled as a multi-stage optimization 
problem that aims to minimize battery degradation 
and load fluctuations in the power grid. 

In contemporary discourse, the implementation of 
sophisticated charging paradigms and management 
frameworks that encompass vehicle-to-everything 
(V2X) functionalities is essential to alleviate the increas-
ing ubiquity of battery electric buses (BEBs) in urban set-
tings. Nevertheless, the integration of these advanced 
functionalities into charging systems may have reper-
cussions on the longevity of the charging infrastruc-
ture. This phenomenon remains unexplored, despite its 
significance for operators of BEBs. Verbrugge et al. [73] 
developed a thorough evaluation of reliability to inves-
tigate the consequences of intelligent and bidirectional 
(V2X) charging on the longevity of silicon carbide-based 
high-power off-board charging infrastructure employed 
for battery electric buses (BEBs) within a depot environ-
ment designated for overnight charging. The thermal 
stress is converted into a quantifiable metric of failure 
cycles and cumulative damage through the utilization 
of RCCA, a life cycle prediction model for damage ac-
cumulation. Ultimately, a Monte Carlo simulation along 
with a Weibull probability distribution fitting is utilized 
to determine the reliability of the system.

An essential improvement in the accessibility of rapid-
charging infrastructure is crucial for the effective shift 
towards EVs. Nevertheless, the process of charging a 
battery pack at increased C-rate has detrimental effects 
on SOH, thereby expediting its deterioration. Pelosi et al. 
[74] proposed a strategic battery management, which 
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considers the diurnal operational patterns of a Li-ion 
battery utilized in EVs, anchored in a defined driving cy-
cle that includes charging phases occurring when DOD 
attains 90%. Through the dynamic modeling of the EV’s 
battery system, the progression of the state of charge is 
determined for a range of charging C-rates, with meticu-
lous attention given to both discharging and charging 
profiles. RCCA was employed to examine the SOC pro-
files, thereby determining the DOD for each individual 
cycle, which subsequently informs the practical applica-
tions on the experimental testing apparatus. The above 
applications of RCCA for assessing battery degradation 
in EVs can be summarized in Table 3.

Table 3. RCCA applications in EVs

Research 
work Highlight/Advantage Limitation

[65] Long-range empirical EV data A specific battery type

[66] An online SVR-based 
assessment

Inadequate data for 
verification purposes

[67] A deep learning-based 
assessment

A fixed temperature and 
specific type of battery

[68] An integrated with super-
capacitor for electric buses

Maintenance cost is not 
considered

[69] EVs scheduling for grid 
ancillary services

The wear function is 
not validated on actual 

batteries

[70] An incremental degradation 
cost of EVs

A calendar aging is 
neglected

[71] EVs participation in the 
electricity market regulation

Framework is mainly 
based on linear 
approximations

[72] Minimize degradation during 
V2G services

Prediction errors of 
battery capacity fade are 

neglected

[73]
Silicon carbide (SiC)-based 

high-power off-board 
charging

Not tested on real-life 
battery storage

[74] Capacity degradation tailored 
with high C-rates Low C-rates are neglected

4.	 IMPROVEMENT AND FUTURE WORKS

Despite its wide usage in cycle counting, RCCA has a 
non-closed form that hinders its use in optimization. As 
a result, recent studies have explored ways to improve 
RCCA. For instance, Huang et al. [75] proposed an accu-
rate life cycle prediction for Li-ion batteries. The charge 
and discharge profiles are usually faced with interfer-
ence from noise, which is not addressed properly in the 
traditional ampere hour approach. The unscented Kal-
man filter algorithm addresses this issue and provides a 
highly accurate SOC for SOH prediction. Li-ion batteries 
also have a strong non-linearity characteristic that leads 
to many small cycles counted in traditional RCCA. An im-
proved RCCA was then introduced by adding interme-
diate judgement to reduce its sensitivity to data peaks. 
A linear damage criterion was then used together with 
the improved RCCA to accurately predict the remaining 
life of a battery without the need to measure process 
parameters. In a later study, Huang et al. [76] improved 
RCCA by combining this approach with the autore-
gressive integrated moving average (ARIMA) model to 

predict the SOH of a Li-ion battery. Experiments were 
conducted under dynamic stress tests and cycle condi-
tions to validate the performance of the SOH prediction 
model using a confidence interval as the acceptable er-
ror range. The combined RCCA and ARIMA show promis-
ing results in predicting the SOH of batteries.

BES duty cycle counting in frequency control is hard 
due to irregular charging and discharging caused by fluc-
tuations in grid frequency. The traditional RCCA is based 
on extreme points (peaks and valleys) and only starts 
counting at the end of data, hence it is inapplicable to 
determine the RUL in between load points, especially 
in real-time applications. Gundogdu et al. [77] modified 
the RCCA to develop a rapid/fast battery cycle counting 
method that estimates an equivalent number of complet-
ed cycles that can be used to calculate RUL in microcycles. 
Unlike traditional RCCA, the proposed method can calcu-
late half a cycle when the SOC of each battery charge and 
discharge independently reaches the maximum value of 
100% and one full equivalent cycle can be achieved as sin-
gle battery charge and discharge cycles are recorded. Fur-
thermore, the number of complete equivalent cycles can 
also be estimated during the process continuously rather 
than waiting for the data collection to end. This method 
was applied to 1 MWh BES at 2 MW maximum operating 
power to mitigate the frequency fluctuation problem. The 
lack of a comprehensive mathematical formulation for the 
RCCA have represented the one of primary barriers to the 
widespread implementation of the cycle-based degrada-
tion framework. Diao et al. [78] proposed a meticulous 
analytical formulation of the sub-gradients pertaining to 
the cycle-based aging cost function to facilitate the effec-
tive resolution of the optimal operational dilemma irre-
spective of a mathematical representation for the RCCA. 
The sub-gradient projection algorithm is introduced to 
determine the theoretical optimal operation in particular 
circumstances where the constraints governing battery 
operations may be alleviated.

An example application for the improved RCCA is 
also provided in this review for further understanding. 
Fig. 3 depicts a flowchart of the improved RCCA used 
for real-time applications.

The same notations presented in the previous sec-
tion are used in the figure. A flag is used to indicate the 
condition wherein RF meets DV or DP where (1 if true, 
and 0 if false). The direction of rainflow is important in 
determining whether the next edge is a peak or valley. 
Therefore, DirVP is used to indicate a flow from valley 
to peak (DirVP = 1) or, from peak to valley (DirVP = 0). 
In a casual event as mentioned in the first rule in the 
rainflow cycle counting algorithm section, an ampli-
tude (Amp) of the half cycle is calculated as:

(2)

In the event where RF meets DP or DV (flag = 1), Amp 
is recorded using the following expression:

(3)
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The equivalent number of cycles can then be up-
dated using the recorded Amp at each time step in as 
follows:

(4)

Fig. 4 shows the total number of equivalent cycles in 
respect to SOC at each time step using the improved 
RCCA algorithm. The SOC curve in Fig. 4(a) is based on 
data as in Fig. 2. The total number of equivalent cycles 
at the end of the data can be observed at approximately 

2.1 cycles as shown in Fig. 4(b). The equivalent cycle is 
much smaller than that obtained by the traditional RCCA 
at 5.5 cycles as discussed earlier. 

The equivalent cycle plot in Fig. 4(b) resembles a stair-
case due to the cycle cannot be updated until the SOC 
reaches peaks or valleys. A plateau at the end of the 
equivalent cycle plot is caused by the failure to locate a 
peak or valley. The limitations of equivalent cycle count-
ing should be addressed in the future works to ensure a 
smooth and accurate representation of the battery deg-
radation process.

Fig. 3. Flowchart of the modified RCCA

(a) (b)

Fig. 4. Equivalent cycle counting using the improved RCCA algorithm
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5.	 CONCLUSIONS

This paper discusses a comprehensive overview of 
the applications of RCCA in battery degradation assess-
ment. The relevant literature on the topic is reviewed 
by highlighting the advantages and limitations of each 
approach. The significance of RCCA in analyzing and in-
terpreting the battery life cycle is emphasized, and oth-
er popular counting algorithms for predicting battery 
degradation in EVs and power grid applications are re-
viewed. In addition, improvement of RCCA for battery 
degradation assessment in the respective applications 
is reviewed and compared with the conventional ap-
proach. A comparison between the conventional and 
improved RCCA on an exemplar SOC data shows a sig-
nificant low equivalent cycle at 2.1 cycles for the im-
proved RCCA as compared to the compared to the con-
ventional RCCA at 5.5 cycles. Furthermore, the equiva-
lent life cycle can be updated in each time step using 
the improved RCCA rather than at SOC peaks or valleys 
in the conventional RCCA. The obtained equivalent cy-
cle using RCCA can also be used to evaluate the aging 
process of other electronic equipment. However, RCCA 
has several limitations, including its sensitivity to test 
conditions such as negligible fluctuations in current 
and temperature. Despite these limitations, RCCA, to-
gether with open-source mechanisms and cloud data 
sharing, offers the opportunity to reform battery health 
assessment. This review serves as a useful reference for 
the design and operation of battery health diagnosis 
and prediction systems and provides guidance for fu-
ture work on battery degradation assessment.
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