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Abstract - Battery based energy storage systems are increasingly popular in power systems as renewable energy continues to grow
while ensuring the reliability of power supply. However, battery degradation is a significant issue that can impact power system
operations and optimal scheduling strategies. Therefore, estimating the remaining life cycle or assessing the health of batteries due
to the degradation process has become a new challenge and research focus in various engineering fields. This topic is relevant in the
context of electric vehicles (EVs), where battery degradation caused by continuous and non-continuous operations (i.e., charging and
discharging cycles). Degradation can limit the performance of batteries and occur throughout their lifespan whether they are in use
or not. The degradation process is complex and influenced by usage and external conditions that are normally measured by state of
health (SOH). Therefore, predicting the SOH of batteries is crucial in ensuring the safety, stability, and long-term viability of energy
storage and EVs systems. This prediction requires a battery mechanism model that can be established from a complex electrochemical
process. Alternatively, a rainflow cycle-counting algorithm (RCCA) has become popular among researchers for battery degradation
estimation because of its simplicity. This paper presents a comprehensive review of the battery degradation estimation using RCCA
to count the equivalent cycles of charging and discharging profiles.

Keywords: Battery energy storage, Electric vehicles, Rainflow cycle-counting algorithm, State of health

Received: March 11, 2025; Received in revised form: September 4, 2025; Accepted: September 10, 2025

1. INTRODUCTION

Renewable energy sources (RES) are one of the key
solutions for global environmental pollution problems.
However, renewable resources are intermittent, and their
output heavily depends on weather conditions and local
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factors, thereby leading to new challenges especially in
maintaining a good quality and reliable power supply
[1]. In the last few years, the fluctuations in electricity
generation from RES become a prominent issue among
researchers and their main interest to solve. One effec-
tive solution is battery energy storage (BES) [2-5]. Cur-
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rently, research on BES in power systems mainly covers
the characteristics of system control [4], configuration
modes [3], and mitigation actions [6, 7]. The operating
cost due to degradation is a critical factor for the bat-
tery applications in power system. Therefore, extend-
ing the battery life cycle can significantly reduce main-
tenance and replacement costs [8]. The idea of using
electric vehicles (EVs) as BES in the power system under
the concept of vehicle-to-grid (V2G) was recognized as
early as the last decade. The practicality of using EVs
to provide ancillary services for power system includ-
ing frequency regulation, base load fulfillment, peak
shaving, and spinning reserve has been examined and
tested, thereby leading to evaluations of the economic
benefits when using different technologies such as
battery, fuel cell, or hybrid plug-in vehicles [9].

EVs have attracted global attention due to their en-
ergy efficiency and environmentally friendly features.
With the rapid advancement of technology, the use
of batteries in the automotive sector has also become
increasingly popular. As a result, the performance of
rechargeable batteries presents a key concern for us-
ers. Furthermore, the cost of batteries contributes up to
30% in manufacturing of an EV, thereby limiting the de-
velopment of EVs [10, 11]. Lithium-ion (Li-ion) batter-
ies are preferrable for EVs as compared to other types
due to their superiority in terms of performance, size,
weight, and impact on environment [12]. However, the
main concern of EV applications using Li-ion batteries
are their safety and reliability. Poor road conditions,
temperature changes, and load fluctuations can de-
grade the batteries performance when they are used
outdoors. Apart from that, the performance degrada-
tion can be caused by insulation failure, current leak-
age and short circuits, and if not addressed appropri-
ately and timely, can result in serious incidents, such as
spontaneous combustions and explosions [12-15]. For
that reason, monitoring the performance and estimat-
ing the degradation of batteries based on their state
of health (SOH) are of great concern for EV users. Mea-
suring the health or feature of batteries at their current
state are required before estimating their SOH.

Three SOH estimation approaches are commonly
used for Li-ion batteries, namely, the battery imped-
ance method, ampere hour counting method, and cyclic
method [16-18]. The cyclic method, which will be the
main focus of this review, is based on a simple principle
that does not require various measuring parameters
[19]. However, this method requires high accuracy in
monitoring the number of cycles. While previous studies
on SOH primarily focused on impedance and capacity
measurements, only few explored the life cycle of bat-
teries. Furthermore, in-depth discussions on effective
cycle criteria are limited due to the strong nonlinear
characteristics of batteries, with most studies relying on
impedance and capacity criteria [20]. Therefore, the limi-
tations of the cyclic method in accurately estimating the
number of cycles remain unsolved. This paper reviews

the applications of the Rainflow cycle counting algo-
rithm (RCCA), which is one of the cyclic methods used
to establish degradation models, in assessing SOH. The
main contributions of this paper as the following:

A comprehensive review on RCCA to estimate an
equivalent cycle for battery degradation assess-
ment in electric vehicle and power system applica-
tions.

«  The detailed calculations of the conventional and
improved RCCA for better understanding on the
equivalent cycle’s computation for battery degra-
dation assessment.

The remaining of this paper is organized as follows.
Section 2 explains the concept of battery life cycle as-
sessment. Section 3 discusses the applications of RCCA
in power systems and electric vehicles. Section 4 outlines
the improvements to RCCA. Section 5 draws a conclusion
for this paper and provides a direction for future works.

2. BATTERY DEGRADATION ASSESSMENT

SOH is defined as a ratio between the maximum dis-
charging capacity of the batteries and their nominal
capacity. Given that the maximum discharge capacity
is a characteristic of battery aging, SOH is used as an
indicator of the degree of aging. A new battery without
any degradation has an SOH of 100%. Fig. 1 depicts a
general SOH curve over time to visualize the degrada-
tion based on the expression in (1).
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Fig. 1. A general SOH estimation curve [21]

soH = =2 x 100% 1)
Qmax

where, Q, refers as the battery capacity in Ampere-hour
at i-th cycle, while Q_ is a new or fresh battery capac-
ity in Ampere-hour. The degradation curve varies and
depends on the battery type and characteristic. Further-
more, the battery can be replaced, or cautious action
can be taken when the SOH reaches approximately 70%.
Meanwhile, remaining useful life (RUL) is measured from
the caution point (~70% SOH in the figure) until the SOH
reaches the failure point or end of life [22]. A preventa-
tive or predictive maintenance procedure is useful to re-
duce battery failure rates and maintenance costs.

Battery life cycle assessment is an important step to
determine cost over the reliability of battery-powered
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devices. Numerous life cycle models have been dis-
cussed in the literature, but they often require a com-
promise between precision and generality. Some mod-
els use a generalized equation which is derived from
experimental data to evaluate the relationship be-
tween lifetime and relevant parameters such as depth
of discharge (DOD). The relationship of battery degra-
dation to its cycle life was also studied, and one of the
significant factors that determine degradation is the
number of cycles. Degradation is caused by irreversible
physical and chemical changes within the battery, most
commonly occurring during charging or discharging.
The most visible sign of deterioration is a decrease in
battery capacity after repeated charge and discharge
cycles. However, the models tend to have low accuracy,
and the relatively accurate models that account for the
effect of aging in an equivalent circuit are usually spe-
cific to the battery being tested and are not generally
applicable. A new estimation model of battery cycles
taking into account capacity loss is proposed in [23].
This model can effectively explain the cycling behav-
ior of batteries at different chemical compositions and
able to make accurate battery life cycle assessment.

A reliable life cycle model is essential to accurately
estimate the battery’s SOH during operation and en-
sure demand is met. Motapon et al. [24] has developed
a hardware testbed to evaluate the cycle-based aging
process of a Li-ion battery and its impact on the bat-
tery's internal resistance and capacity. This model is
based on fatigue theory and equivalent cycle count-
ing that requires only limited data from battery data
sheets and short-term cycle experiments to identify
the relevant parameters. However, as batteries near
end of life (EOL), they are prone to instability during
charging or discharging and other problems such as
overheating and excessive current. The temperature
estimation method contains elements that could lead
to errors in the battery SOH analysis, including errors
in temperature measurement and in the predicted dy-
namic characteristics of temperature changes due to
the state boundary. Kim et al. [25] introduced an effec-
tive approach to predict the life cycle of Li-ion batter-
ies based on the entropy law and obtained promising
results. Although temperature and time functions play
an important role in the estimation, voltage and cur-
rent are more responsive and effective in real-time bat-
tery state acquisition and processing. Adermann et la.
[26] proposed a commuter cycling monitoring model
to estimate the parameters of EV batteries. This model
benefits from simple algorithms that work effectively
with only a few measurements, enable real-time ap-
plication on vehicle hardware, or outsource the assess-
ment to a back end for advanced data gathering and
processing. However, this model also requires a close
relationship between the battery state of charge (SOC)
and open circuit voltage (OCV) and assumes extensive
knowledge of their relationship. This obstacle makes
the application of this approach difficult because SOC
is also influenced by other factors such as temperature.
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An optimal scheduling strategy of renewable resourc-
es and BES in microgrid (MG) was used in [27] to mini-
mize energy costs based on forecasted data of renew-
able energy generation, electricity prices and electricity
demand. The most useful BES measurement in this case
is to monitor the active power transferred back into the
power grid. The costs due to battery life cycle were also
taken into account and a recursive cost model was de-
veloped. Battery life cycle estimation is also crucial for
designing solar home systems (SHS) and it requires ex-
perimental data to model the electrochemical processes
of a battery at the cell level. Narayan et al. [28] developed
a practical approach to estimate battery life cycle with-
out having to perform experimental works or model the
electrochemical processes in the battery. This method is
based on battery data sheet provided by manufactur-
ers. Therefore, it does not rely on technology-specific
electrochemical processes where it can be used in other
battery applications subjected to similar characteristics
without affecting its accuracy. A summary of the dis-
cussed battery life cycle assessment approaches is pre-
sented in Table 1.

Table 1. Review of battery degradation assessment

approaches
LR Highlight/Advantage Limitation
work ghilg 9
Applicable for various Temperature and current
[23] o
chemistries rates are fixed
[24] Degradation model Limited to certain types of
parameters are simplified batteries
Model based on entropy Effect of temperature on
[25] . S
law degradation is not significant
126] Fast data collection and SOC is derived from open
processing circuit voltage only
127] Compatible with dynamic An additional analytical
programming approach is required
[28] A dynamic capacity Low C-rates are neglected

fading

3. RAINFLOW CYCLE COUNTING ALGORITHM

RCCA was introduced by Matsuishi and Endo in 1950
to calculate a fatigue life and represent it in a load-
time curve that enables the measurement of the actual
stress history over several cycles of damage accumula-
tion [29, 30]. RCCA uses SOC profiles to estimate bat-
tery life cycle. A SOC versus time graph is plotted and
rotated 90 degrees clockwise where time axis is point-
ed vertically downward as depicted in Fig. 2.

In the figure, valleys are labeled with a, ¢, e, g, i, and k,
while peaks are labeled with b, d, f, h, j, and . The drop-
ping rainflows at these peaks and valleys are denoted
by DP and DV, respectively while, the rainflow between
the peak and valley (i.e., on the rooftop) is denoted by
RF. The following rules are observed in RCCA:

« Arainflow between a peak and valley (RF) starts at
each peak or valley and stops at the opposite end
point if there is no obstacle in between.
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« A dropping rainflow is created after the RF reaches
the end point. In this case, DP or DV is created after
the RF reaches a peak or valley, respectively. New
dropping rainflows are created at all valleys and
peaks except those from the dropping rainflows at
eandi.

«  The dropping rainflow stops when the next drop-
ping point is greater (i.e.,, smaller for valleys or
higher for peaks) than or equal to the previous
point just before the dropping is created. In this
case, DP stops when the next valley is smaller than
or equal to the previous valley or DV is stopped
when the next peak is higher than or equal to the
previous peak. For example, DP from peak b stops
when the valley at c is smaller than the previous
valley at a. Meanwhile, the DP from peak f contin-
ues when the valley at g is higher than that at e and
keeps continuing when valley at i remains higher
than that at e.

«  The rainflow stops upon meeting another rainflow.
In this case, the RF stops upon meeting the drop-
ping rainflow (either DP or DV; for instance, at ¢, g
and j') and is replaced with the respective rainflow
(i.e., DP or DV, respectively). This case also applies
when the dropping rainflow meets an earlier drop-
ping rainflow (for example, at f'), and the current
dropping rainflow is replaced with the earlier drop-
ping rainflow.

SOC (%)
20 30 40 50 €0

0 10

70 80 90 100

Time (s)

Fig. 2. A rotated curve of SOC over time

A half cycle is counted whenever the RF stops, and a
full cycle is counted when the RF meets the DP or DV
while considering a starting point from where DP or DV
is created. Fig. 2 shows 3 full cycles for c-d-c’, g-h-g} and
j-k-j' and 5 half cycles for a-b, b-c, e-f, f-g, and i-j. There-
fore, a total of 5.5 cycles is counted, and their ampli-
tudes are recorded for further analysis. Applications of
RCCA for battery life cycle assessment can be divided
into power systems and EVs as will be discussed in the
following subsections.

3.1. APPLICATIONS IN POWER SYSTEMS

A large-scale BES is normally used in power sys-
tems to improve their operation. Muenzel et al. [31]
developed a battery life cycle prediction technique
that focuses on the operational optimization of bat-
tery management. This technique considers multiple
changing cycling parameters of Li-ion battery cells.
Five operating factors are considered in four sepa-
rate models, including charge and discharge currents,
maximum and minimum operating cycle limits, and
temperature. The models were then calibrated using
experimental battery data. RCCA and discretization
technique were used to incorporate dynamic factors
into the battery cycle profiles and to solve the opti-
mal battery operation problem. Xu et al. [32] intro-
duced a semi-empirical degradation model to make
assessment on the battery cell degradation from its
charging and discharging profiles. This model can be
applied for various types of Li-ion batteries by tun-
ing the model based on manufacturer's data. The in-
corporation of RCCA allows the model to determine
stress cycles from irregular charging and discharging
operations. Shi et al. [33] established a convex RCCA
degradation cost with respect to BES charging and
discharging operations. The degradation model can
be easily incorporated into a sub-gradient of the opti-
mization algorithm due to its convexity. Shi et al. [34]
later proposed an optimal control of BES to maximize
profit under a “pay-for-performance” scheme where a
payment is made when the BES operation complies
with the utility company instructions. The degrada-
tion cost was also considered by using the convex
RCCA as discussed in the previous work.

Assessing the economics of using batteries to reduce
peakdemand and price arbitrage is becoming attention
among researchers and energy suppliers. Schneider et
al. [35] developed an approach to minimize investment
and operational costs by determining appropriate bat-
tery technology and size, and scheduling the battery
operation, respectively. RCCA has been integrated into
a multitasking optimization platform for battery selec-
tion and shipping. The results of a simulation study con-
ducted by a Swiss power provider showed that battery
integration can make economic sense if its capacity
and drive units are carefully selected, highlighting the
importance of battery size selection. Rosewater et al.
[36] presented an advanced optimal control method to
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maximize the benefits of battery integration. The SOC,
temperature and SOH of Li-ion battery cells are mod-
eled in a predictive controller that allows battery op-
eration scheduling, air conditioning and forced air con-
vection, optimizing energy consumption and reducing
electricity bills. RCCA was also used to develop the SOH
model that produces a linear relationship between bat-
tery usage and degradation. Singh et al. [37] proposed
Mixed Number Linear Programming (MILP) to optimize
the operation of home appliances and manage energy
from distributed energy resources (DERs) and the pow-
er grid based on price-based pricing and usage hours.
An energy management system and a load planning
system were developed, integrated into a house. Data
were analyzed using RCCA to assess the decline in per-
formance of residential BESs through EOL.

The financial benefits of BES are usually estimated
based on the profits gained from system operations by
utilizing batteries, but this approach ignores the fact
that battery operations reduce the battery lifetime it-
self. Foggo et al. [38] developed a framework for BES
valuation that co-optimizes with a realistic degradation
model to maximize profits and mitigate battery degra-
dation at the same time. RCCA was used to calculate
equivalent cycles from SOC profiles that gives the bat-
tery degradation. Lee et al. [39] proposed a new battery
degradation cost formula for optimal BES operation
planning. The RCCA-based mining cost was formulated
as piecewise linearity using an auxiliary SOC. Therefore,
the optimal scheduling of BES together with the bat-
tery life cycle characteristic can be modelled as a MILP
problem and solved using a gradient-based solver. As
a result, an optimal scheduling BES operation can be
determined quickly. Soleimani et al. [40] presented an
active distribution network (ADN) that uses an energy
storage system (ESS) within their constraints to opti-
mize battery lifespan and minimize the operating cost.
They found that BES is operated at a lower rate if the
battery lifespan is taken into account, thus underutiliz-
ing the battery capacity. In their later work, Soleimani et
al. [41] proposed a method for BES scheduling in ADN
to minimize operating costs and reduce the impacts on
BES lifespan. This method uses a linearized and convex
AC-OPF model for a quick and accurate calculation. A
two-stage stochastic optimization approach and K-
means clustering were also used to address the uncer-
tainties in different case scenarios where the battery
degradation was determined using RCCA.

The penetration of DERs has created challenges in
distribution network to maintain its operation within
the statutory limits. Tang et al. [42] proposed a Lagrang-
ian-relaxation-based algorithm that solves an optimal
BES scheduling in distribution networks with DERs by
incorporating an RCCA-based degradation model and
using Copula theory to capture the uncertainties of
DERs. This algorithm allows the incorporation of more
scenarios into the BES scheduling framework and effec-
tively captures the uncertainties of DERs. Chawla et al.
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[43] examined the major applications of energy storage
in utilities as well as the requirements and challenges
faced by BESs. RCCA was used to estimate the battery
degradation under dynamic duty cycles, assuming that
duty cycles are known in advance and that battery deg-
radation in microcycles is independent of macrocycles.
This work illustrates the trade-off between the initial
investment cost of BESs (i.e, battery sizing) and the bat-
tery life cycle degradation cost. Abdulla et al. [44] intro-
duced a stochastic dynamic programming approach
that optimizes ESS performance over a shorter time ho-
rizon by leveraging available forecasts and a multifac-
tor battery degradation model that takes operational
influences into account. This approach aims to maxi-
mize the battery life cycle based on information from
the forecasted data and operational impacts on battery
degradation. This degradation model uses a dynamic
RCCA that uses the time-history of discharge profiles to
determine the equivalent degradation cycles.

Photovoltaic (PV) energy production fluctuates
due to high intermittent in the solar radiation inten-
sity caused by moving clouds. An ESS equipped with
a ramp-rate (RR) control can be used to mitigate the
fluctuations of PV output. Martins et al. [45] conducted
a comprehensive analysis of PV power balancing tech-
niques using ESS through RR control scheme and en-
sure SOC at the end of the day is remain as the start.
ESS capacity requirements were quantified using RCCA
from operation profile and DOD analysis. A grid-con-
nected PV system aims to generate power according
to the hourly production bids in the electricity market
to avoid penalties. Beltran et al. [46] analyzed the ag-
ing of six different battery chemistries, including Li-ion,
Sodium-sulfur, Nickel-cadmium, Nickel-metal hydride,
Lead-acid, and Lead-gel, in a large-scale grid-connect-
ed PV system that participating in the electricity mar-
ket. A systematic annual analysis was performed using
RCCA to determine the number of cycles experienced
by BES. In this case, BES was used to ensure that the
energy input from PV meets the market demand. Alam
et al. [47] elucidated the influence of PV variability on
the ESS life cycle using RCCA. A realistic concept of life
cycle degradation was derived from data from a real
PV system in Australia. Hossain et al. [48] implemented
a preventative energy management scheme that tak-
ing into account the battery degradation costs to ac-
curately represent the actual cost of ownership. The
management scheme considers the operation cost of
battery from charging/discharging profiles and then,
uses particle swarm optimization and RCCA to mini-
mize the cost.

As RES become more widespread, the need for fast
and reliable support services increases. Ochoa-Eguile-
gor et al. [49] analyzed ESS's participation in dynamic
storage and continuous intra-day auctions in the UK.
A battery SOC management strategy was developed,
and the battery life cycle was estimated using an aging
model based on RCCA and Wohler curves. Furthermore,
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a techno-economic analysis was carried out to demon-
strate the technical feasibility and reliable operation of
the BES. Karmiris et al. [50] evaluated different control
methods for BES in renewable power smoothing ap-
plications. The effectiveness of each control algorithm
in terms of renewable smoothing and battery stress
was analyzed, and the battery stress and life cycle were
estimated using RCCA. A good renewable smoothing
strategy can negatively impact the battery life cycle.
Bouakkaz et al. [51] proposed a strategy for maximizing
battery life cycle by managing the battery operations.
This strategy minimizes the number of battery cycles
per day by scheduling adjustable loads and controlling
the charging and discharging processes. The optimiza-
tion problem was solved using particle swarm optimi-
zation, and RCCA was used to calculate the number of
battery cycles. Dragicevic et al. [52] proposed a tech-
nique to minimize the energy consumption of an au-
tonomous remote installation based on robust mixed-
number linear programming. This model identifies the
optimal combination of renewable energy and ESS,
considering the service life of the telecommunications
system and the attractiveness of different battery tech-
nologies. This technique shows flexibility in solution ac-
curacy and computational load, and RCCA was applied
to account for the DOD-related cycles.

Lee et al. [53] presented an optimal scheduling
framework for BES in MG to address the uncertainties
in RES and load demand. This framework minimizes
BES service life degradation and ensures economic vi-
ability of MG operations. Monte Carlo simulation and
K-means clustering algorithm were used to deal with
the uncertainties, while RCCA was used to process the
BES charging/discharging profiles. In isolated MGs, the
integration of RES, diesel generators and storage bat-
teries are necessary to minimize fuel consumption and
ensure continuous power supply. Boqtob et al. [54] in-
vestigated the optimal power distribution for MG en-
gines and used RCCA to count charge/discharge cycles
and quantify battery degradation. Li-ion batteries are
widely used for real-time power balancing to ensure
the economic operations in islanded MGs. With respect
to battery degradation, Lyu et al. [55] proposed a novel
degradation model for Li-ion batteries in islanded MGs
that considers real-time management using RCCA and
an online auction system. This model was formulated
as a mixed integer non-linear programming (MINLP)
and used weighted model predictive control to ad-
dress uncertainties in the look ahead window.

The future of smart grids highly depends on large
battery storage. As the use of batteries in energy mar-
kets continues to increase, the need for an optimal bid-
ding strategy becomes increasingly important. Batter-
ies can increase profitability through a rapid regulation
service based on their performance. However, frequent
charge/discharge cycles can shorten battery life, espe-
cially with quick setup services. He et al. [56] developed
an auction model that takes battery life cycle into ac-

count for profit maximization in the energy market bid-
ding. This model determines optimal bids in energy,
reserve trading and day-ahead regulatory markets and
uses an online distributed calculation method to de-
crease its complexity. The model offers battery storage
investors a valuable tool to make decisions about ten-
ders and operating programs and to assess economic
feasibility. Correa-Florez et al. [57] proposed a stochas-
tic approach for home energy management systems
(HEMS) that considers BESs, PV resources and electric
water heaters in daily operation framework. A swarm
optimizer minimizes operating costs by considering
the purchase of energy from the wholesale market and
the corresponding cost of battery aging. This approach
takes into account uncertainties in PV production and
charging and is a valuable tool for optimizing HEMS
operations. The cost of cyclic battery aging was consid-
ered using a memory disaggregation algorithm based
on Lagrangian relaxation and RCCA. This approach can
handle complex switching behavior and reduces the
search space in optimization problem. Therefore, the
decomposition strategy is supplemented by a compet-
itive swarm optimizer.

Rapid charge/discharge operation in off-grid wind
energy systems and high discharge currents during
motor start-up and other high-load scenarios can re-
duce the battery life cycle. Li et al. [58] attempted to
solve this issue by integrating superconducting mag-
netic energy storage into conventional batteries to
minimize short-term power cycling and high discharge
currents. The wind power was incorporated with ESS,
load fluctuations and wind turbulence to demonstrate
system performance. A battery life model was also
used to estimate the improvement in battery life due
to the reduction of charge/discharge cycles and dis-
charge rate, while RCCA was used to isolate irregular
charge cycles and discharges experienced by the bat-
tery within the simulation period. Pan et al. [59] inte-
grated cyber-physical systems (CPS) into the control
framework of hybrid energy storage system (HESS) and
used multi-objective optimization to solve the prob-
lem. The performance of HESS can be significantly im-
proved by incorporating physical models and real-time
data through CPS. The multi-objective optimization
control scheme was developed for the HESS battery su-
percapacitor that considers component characteristics,
reduces power consumption and maintains SOC within
the required limits. RCCA was used to predict battery
life and quantify the benefits of using HESS as part of
the control plan.

Open cycle gas turbines (OCGTs) are often used to
provide fast-frequency regulation in maintaining the
system frequency within the required limits. However,
these OCGTs are expensive. As an alternative, frequen-
cy regulation can be provided using ESS due to its
quick response capability. Lian et al. [60] proposed a
suitable size of OCGTs and ESSs to provide frequency
regulation in response to load fluctuations. RCCA was
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used to determine the battery life cycle, and to ac-
curately determine the cost savings from ESS specifi-
cally for frequency regulation, hence highlighting the
advantages of ESS over OCGTs. Loew et al. [61] imple-
mented a cycle identification system using RCCA in
model predictive controller for Li-ion batteries to ac-
curately estimates the revenue of ESS by considering
the cost of aging. Anand et al. [62] improved the large-
scale integration of wind energy into the power grid.
An economical nonlinear model predictive controller
(ENMPC) was developed to operate a wind turbine
and a battery as a hybrid system to supply energy to
the grid. ENMPC calculates the revenue from electric-
ity generation considering the costs associated with
mechanical fatigue damage to the wind turbine tower
and the cyclical loss of Li-ion battery capacity. An on-
line parametric RCCA was implemented to determine
the cyclical loss.

Traditional energy generation facilities have exhib-
ited a marked dependence on hydrocarbon resources
to meet the increasing energy requirements prompted
by accelerated demographic expansion and an array
of technological advancements. Obaro et al. [63] mod-
elled an optimal energy framework and power manage-
ment strategy for an off-grid distributed energy system
(DES). The management strategy is co-optimized with
various energy generation modalities as a fundamen-
tal objective to guarantee reliable and cost-effective
power delivery to electrical loads, whilst conforming
to a defined set of operational system requirements.
Furthermore, the MINLP optimization methodology is
applied to improve the generation efficiency of power
systems that are interconnected with diverse energy
sources and variable electrical demands. Considering
the recurrent cycling behavior of batteries within the
DES, the RCCA is implemented to calculate the cumula-
tive number of cycles.

The cost function of Li-ion battery within the elec-
tricity market necessitates an optimal equilibrium be-
tween the maximization of revenue derived from en-
ergy arbitrage and the minimization of capacity deg-
radation resulting from operational usage. The optimal
equilibrium can be attained by integrating the stresses
associated with DOD and thermal conditions of the bat-
tery into the optimal economic dispatch framework. A
series of physics-based sufficient conditions have been
formulated to effectively manage the non-analytical
nature of RCCA, while simultaneously accounting for
temperature variations at the cell level. The suggested
stress-conscious optimal battery dispatch (SC-OBD)
paradigm is executed within the framework of a bat-
tery operating in both day-ahead and real-time bal-
ancing market environments. Furthermore, Singh et al.
[64] introduced a predictive control-based framework
model to address the unpredictability of real-time elec-
tricity pricing and the need to guarantee adherence
to agreements made in the day-ahead market. Table 2
summarizes the applications of RCCA for battery deg-
radation assessment in power systems.
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Table 2. RCCA applications in power systems

Research
work

[31]

[32]

[33]

[34]

[35]

[36]

1371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Highlight/Advantage

Multiple changing cycling
parameters are considered

Adaptable degradation model
to various Li-ion batteries

A convex degradation model

An online model for market
bidding
An optimal sizing of battery for
investment

A linear degradation
relationship with battery usage

A smart residential energy
management system
An improved battery lifetime
framework

A piecewise linear degradation
cost

Battery utilization in power grid
ancillary services

A linear and convex AC-OPF
model

A correlation between
degradation cost and DER
uncertainties

Battery degradation accounted
in micro cycle

A multi-factor battery
degradation model

Constraints on RR and SOC
endpoint are included

Various battery chemistries for a
large-scale PV

A realistic life cycle degradation
for PV plant
An optimal energy
management for PV and ESS
system

Wohler curves are integrated for
aging evaluation
Various battery stress conditions
including low DOD

Optimal scheduling of shiftable
loads and battery operation

Lifespan of the
telecommunications facility is
considered
A Monte Carlo simulation is
used to consider uncertainties
Battery degradation in optimal
energy dispatch framework
Energy market bidding during
an islanded operation
A fast market bidding decision
for battery owners
Lagrangian relaxation is used
for model simplification
Integrated with
superconducting magnetic
energy storage

Actual field data is considered
using CPS platform

Limitation

A fixed operating
temperature
Extreme conditions (i.e,
low SOC, over-voltage,
etc.) are not considered
Underestimate the
actual degradation
effects
Uncertainties of loads
are not considered
A calendar aging is
neglected
A specific usage
behavior
(air-conditioning)
Open loop battery
capacity assessment
A pre-determined set of
battery actions
High computational
cost
A specific type of
batteries
High C-rates are
neglected
The potential voltage
instability of DERs is
underestimated
Internal battery
resistance is neglected
A time value-of-money
is not accounted
Battery capacitance is
neglected
Operating temperature
is fixed
Low DOD is not
considered

High computational
time

Variation of DODs is not
considered
Variation of C-rates is
neglected
Intermittent of
resources and loads is
not considered

Time consuming due to
integer variables

Applicability to real
system is not tested

Tested on a specific type
of batteries
Irregular life cycle
profiles
Appropriate size of
battery is not identified
Limited for planning
perspective

Effect on different
temperature is ignored

Multiple units require
additional scheduling
framework
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A cost saving of ESS for Huge deviation

[60] frequency requlation between actual and
q yreg projection loads
61] A moving horizon of cyclic Not tested on real-life
aging based on MPC battery storage
621 Non-linear characteristics of Micro cyclic damage is
degradation are considered not considered
A modular multi-energy sources  Micro cycling operation
[63] : A .
to improved power reliability is neglected
A stress-aware optimal battery Low DOD C-rates are
[64] -
system dispatcher neglected

3.2. APPLICATIONSIN EVS

EVs primarily rely on batteries for operation, neces-
sitating an effective management system to enhance
their performance. Muenzel et al. [31] developed a bat-
tery life cycle prediction technique that focuses on the
operational optimization of battery management. The
life cycle discussions presented in the previous sub-
section are mainly based on the planning perspective,
which uses a large time interval spanning 15-60 min-
utes. However, the battery charging and discharging
profiles for EVs have a much shorter time interval that
depends on the driver's action to accelerate (discharg-
ing) or decelerate the vehicle through regenerative
braking (charging). In 2010, the Racing Green Endur-
ance project designed and built the world’s largest EV
with a range of over 514 km [65]. Operational data of
battery usage from the Racing Green Endurance proj-
ect was used to develop a new battery degradation
model. This model uses the RCCA method to produce
highly reliable and accurate predictions of capacity
and power losses in vehicle traction batteries. Li et al.
[66] introduced a CPS-based electric vehicle platform
to collect and store battery consumption data in the
cloud, which can be used for battery degradation as-
sessment. Support vector regression algorithm and
RCCA were used to develop a battery degradation
model and study the dynamic characteristics of the
batteries. In their subsequent work, Li et al. [67] used
RCCA with a deep learning algorithm to estimate the
aging of EV's batteries. The RCCA-based approach ef-
fectively extracts the aging history of the battery and
provides an aging index to evaluate the degradation.

EVs are becoming popular for public transportation
because of target to reduce greenhouse gas emissions.
Bai et al. [68] proposed a hierarchical optimization of
energy management strategies using HESS to reduce
the impact of battery aging in plug-in hybrid electric
buses. This strategy includes a power limit management
module that controls the flow rate of the supercapacitor
and battery by redistributing power between them to
drive the motor. A simple but effective battery life cycle
model based on RCCA was used to quantify the rate of
degradation in a battery performance control strategy.
In another work [69], a low profit margin was identified
as the main challenge in managing a fleet of EVs. A con-
trol strategy was proposed for managing a fleet of EVs
in terms of charging and discharging for grid ancillary
services. This strategy minimizes the operational cost by

simultaneously determining the wear of batteries in EVs
and assigning suitable routes for the ancillary services.
The wear of battery was calculated using RCCA and the
integral of the wear density function. Sandelic et al. [70]
proposed an incremental degradation cost using RCCA
to allow for a real-time evaluation of the true cost of
battery operation while considering the degradation ef-
fects in a specific time interval.

An aggregator can achieve frequency regulation by
controlling its generation and demand to cater the
fluctuations in the electricity market due to increasing
contributions from RESs. Vatandoust et al. [71] studied
the participation of an aggregator to manage a fleet of
EVs and ESS operations in a day-ahead energy market
regulation framework. The fleet of EVs and ESSs pro-
vide unidirectional (charging) and bidirectional (charg-
ing and discharging) regulations, respectively. Risk-free
mixed-integer stochastic linear programming was then
applied to plan aggregator participation, and RCCA-
based linear degradation was formulated to account
for the expected degradation costs incurred by EVs
participation. The degradation cost is a key concern for
EV owners that discourages their participation in vehi-
cle-to-grid (V2G) services for regulation purposes. Li et
al. [72] proposed a novel anti-aging V2G active battery
planning approach, which quantified battery degrada-
tion using RCCA during V2G services. The V2G schedul-
ing problem is modelled as a multi-stage optimization
problem that aims to minimize battery degradation
and load fluctuations in the power grid.

In contemporary discourse, the implementation of
sophisticated charging paradigms and management
frameworks that encompass vehicle-to-everything
(V2X) functionalities is essential to alleviate the increas-
ing ubiquity of battery electric buses (BEBs) in urban set-
tings. Nevertheless, the integration of these advanced
functionalities into charging systems may have reper-
cussions on the longevity of the charging infrastruc-
ture. This phenomenon remains unexplored, despite its
significance for operators of BEBs. Verbrugge et al. [73]
developed a thorough evaluation of reliability to inves-
tigate the consequences of intelligent and bidirectional
(V2X) charging on the longevity of silicon carbide-based
high-power off-board charging infrastructure employed
for battery electric buses (BEBs) within a depot environ-
ment designated for overnight charging. The thermal
stress is converted into a quantifiable metric of failure
cycles and cumulative damage through the utilization
of RCCA, a life cycle prediction model for damage ac-
cumulation. Ultimately, a Monte Carlo simulation along
with a Weibull probability distribution fitting is utilized
to determine the reliability of the system.

An essential improvement in the accessibility of rapid-
charging infrastructure is crucial for the effective shift
towards EVs. Nevertheless, the process of charging a
battery pack at increased C-rate has detrimental effects
on SOH, thereby expediting its deterioration. Pelosi et al.
[74] proposed a strategic battery management, which
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considers the diurnal operational patterns of a Li-ion
battery utilized in EVs, anchored in a defined driving cy-
cle that includes charging phases occurring when DOD
attains 90%. Through the dynamic modeling of the EV's
battery system, the progression of the state of charge is
determined for a range of charging C-rates, with meticu-
lous attention given to both discharging and charging
profiles. RCCA was employed to examine the SOC pro-
files, thereby determining the DOD for each individual
cycle, which subsequently informs the practical applica-
tions on the experimental testing apparatus. The above
applications of RCCA for assessing battery degradation
in EVs can be summarized in Table 3.

Table 3. RCCA applications in EVs

Research -TT NP
work Highlight/Advantage Limitation
[65] Long-range empirical EV data A specific battery type
6] An online SVR-based Inadequate data for
assessment verification purposes
A deep learning-based A fixed temperature and
[67] .
assessment specific type of battery
An integrated with super- Maintenance cost is not
[68] ) ) )
capacitor for electric buses considered
. . The wear function is
[69] EVS scljedulmg f.or g not validated on actual
ancillary services .
batteries
(70] An incremental degradation A calendar aging is
cost of EVs neglected
EVs participation in the AEILAEIL s il
[71] L - based on linear
electricity market regulation o
approximations
L ) ) Prediction errors of
(72] Minimize degrad?tlon during battery capacity fade are
V2G services
neglected
Slllcpn carbide (SiC)-based Not tested on real-life
[73] high-power off-board
. battery storage
charging
(74] Capacity degradation tailored Low C-rates are neglected

with high C-rates

4. IMPROVEMENT AND FUTURE WORKS

Despite its wide usage in cycle counting, RCCA has a
non-closed form that hinders its use in optimization. As
a result, recent studies have explored ways to improve
RCCA. For instance, Huang et al. [75] proposed an accu-
rate life cycle prediction for Li-ion batteries. The charge
and discharge profiles are usually faced with interfer-
ence from noise, which is not addressed properly in the
traditional ampere hour approach. The unscented Kal-
man filter algorithm addresses this issue and provides a
highly accurate SOC for SOH prediction. Li-ion batteries
also have a strong non-linearity characteristic that leads
to many small cycles counted in traditional RCCA. Anim-
proved RCCA was then introduced by adding interme-
diate judgement to reduce its sensitivity to data peaks.
A linear damage criterion was then used together with
the improved RCCA to accurately predict the remaining
life of a battery without the need to measure process
parameters. In a later study, Huang et al. [76] improved
RCCA by combining this approach with the autore-
gressive integrated moving average (ARIMA) model to
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predict the SOH of a Li-ion battery. Experiments were
conducted under dynamic stress tests and cycle condi-
tions to validate the performance of the SOH prediction
model using a confidence interval as the acceptable er-
ror range. The combined RCCA and ARIMA show promis-
ing results in predicting the SOH of batteries.

BES duty cycle counting in frequency control is hard
due to irregular charging and discharging caused by fluc-
tuations in grid frequency. The traditional RCCA is based
on extreme points (peaks and valleys) and only starts
counting at the end of data, hence it is inapplicable to
determine the RUL in between load points, especially
in real-time applications. Gundogdu et al. [77] modified
the RCCA to develop a rapid/fast battery cycle counting
method that estimates an equivalent number of complet-
ed cycles that can be used to calculate RUL in microcycles.
Unlike traditional RCCA, the proposed method can calcu-
late half a cycle when the SOC of each battery charge and
discharge independently reaches the maximum value of
100% and one full equivalent cycle can be achieved as sin-
gle battery charge and discharge cycles are recorded. Fur-
thermore, the number of complete equivalent cycles can
also be estimated during the process continuously rather
than waiting for the data collection to end. This method
was applied to T MWh BES at 2 MW maximum operating
power to mitigate the frequency fluctuation problem.The
lack of a comprehensive mathematical formulation for the
RCCA have represented the one of primary barriers to the
widespread implementation of the cycle-based degrada-
tion framework. Diao et al. [78] proposed a meticulous
analytical formulation of the sub-gradients pertaining to
the cycle-based aging cost function to facilitate the effec-
tive resolution of the optimal operational dilemma irre-
spective of a mathematical representation for the RCCA.
The sub-gradient projection algorithm is introduced to
determine the theoretical optimal operation in particular
circumstances where the constraints governing battery
operations may be alleviated.

An example application for the improved RCCA is
also provided in this review for further understanding.
Fig. 3 depicts a flowchart of the improved RCCA used
for real-time applications.

The same notations presented in the previous sec-
tion are used in the figure. A flag is used to indicate the
condition wherein RF meets DV or DP where (1 if true,
and 0 if false). The direction of rainflow is important in
determining whether the next edge is a peak or valley.
Therefore, DirVP is used to indicate a flow from valley
to peak (DirVP = 1) or, from peak to valley (DirVP = 0).
In a casual event as mentioned in the first rule in the
rainflow cycle counting algorithm section, an ampli-
tude (Amp) of the half cycle is calculated as:

Amp=P -V 2)
In the event where RF meets DP or DV (flag = 1), Amp
is recorded using the following expression:

DP -V, ifDirVP =1

SEDES {P — DV, otherwise (3)
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The equivalent number of cycles can then be up-
dated using the recorded Amp at each time step in as
follows:

4)

Amp
100)

Cycle(t) = Cycle(t —1) + 0.5 (—

Fig. 4 shows the total number of equivalent cycles in
respect to SOC at each time step using the improved
RCCA algorithm. The SOC curve in Fig. 4(a) is based on
data as in Fig. 2. The total number of equivalent cycles
at the end of the data can be observed at approximately

Collect initial
SOC data

2.1 cycles as shown in Fig. 4(b). The equivalent cycle is
much smaller than that obtained by the traditional RCCA
at 5.5 cycles as discussed earlier.

The equivalent cycle plot in Fig. 4(b) resembles a stair-
case due to the cycle cannot be updated until the SOC
reaches peaks or valleys. A plateau at the end of the
equivalent cycle plot is caused by the failure to locate a
peak or valley. The limitations of equivalent cycle count-
ing should be addressed in the future works to ensure a
smooth and accurate representation of the battery deg-
radation process.

Determine P or V and set dirVP
Initialize t =1, flag =0, Cycle =0

Update the latest dropping

(DP/DV = SOC)

Stop RF
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DV meets DV?

Stop the old
dropping

Update RF
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Fig. 4. Equivalent cycle counting using the improved RCCA algorithm
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5. CONCLUSIONS

This paper discusses a comprehensive overview of
the applications of RCCA in battery degradation assess-
ment. The relevant literature on the topic is reviewed
by highlighting the advantages and limitations of each
approach. The significance of RCCA in analyzing and in-
terpreting the battery life cycle is emphasized, and oth-
er popular counting algorithms for predicting battery
degradation in EVs and power grid applications are re-
viewed. In addition, improvement of RCCA for battery
degradation assessment in the respective applications
is reviewed and compared with the conventional ap-
proach. A comparison between the conventional and
improved RCCA on an exemplar SOC data shows a sig-
nificant low equivalent cycle at 2.1 cycles for the im-
proved RCCA as compared to the compared to the con-
ventional RCCA at 5.5 cycles. Furthermore, the equiva-
lent life cycle can be updated in each time step using
the improved RCCA rather than at SOC peaks or valleys
in the conventional RCCA. The obtained equivalent cy-
cle using RCCA can also be used to evaluate the aging
process of other electronic equipment. However, RCCA
has several limitations, including its sensitivity to test
conditions such as negligible fluctuations in current
and temperature. Despite these limitations, RCCA, to-
gether with open-source mechanisms and cloud data
sharing, offers the opportunity to reform battery health
assessment. This review serves as a useful reference for
the design and operation of battery health diagnosis
and prediction systems and provides guidance for fu-
ture work on battery degradation assessment.
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