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Abstract - Brushless direct current (BLDC) motors are gaining popularity over traditional direct current (DC) motors due to their
higher efficiency, compact size, and precise control capabilities. This study proposes a fast and accurate approach to BLDC motor design
using a Bayesian neural network (BNN). The BNN, a specialized form of the multi-layer perceptron (MLP), offers strong resistance to
overfitting and performs effectively with noisy or limited datasets, making it well-suited for complex motor design problems. In the
proposed method, the BNN is applied within an inverse modeling framework to map desired motor performance parameters to the
corresponding design variables. A dataset for an outer-rotor BLDC motor—containing both design parameters and the resulting output
torque—is generated through finite element analysis (FEA). Finally, a demonstration of BLDC motor design using the BNN validates the

effectiveness of the proposed approach.
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1. INTRODUCTION

Brushless DC (BLDC) motors have been extensively
studied in recent decades due to their high efficiency,
reliability, and precise motion control capabilities. Their
compact design and lightweight construction facilitate
accurate speed and torque regulation, making them
well-suited for modern engineering applications [1].
Unlike traditional brushed DC motors, BLDC motors
employ electronic commutation instead of mechanical
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commutators. Consequently, they have been widely
adopted in diverse fields such as industrial automation,
electric vehicles, drones, medical devices, and home
appliances, where precise speed control, low mainte-
nance, and high efficiency are critical requirements.

Finite element analysis (FEA) is essential for design-
ing and optimizing electromagnetic devices such as
BLDC motors. It enables engineers to evaluate motor
performance under various operating conditions, and
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by simulating electromagnetic behaviors and mechan-
ical stresses, it allows for precise design adjustments
before production. This approach reduces develop-
ment costs while improving efficiency, reliability, and
overall performance [2].

A major challenge in BLDC motor design is cogging
torque, which affects smooth operation and overall
efficiency. Extensive research has been conducted to
analyze and mitigate this issue. Studies indicate that
factors such as stator tooth width and slot-pole align-
ment significantly influence cogging torque and can be
optimized to enhance motor performance [3]. In outer-
rotor BLDC motors, optimizing the stator core design is
an effective strategy for reducing cogging torque [4],
while in inner-rotor BLDC motors, segmenting the ro-
tor’s permanent magnets is commonly employed to
minimize cogging effects [5]. Furthermore, field-orient-
ed control (FOC) is an advanced technique that reduces
cogging torque by incorporating dominant harmonics
from the cogging torque waveform into the g-axis cur-
rent reference, thereby counteracting torque ripples
and minimizing speed variations [6].

BLDC motors with trapezoidal back electromotive
force (BEMF) traditionally require six rotor position sig-
nals for inverter control, typically detected by Hall-effect
sensors embedded in the motor. While effective, these
sensors increase manufacturing costs and are sensitive
to temperature variations, which can reduce system re-
liability. To overcome these limitations, sensorless con-
trol techniques have been extensively developed over
the past two decades. A common approach estimates
rotor position and regulates speed by detecting BEMF
zero crossings from terminal voltages [7]; however, this
method performs poorly at low speeds due to weak in-
duced voltages. To address this issue, a novel sensorless
position detection technique based on a speed-inde-
pendent position function has been proposed [8], sig-
nificantly improving estimation accuracy and enhancing
system performance across a wide speed range.

The design of electromagnetic devices—such as elec-
tric motors, transformers, and inductors—is a complex
process that requires balancing multiple performance
criteria, including efficiency, thermal management,
weight, and material costs [9, 10]. This challenge is often
formulated as an optimization problem, where the ob-
jective is to minimize or maximize a specific cost func-
tion, such as power loss, torque ripple, or electromag-
netic interference. Stochastic optimization methods,
including genetic algorithms (GA) [11], particle swarm
optimization (PSO) [12], and simulated annealing (SA)
[13], are widely applied because of their effectiveness
in exploring complex, multi-dimensional design spaces.
These methods use iterative procedures to evaluate de-
sign parameters at each step, progressively refining so-
lutions to approach an optimal configuration.

Artificial neural networks (ANNs) are transforming the
design of electromagnetic devices by enhancing simu-
lation efficiency, optimizing design parameters, and ad-
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dressing complex inverse problems. These computational
models can learn and represent intricate nonlinear rela-
tionships, making them especially valuable in scenarios
where conventional physics-based methods are limited
or computationally expensive [14, 15]. A key advantage
of ANNs is their ability to process large datasets and de-
tect patterns that traditional methods may overlook, en-
abling more accurate and faster performance predictions
for electromagnetic devices. When integrated with FEA,
ANNSs facilitate more efficient and precise optimization of
permanent magnet (PM) motors [16]. For example, ANNs
trained on FEA-generated data can model complex elec-
tromagnetic behaviors and predict motor performance
under varying conditions. This hybrid approach allows
for rapid evaluation of design alternatives, significantly
reducing the time and cost associated with physical pro-
totyping and extensive simulation runs.

Bayesian neural networks (BNNs) extend traditional
multi-layer perceptron (MLP) neural networks by incor-
porating principles of Bayesian inference [17]. Unlike
conventional MLPs, which learn fixed point estimates
for their weights and biases, BNNs treat these param-
eters as probability distributions, enabling the quan-
tification of uncertainty in predictions. In this study,
BNNs are applied to the accurate design of an outer-
rotor BLDC motor. FEA was performed to generate a
dataset for training the network. Once trained, the BNN
computes optimal motor design parameters to achieve
a specified target torque. The remainder of this paper
is organized as follows: Section 2 discusses the theory
of BNNs and their application to regression problems;
Section 3 introduces FEA for electromagnetic devices,
with emphasis on BLDC motors; Section 4 details the
proposed design methodology for the outer-rotor
BLDC motor using BNNs; and Section 5 presents the
conclusions and outlines directions for future research.

2. BAYESIAN NEURAL NETWORKS FOR
REGRESSION PROBLEMS

2.1. MULTI-LAYER PERCEPTRON NETWORKS

A MLP neural network takes a vector of real-valued
inputs and computes one or more activation values
for the output layer. In a network with a single hidden
layer, as illustrated in Fig. 1, the activation of the output
layer is calculated as follows:

m d m
a, (1) =b, + ) w, ranh[bj +Zwﬁx,] = b+ ) Wy, (1)
j=1 i=1 j=1

Here, x, are real inputs, w, is the weight on the con-
nection from the input unit i to the hidden unit j; simi-
larly, w,; is the weight on the connection from the hid-
den unit j to the output unit k. The b, and b, are the bi-
ases of the hidden and output units. These weights and
biases are the parameters of the MLP neural network.
Then the activation a, (x) are used to compute the out-
puts of the output layer by using a “linear” activation
function as follows:
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z, = a,(x) (2)

The training of an MLP neural network aims to minimize
a data error function structured in the following way:

N ¢

1 n_n)2

Ep=>2 (2 1) 3)
n=1 k=1

Inwhich z,"is the k-th output corresponding to the n-th

training pattern and t," is the k-th target corresponding

to the n-th training pattern.

Wji

Yim

Fig. 1. Structure of MLP neural networks

2.2, NETWORK REGULARIZATION

In MLP neural networks, regularization is employed
to prevent any weights and biases from becoming ex-
cessively large, as large weights and biases can lead to
poor generalization on new test cases. To address this
issue, a weight function, E,is added to the error func-
tion to penalize large weights and biases. Specifically,
for regression problems, this approach is utilized to en-
hance model performance and a total error function,
S(w), is defined as follows:

Where [ and a are non-negative parameters, also
known as “ hyperparameters , need to be determind-
ed. The weight function, E, usually originates from the
theory of weight priors having the following form:

1
By = ol 5)

Where w is the vector of the weights and biases in
the network.

2.3. BAYESIAN INFERENCE

In Bayesian inference for MLP neural networks,
and a can be automatically determined. This process
considers the Gaussian probability distributions of the
weights and biases which can give the best generaliza-
tion. In particular, the vector of weights and biases, w,
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in the network is adjusted to their most probable val-
ues given the training data D. Specifically, the posterior
distribution of the vector of weights and biases can be
computed using Bayes'rule as follows:

p(DIw)p(w)
wlD)=—————=~
p(w|D) (D) 6)
In this formula, p(D|w) represents the likelihood func-
tion, which captures the information derived from ob-
servations. In contrast, the prior distribution p(w) incor-
porates information based on background knowledge.
The denominator, p(D), known as the evidence for the
network.

The requirement of small values of weights and bi-
ases in the MLP neural network suggests the use of a
Gaussian prior distribution for the vector of weights
and biases as follows:

O i L I

Where ZW(a) is a normalization constant given by:

Zy (a)= (lem 8)

a

In equation (8), W is the number of weights and bi-
ases in the network. The likelihood function is given by:

P meo( 55| g

1
Z5(B)

Where Z () is a normalization factor given by:

In equation (10), N is the number of training patterns.
At the most probable vector of the weights and biases,
, the Hessian matrix of the total error function, 4, can be
evaluated as follows:

A=VVS(w,,)=pH +al

(10)

(11)
Where [ is the identity matrix. H=VVE (w, ) is the

Hessian matrix of the data error function at the most
probable vector, w, , of weights and biases.

If the posterior distribution of weights and biases is
assumed as a Gaussian, then it is given by:

1 1
p(w|D)= —exp(—S(wMP)——AwTAij (12)
Z 2
Where Aw=w-w, ,and Z_ is a normalization constant
given by:

Zg =eXp(—S(wMP ))(277)W/2 (detA)_U2 (13)
Re-arranging (6) gives:

_p(DIw)p(w)

p(D)= (%1 D) (14)
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Substituting (7), (9) and (12) into (14) results in:

p(D) = exp(—S(wMP ))[(gj j(aW/z)(detA)_“z (15)
Taking the logarithm of (15) gives:

lnp(D)=—S(WMP)+%In(ﬂ)—%ln(27z)+

+%ln(a) —%ln(detA)

(16)

In this context, the variable In p (D) is referred to as
the“log evidence”. To optimize the log evidence In p (D)
with respect to q, it is necessary to compute a partial
derivative of the log evidence as follows:

dlnp(D) w1 8(1n(detA))

- /- F - 7 (17)
b (M)t o

In (17), W is computed as follows:

8(In(det 4)) :i a

18
oa A +a (18)

i=1

Where A, are the eigenvalues of the Hessian matrix of
the data error function, H=VVE  (w, ). Substituting (18)
into (17) gives:

81np(D)_ ol «a
da EW(WMP)+Z 5;/1,.+0(

(19)

The optimal value of a is determined when the right-
hand side of equation (19) is equal to zero to obtain the

following equation:

W
a

20E, (W) =W - (20)

— A+a

The right-hand side of equation (20) is equal to a val-
ue y defined as follows:

W

_W 5 a — /11
e _Zﬂ] +05_Zﬂ] +a

i=1

(21)

If A>>a, y is approximately equal to 1. Whereas, if
A<a,yis nearto 0.y is used to measure the number of
“well-determined” parameters in the network.

From equations (20) and (21), @ can be determined

as follows:
v

2L, (wyy)

Similarly, to optimize the log evidence In p (D) with
respect to B, it is also necessary to compute a partial
derivative of the log evidence as follows:

a (22)

o(In(det 4
anp(D)__p o, v, N _19(n(etd)
op 28 2 op
In (23), %;m)) is computed as follows:
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O(In(det 4 | &
(In( )):_z o 04
op B~ 4 +a
Substituting (24) into (23) gives:
dln p(D) N 1~ 4
P\ F I i
Y. > (W) * 52 25 ga @9

The optimal value of S is determined when the right-
hand side of equation (25) is equal to zero to obtain the
following equation:

ZﬂED(wMP):N—i/l

A
—=N-y7  (26)
+a

From equation (26), 8 can be determined as follows:
N —

B W A

2E, (W)

Choosing the number of input, hidden, and output
nodes in a BNN for regression is similar in principle to
standard neural networks, but the Bayesian framework
adds a probabilistic perspective that helps control
overfitting and provides uncertainty estimates.

(27)

«  The number of input nodes is equal to number of
features (independent variables) in dataset.

A single output node (the predicted continuous
value).

Number of hidden nodes can be determined from
heuristic starting points. For example, the number of
hidden nodes can be computed by the following rule:

N,+N,,
N/ndden = mf’ (28)

WhereN ,N  andN, . are numbersofinputnodes,
number of output nodes and number of hidden nodes,
respectively.

2.4. THE QUASI-NEWTON METHOD

The training of an MLP neural network involves mini-
mizing the total error function, S(w), through an itera-
tive process. The quasi-Newton method, which extends
the gradient descent method, can be effectively used
to minimize this error function. In Newton method, the
vector of weights and biases of the network can be up-
dated as follows:

w

m+l = Wm _Ar;lgm (29)

The vector -Am™ g is called the “Newton direction”
or the “Newton step” However, the evaluation of the
Hessian matrix, Am™, can be very computational. From
equation (29), we can form the relationship between
the weight vectors at steps m and m+1 as follows:

w

m+1

= WU’I _a F gﬂ’!

m- m

(30)

From equation (30), if a =1 and Fm=Am’1, we have the
Newton method, while if Fm=I, we have the gradient
descent method with the learning rate .
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F_can be chosen to approximate the Hessian ma-
trix. In addition, F_must be positive definite so that for
small @ we can obtain a descent method. In practice,
the value of @ can be found by a “line search”. Equa-
tion (30) is known as the quasi-Newton condition. The
most successful method to compute F_is the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) formula as follows:

T T
——(F'”:)V F, +(vTFmv)uuT
v v Fv

31

Where p, vand u are defined as:

p= Wm+1 - Wm (32)

v=gm+1 _gm (33)
p _ by

P (34)

T T
pv Vv FEy

Finally, training MLP neural networks using Bayesian
inference involves several key steps as follows:

Step 1: Initialize the weights and biases for the net-
work, and initialize the values for the hyperparam-
eters fand a.

Step 2: Minimize the cost function S(w) (4) using
the quasi-Newton method and calculate y as fol-
lows:

w

A
Voia = z —/1,- o,

i=1

(35)

Where A are the eigenvalues of the Hessian matrix
of the data error function, H=VVE.

Step 3: When the cost function has reached a local
minimum, re-estimate the values of the hyperpa-
rameters as follows:

Yold
a =
new ZE’V (36)
N~V
ﬁnew * 2ED (37)

Step 4: Repeat steps 2 and 3 until the convergence.

3. FEAFORBLDC MOTORS

The operating principle of many electromechanical
devices is based on electromagnetic theory, and these
devices can often be mathematically described using
partial differential equations (PDEs). Analyzing such
devices therefore requires methods for solving PDEs.
Since analytical techniques often fail to provide ac-
curate solutions, the finite element method (FEM) has
emerged as a powerful tool for addressing PDEs in the
analysis of electromagnetic systems. The FEA process
for a specific electromagnetic device typically involves
four key steps:
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«  Discretize the solution region into finite elements.

- Derive the governing equations for each individual
element.

Assemble all the finite elements within the solu-
tion region.

Solve the resulting set of equations.

In this study, Finite Element Method Magnetics
(FEMM), a free and open-source computational tool, is
utilized to analyze the performance and characteristics
of a BLDC motor. FEMM has gained popularity in both
academic research and industrial applications due to
its accessibility, efficiency, and capability to handle
complex electromagnetic problems using FEM [18].

To set up FEMM, the problem type must first be defined,
typically as a planar or axisymmetric magnetic problem
with appropriate units. The geometry of the device, such
as the stator, rotor, air gap, and windings, is then drawn or
imported, and each region is assigned suitable material
properties from the FEMM library or custom definitions.
Boundary conditions, excitations (such as currents or per-
manent magnet properties), and circuit parameters are
specified to represent the operating conditions. The mod-
el is then discretized using a finite element mesh, refined
in critical regions like the air gap for higher accuracy. Fi-
nally, the analysis is run, and the postprocessor is used to
visualize field distributions and extract key performance
quantities such as flux linkage, torque, or inductance.

A key advantage of FEMM is its ability to integrate with
MATLAB. This interaction enables users to define com-
plex electromagnetic problems, execute simulations,
and extract results programmatically within the MATLAB
environment. Through MATLAB commands, researchers
can automate the analysis process, perform parametric
studies, and optimize motor designs more efficiently.
This integration is particularly valuable for iterative de-
sign workflows, where multiple simulations are required
to evaluate the impact of design parameter variations
on motor performance. Fig. 2 shows a commercial outer-
rotor BLDC motor, while Fig. 3 illustrates its 2D finite ele-
ment analysis (FEA) conducted using FEMM.

S

.
AN
\

LR \ A\
SRR

., {Mlmﬂpll'l
Ty

Fig. 2. Commercial outer-rotor BLDC motor
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Fig. 3. 2D-FEA of a commercial outer-rotor BLDC
motor

4. DESIGN OF BLDC MOTORS USING BAYESIAN
NEURAL NETWORKS

This section presents a detailed procedure for design-
ing a small-scale outer-rotor BLDC motor. The motor’s
dimensional and electrical parameters are as follows:

. Stator outer radius (rso).
.  Stator inner radius (rsi).
«  Magnet thickness (dm).
Can thickness (dc).
Depth of slot opening (ds).
Pole fraction spanned by the magnet (fm).
Pole fraction spanned by the iron (fp).

«  Width of the tooth as a fraction of the pole pitch at
the stator (ft).

< Back iron thickness as a fraction of tooth thickness
(/D).
Stator to magnet mechanical clearance (go).
Axial length of the machine (hh).

«  Peak current density in the winding (Jpk).

Fig. 4 illustrates the process of generating the dataset
used for training the Bayesian neural network (BNN).
The dataset was constructed to capture the complex
nonlinear relationships between the design param-
eters of the BLDC motor and the corresponding output
torque values. To ensure diversity and representative-
ness, multiple variations of key design parameters—
such as stator and rotor dimensions, air gap length,
winding configurations, and material properties—were
systematically simulated. Each configuration was ana-
lyzed using FEA, producing torque outputs under speci-
fied operating conditions. This process resulted in a
dataset consisting of 2000 distinct patterns (N = 2000),
derived from a commercial outer-rotor BLDC motor.
The large number of samples provides sufficient cov-
erage of the design space, allowing the BNN to learn
both linear and nonlinear dependencies effectively.
By incorporating such a dataset, the network is better
equipped to generalize across unseen configurations,
thereby improving its predictive accuracy and robust-
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ness in motor design optimization. The ranges for the
design parameters and output torque of the motor are
provided in Table 1. Lastly, the dataset was utilized to
train the BNN according to the procedure outlined in
Fig. 5. The BNN has the following structure:

« An input corresponding to the desired output
torque

«  Six units in the hidden layer

. Twelve outputs in the output layer, representing
the twelve design parameters that need to be de-
termined

In this research, the training algorithm of the BNN is
based on the quasi-Newton optimization method. This
approach is chosen because it provides a balance be-
tween computational efficiency and convergence ac-
curacy. Unlike traditional gradient descent methods,
which may suffer from slow convergence or becoming
trapped in local minima, quasi-Newton methods ap-
proximate the Hessian matrix of second-order deriva-
tives to achieve faster and more stable convergence. By
leveraging curvature information of the error surface,
the algorithm can adjust the learning step more in-
telligently, thereby reducing the number of iterations
required to reach an optimal solution. This makes the
quasi-Newton method particularly suitable for training
complex models such as BNNs, where robustness and
efficiency are essential in handling high-dimensional
parameter spaces and ensuring reliable generalization.

The number of hidden nodes is initially determined
using a heuristic approach, guided by the sizes of the
input and output layers. This provides a reasonable
starting point, ensuring that the network has sufficient
capacity to capture the underlying nonlinear relation-
ships without becoming overly complex. To enable ef-
fective learning from the training data, the number of
training epochs is set to 1000. This choice balances pro-
viding enough iterations for convergence with avoid-
ing excessive training that could lead to overfitting. By
combining an informed initialization of hidden nodes
with an adequate number of training epochs, the BNN
is structured to achieve reliable performance, accurate-
ly capturing the mapping between design parameters
and output responses with both precision and stability.

Table 2 presents the variations in hyperparameters
across different re-estimation periods. These adjust-
ments result from the Bayesian optimization process,
which systematically refines hyperparameters to en-
hance model accuracy and stability. By periodically re-
estimating and updating these parameters, the BNN
sustains optimal performance throughout training,
leading to more accurate predictions and improved
generalization to unseen data.

Once trained, the BNN acts as an effective mapping
tool, translating desired output torque values into cor-
responding motor design parameters. Fig. 5 illustrates
the relationship between target torque and the associ-
ated design variables. BNN’s ability to accurately map

International Journal of Electrical and Computer Engineering Systems



these relationships is crucial for optimizing BLDC mo-
tor designs, as it streamlines the design process and
reduces the need for extensive trial-and-error experi-
mentation.

n=n+1

False
n< JV —

True

rso(n),rsi(n),dm(n),

de(n),ds(n), fm(n),
O] o) o) ),

go(n),hh(n),Jpk(n)

(FEMM)

Fig. 4. Principle of generating the dataset for the
BNN training

Table 1. Ranges of the design parameters and
output torque of the motor

Design Parameters Ranges

rso(mm) [22.5004 27.4921]
rsi(mm) [9.0005 10.9982]
dm(mm) [3.6000 4.3998]
dc(mm) [0.9001 1.0996]
ds(mm) [0.4500 0.5500]
fm [0.7715 0.9428]
fr [0.6302 0.7700]
ft [0.9000 1.0998]
/b [0.9000 1.0999]
go(mm) [0.4500 0.5499]
hh(mm) [22.5019 27.4992]
Jpk(MA/m2) [0.7201 0.8798]

Output Torque (N.m) [0.0470 0.2275]

Set of design larget output e\ Error

ﬁenmr}( output
v

X Algorithm of
Bayesian neural &3 -
network

X
Network input

parameters

i

r

FEA-based design updating weights

S~
—

and biases

Set of output torque

9

Fig. 5. Principle of updating the weights and biases
of the BNN

S Pre-trained
Desired value of .
X Bayesian neural Design parameters
output torque :
network

Fig. 6. Principle of calculating the design
parameters of the motor using the pre-trained BNN
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Table 2. Change of the hyperparameters according
to the periods of re-estimation

Re-estimation Periods a B
1 0.3304 479.271
2 1.2190 479.4954
3 2.5027 479.3550

The final motor design parameters, obtained after
completing the optimization process, are outlined in
Table 3.These parameters represent the optimized con-
figuration derived from the BNN’s predictions, reflect-
ing a balance between performance objectives and
design constraints. The information in Table 3 serves as
a comprehensive summary of the key design variables,
providing a clear reference for evaluating the effective-
ness of the BNN-driven optimization approach.

Table 3. Design parameters of the motor obtained
after the design process

Parameters Values
rso(mm) 25.1423
rsi(mm) 10.0374
dm(mm) 3.9904
dc(mm) 1.0000
ds(mm) 0.4988

fm 0.8576

fo 0.6998

ft 0.9950

fb 0.9980
go(mm) 0.4985

hh(mm) 25.0006
Jpk(MA/m?) 0.8011

Table 4 compares the target output torque with the
actual output torque, showing only a very small per-
centage difference. This minimal error confirms that the
BNN can accurately predict motor performance by cap-
turing the complex relationships between design pa-
rameters and torque. The low error rate demonstrates
both high precision and strong reliability, ensuring that
the predicted torque is almost identical to the desired
target. Such accuracy is crucial for optimizing BLDC
motor designs, as it enables improved performance,
reduces the number of design iterations, and increases
confidence in the model’s predictions.

This research does notincorporate optimization tech-
niques for BLDC motor design—such as cost minimiza-
tion, compact dimensions, or material efficiency—into
its framework. Instead, the focus is placed on develop-
ing a fast and accurate design methodology. While this
approach provides valuable insights into the design
process, the absence of optimization considerations
limits its applicability in scenarios where economic fea-
sibility, space constraints, or manufacturing efficiency
are critical. Therefore, integrating optimization strate-
gies in future studies would enhance the practical rel-
evance of the proposed design method.
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Table 4. Comparison between the target and true

torques
Target Torque (N.m)  True Torque (N.m) Error (%)
0.1 0.0967 33
0.125 0.1256 -0.48
0.175 0.1751 -0.0571
0.2 0.2018 -0.9

5. CONCLUSIONS

This study highlights the effectiveness of BNNs in
optimizing the design of BLDC motors, demonstrating
their potential as a powerful alternative to convention-
al optimization methods. To support the training pro-
cess, FEA was employed to generate a comprehensive
dataset that accurately captures the complex nonlinear
relationships between design parameters—such as di-
mensions, material properties, and winding configura-
tions—and motor performance characteristics, includ-
ing torque, efficiency, and thermal behavior. This data
set enables BNN to learn these intricate mappings and
provide reliable performance predictions across a wide
range of operating conditions.

A key contribution of this research is the integration
of Bayesian optimization for hyperparameter tuning of
the multi-layer perceptron (MLP) structure underlying
the BNN in BLDC motor design. Unlike manual trial-
and-error methods, Bayesian optimization systemati-
cally explores the hyperparameter space in a data-driv-
en manner, leading to improved training accuracy, en-
hanced stability, and reduced computational cost. This
approach also minimizes the risk of overfitting while
significantly improving the model’s ability to general-
ize to unseen design scenarios.

Looking forward, future research will extend the appli-
cation of BNNs in BLDC motor design optimization, with
a particular focus on addressing practical constraints
such as reducing material costs, improving energy ef-
ficiency, and enhancing manufacturability. Moreover,
incorporating multi-objective optimization—balancing
trade-offs between cost, weight, torque ripple, and ther-
mal performance—could further advance the applica-
bility of BNN-based methods in industrial motor design.
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