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Abstract – Brushless direct current (BLDC) motors are gaining popularity over traditional direct current (DC) motors due to their 
higher efficiency, compact size, and precise control capabilities. This study proposes a fast and accurate approach to BLDC motor design 
using a Bayesian neural network (BNN). The BNN, a specialized form of the multi-layer perceptron (MLP), offers strong resistance to 
overfitting and performs effectively with noisy or limited datasets, making it well-suited for complex motor design problems. In the 
proposed method, the BNN is applied within an inverse modeling framework to map desired motor performance parameters to the 
corresponding design variables. A dataset for an outer-rotor BLDC motor—containing both design parameters and the resulting output 
torque—is generated through finite element analysis (FEA). Finally, a demonstration of BLDC motor design using the BNN validates the 
effectiveness of the proposed approach.
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1.	 	INTRODUCTION

Brushless DC (BLDC) motors have been extensively 
studied in recent decades due to their high efficiency, 
reliability, and precise motion control capabilities. Their 
compact design and lightweight construction facilitate 
accurate speed and torque regulation, making them 
well-suited for modern engineering applications [1]. 
Unlike traditional brushed DC motors, BLDC motors 
employ electronic commutation instead of mechanical 

commutators. Consequently, they have been widely 
adopted in diverse fields such as industrial automation, 
electric vehicles, drones, medical devices, and home 
appliances, where precise speed control, low mainte-
nance, and high efficiency are critical requirements.

Finite element analysis (FEA) is essential for design-
ing and optimizing electromagnetic devices such as 
BLDC motors. It enables engineers to evaluate motor 
performance under various operating conditions, and 
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by simulating electromagnetic behaviors and mechan-
ical stresses, it allows for precise design adjustments 
before production. This approach reduces develop-
ment costs while improving efficiency, reliability, and 
overall performance [2].

A major challenge in BLDC motor design is cogging 
torque, which affects smooth operation and overall 
efficiency. Extensive research has been conducted to 
analyze and mitigate this issue. Studies indicate that 
factors such as stator tooth width and slot–pole align-
ment significantly influence cogging torque and can be 
optimized to enhance motor performance [3]. In outer-
rotor BLDC motors, optimizing the stator core design is 
an effective strategy for reducing cogging torque [4], 
while in inner-rotor BLDC motors, segmenting the ro-
tor’s permanent magnets is commonly employed to 
minimize cogging effects [5]. Furthermore, field-orient-
ed control (FOC) is an advanced technique that reduces 
cogging torque by incorporating dominant harmonics 
from the cogging torque waveform into the q-axis cur-
rent reference, thereby counteracting torque ripples 
and minimizing speed variations [6].

BLDC motors with trapezoidal back electromotive 
force (BEMF) traditionally require six rotor position sig-
nals for inverter control, typically detected by Hall-effect 
sensors embedded in the motor. While effective, these 
sensors increase manufacturing costs and are sensitive 
to temperature variations, which can reduce system re-
liability. To overcome these limitations, sensorless con-
trol techniques have been extensively developed over 
the past two decades. A common approach estimates 
rotor position and regulates speed by detecting BEMF 
zero crossings from terminal voltages [7]; however, this 
method performs poorly at low speeds due to weak in-
duced voltages. To address this issue, a novel sensorless 
position detection technique based on a speed-inde-
pendent position function has been proposed [8], sig-
nificantly improving estimation accuracy and enhancing 
system performance across a wide speed range.

The design of electromagnetic devices—such as elec-
tric motors, transformers, and inductors—is a complex 
process that requires balancing multiple performance 
criteria, including efficiency, thermal management, 
weight, and material costs [9, 10]. This challenge is often 
formulated as an optimization problem, where the ob-
jective is to minimize or maximize a specific cost func-
tion, such as power loss, torque ripple, or electromag-
netic interference. Stochastic optimization methods, 
including genetic algorithms (GA) [11], particle swarm 
optimization (PSO) [12], and simulated annealing (SA) 
[13], are widely applied because of their effectiveness 
in exploring complex, multi-dimensional design spaces. 
These methods use iterative procedures to evaluate de-
sign parameters at each step, progressively refining so-
lutions to approach an optimal configuration.

Artificial neural networks (ANNs) are transforming the 
design of electromagnetic devices by enhancing simu-
lation efficiency, optimizing design parameters, and ad-

dressing complex inverse problems. These computational 
models can learn and represent intricate nonlinear rela-
tionships, making them especially valuable in scenarios 
where conventional physics-based methods are limited 
or computationally expensive [14, 15]. A key advantage 
of ANNs is their ability to process large datasets and de-
tect patterns that traditional methods may overlook, en-
abling more accurate and faster performance predictions 
for electromagnetic devices. When integrated with FEA, 
ANNs facilitate more efficient and precise optimization of 
permanent magnet (PM) motors [16]. For example, ANNs 
trained on FEA-generated data can model complex elec-
tromagnetic behaviors and predict motor performance 
under varying conditions. This hybrid approach allows 
for rapid evaluation of design alternatives, significantly 
reducing the time and cost associated with physical pro-
totyping and extensive simulation runs.

Bayesian neural networks (BNNs) extend traditional 
multi-layer perceptron (MLP) neural networks by incor-
porating principles of Bayesian inference [17]. Unlike 
conventional MLPs, which learn fixed point estimates 
for their weights and biases, BNNs treat these param-
eters as probability distributions, enabling the quan-
tification of uncertainty in predictions. In this study, 
BNNs are applied to the accurate design of an outer-
rotor BLDC motor. FEA was performed to generate a 
dataset for training the network. Once trained, the BNN 
computes optimal motor design parameters to achieve 
a specified target torque. The remainder of this paper 
is organized as follows: Section 2 discusses the theory 
of BNNs and their application to regression problems; 
Section 3 introduces FEA for electromagnetic devices, 
with emphasis on BLDC motors; Section 4 details the 
proposed design methodology for the outer-rotor 
BLDC motor using BNNs; and Section 5 presents the 
conclusions and outlines directions for future research.

2.	 BAYESIAN NEURAL NETWORKS FOR 
REGRESSION PROBLEMS

2.1.	 Multi-Layer Perceptron Networks

A MLP neural network takes a vector of real-valued 
inputs and computes one or more activation values 
for the output layer. In a network with a single hidden 
layer, as illustrated in Fig. 1, the activation of the output 
layer is calculated as follows:

(1)

Here, xi are real inputs, ⁻wji is the weight on the con-
nection from the input unit i to the hidden unit j; simi-
larly, wkj is the weight on the connection from the hid-
den unit j to the output unit k. The b̄j and bk are the bi-
ases of the hidden and output units. These weights and 
biases are the parameters of the MLP neural network. 
Then the activation ak (x) are used to compute the out-
puts of the output layer by using a “linear” activation 
function as follows:



143Volume 17, Number 2, 2026

(2)

The training of an MLP neural network aims to minimize 
a data error function structured in the following way:

(3)

In which zk
n is the k-th output corresponding to the n-th 

training pattern and tk
n is the k-th target corresponding 

to the n-th training pattern.

Fig. 1. Structure of MLP neural networks

2.2.	 Network Regularization

In MLP neural networks, regularization is employed 
to prevent any weights and biases from becoming ex-
cessively large, as large weights and biases can lead to 
poor generalization on new test cases. To address this 
issue, a weight function, EW, is added to the error func-
tion to penalize large weights and biases. Specifically, 
for regression problems, this approach is utilized to en-
hance model performance and a total error function, 
S(w), is defined as follows:

(4)

Where β and α are non-negative parameters, also 
known as “ hyperparameters ”, need to be determind-
ed. The weight function, EW, usually originates from the 
theory of weight priors having the following form:

(5)

Where w is the vector of the weights and biases in 
the network.

2.3.	 Bayesian Inference

In Bayesian inference for MLP neural networks, β 
and α can be automatically determined. This process 
considers the Gaussian probability distributions of the 
weights and biases which can give the best generaliza-
tion. In particular, the vector of weights and biases, w, 

in the network is adjusted to their most probable val-
ues given the training data D. Specifically, the posterior 
distribution of the vector of weights and biases can be 
computed using Bayes’ rule as follows:

(6)

In this formula, p(D|w) represents the likelihood func-
tion, which captures the information derived from ob-
servations. In contrast, the prior distribution p(w) incor-
porates information based on background knowledge. 
The denominator, p(D), known as the evidence for the 
network.

The requirement of small values of weights and bi-
ases in the MLP neural network suggests the use of a 
Gaussian prior distribution for the vector of weights 
and biases as follows:

(7)

Where ZW(α) is a normalization constant given by:

(8)

In equation (8), W is the number of weights and bi-
ases in the network. The likelihood function is given by:

(9)

Where ZD(β) is a normalization factor given by:

(10)

In equation (10), N is the number of training patterns. 
At the most probable vector of the weights and biases,  
, the Hessian matrix of the total error function, A, can be 
evaluated as follows:

(11)

Where I is the identity matrix. H=∇∇ED(wMP) is the 
Hessian matrix of the data error function at the most 
probable vector, wMP of weights and biases.

If the posterior distribution of weights and biases is 
assumed as a Gaussian, then it is given by:

(12)

Where Δw=w-wMP and ZS is a normalization constant 
given by:

(13)

Re-arranging (6) gives:

(14)
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Substituting (7), (9) and (12) into (14) results in:

(15)

Taking the logarithm of (15) gives:

(16)

In this context, the variable ln p (D) is referred to as 
the “log evidence”. To optimize the log evidence ln p (D) 
with respect to α, it is necessary to compute a partial 
derivative of the log evidence as follows:

(17)

In (17),  is computed as follows:

(18)

Where λi are the eigenvalues of the Hessian matrix of 
the data error function, H=∇∇ED (wMP). Substituting (18) 
into (17) gives:

(19)

The optimal value of α is determined when the right-
hand side of equation (19) is equal to zero to obtain the 
following equation:

(20)

The right-hand side of equation (20) is equal to a val-
ue γ defined as follows:

(21)

If λi≫α, γ is approximately equal to 1. Whereas, if 
λi≤α, γ is near to 0. γ is used to measure the number of 
“well-determined” parameters in the network.

From equations (20) and (21), α can be determined 
as follows:

(22)

Similarly, to optimize the log evidence ln p (D) with 
respect to β, it is also necessary to compute a partial 
derivative of the log evidence as follows:

(23)

In (23),  is computed as follows:

(24)

Substituting (24) into (23) gives:

(25)

The optimal value of β is determined when the right-
hand side of equation (25) is equal to zero to obtain the 
following equation:

(26)

From equation (26), β can be determined as follows:

(27)

Choosing the number of input, hidden, and output 
nodes in a BNN for regression is similar in principle to 
standard neural networks, but the Bayesian framework 
adds a probabilistic perspective that helps control 
overfitting and provides uncertainty estimates.

•	 The number of input nodes is equal to number of 
features (independent variables) in dataset.

•	 A single output node (the predicted continuous 
value).

•	 Number of hidden nodes can be determined from 
heuristic starting points. For example, the number of 
hidden nodes can be computed by the following rule:

(28)

Where Nin, Nout and Nhidden are numbers of input nodes, 
number of output nodes and number of hidden nodes, 
respectively.

2.4.	 The Quasi-Newton Method

The training of an MLP neural network involves mini-
mizing the total error function, S(w), through an itera-
tive process. The quasi-Newton method, which extends 
the gradient descent method, can be effectively used 
to minimize this error function. In Newton method, the 
vector of weights and biases of the network can be up-
dated as follows:

(29)

The vector -Am-1 gm is called the “Newton direction” 
or the “Newton step”. However, the evaluation of the 
Hessian matrix, Am-1, can be very computational. From 
equation (29), we can form the relationship between 
the weight vectors at steps m and m+1 as follows:

(30)

From equation (30), if αm=1 and Fm=Am
-1, we have the 

Newton method, while if Fm=I, we have the gradient 
descent method with the learning rate αm. 
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Fm can be chosen to approximate the Hessian ma-
trix. In addition, Fm must be positive definite so that for 
small αm we can obtain a descent method. In practice, 
the value of αm can be found by a “line search”. Equa-
tion (30) is known as the quasi-Newton condition. The 
most successful method to compute Fm is the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) formula as follows:

(31)

Where p, v and u are defined as:

(32)

(33)

(34)

Finally, training MLP neural networks using Bayesian 
inference involves several key steps as follows:

Step 1: Initialize the weights and biases for the net-
work, and initialize the values for the hyperparam-
eters β and α. 

Step 2: Minimize the cost function S(w) (4) using 
the quasi-Newton method and calculate γ as fol-
lows:

Where λi are the eigenvalues of the Hessian matrix 
of the data error function, H=∇∇ED.

Step 3: When the cost function has reached a local 
minimum, re-estimate the values of the hyperpa-
rameters as follows:

Step 4: Repeat steps 2 and 3 until the convergence.

(35)

(36)

(37)

3.	 FEA FOR BLDC MOTORS

The operating principle of many electromechanical 
devices is based on electromagnetic theory, and these 
devices can often be mathematically described using 
partial differential equations (PDEs). Analyzing such 
devices therefore requires methods for solving PDEs. 
Since analytical techniques often fail to provide ac-
curate solutions, the finite element method (FEM) has 
emerged as a powerful tool for addressing PDEs in the 
analysis of electromagnetic systems. The FEA process 
for a specific electromagnetic device typically involves 
four key steps:

•	 Discretize the solution region into finite elements.
•	 Derive the governing equations for each individual 

element.
•	 Assemble all the finite elements within the solu-

tion region.
•	 Solve the resulting set of equations.

In this study, Finite Element Method Magnetics 
(FEMM), a free and open-source computational tool, is 
utilized to analyze the performance and characteristics 
of a BLDC motor. FEMM has gained popularity in both 
academic research and industrial applications due to 
its accessibility, efficiency, and capability to handle 
complex electromagnetic problems using FEM [18].

To set up FEMM, the problem type must first be defined, 
typically as a planar or axisymmetric magnetic problem 
with appropriate units. The geometry of the device, such 
as the stator, rotor, air gap, and windings, is then drawn or 
imported, and each region is assigned suitable material 
properties from the FEMM library or custom definitions. 
Boundary conditions, excitations (such as currents or per-
manent magnet properties), and circuit parameters are 
specified to represent the operating conditions. The mod-
el is then discretized using a finite element mesh, refined 
in critical regions like the air gap for higher accuracy. Fi-
nally, the analysis is run, and the postprocessor is used to 
visualize field distributions and extract key performance 
quantities such as flux linkage, torque, or inductance.

A key advantage of FEMM is its ability to integrate with 
MATLAB. This interaction enables users to define com-
plex electromagnetic problems, execute simulations, 
and extract results programmatically within the MATLAB 
environment. Through MATLAB commands, researchers 
can automate the analysis process, perform parametric 
studies, and optimize motor designs more efficiently. 
This integration is particularly valuable for iterative de-
sign workflows, where multiple simulations are required 
to evaluate the impact of design parameter variations 
on motor performance. Fig. 2 shows a commercial outer-
rotor BLDC motor, while Fig. 3 illustrates its 2D finite ele-
ment analysis (FEA) conducted using FEMM.

Fig. 2. Commercial outer-rotor BLDC motor
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Fig. 3. 2D-FEA of a commercial outer-rotor BLDC 
motor

4.	 DESIGN OF BLDC MOTORS USING BAYESIAN 
NEURAL NETWORKS

This section presents a detailed procedure for design-
ing a small-scale outer-rotor BLDC motor. The motor’s 
dimensional and electrical parameters are as follows:

•	 Stator outer radius (rso).
•	 Stator inner radius (rsi).
•	 Magnet thickness (dm).
•	 Can thickness (dc).
•	 Depth of slot opening (ds).
•	 Pole fraction spanned by the magnet (fm).
•	 Pole fraction spanned by the iron (fp).
•	 Width of the tooth as a fraction of the pole pitch at 

the stator (ft).
•	 Back iron thickness as a fraction of tooth thickness 

(fb).
•	 Stator to magnet mechanical clearance (go).
•	 Axial length of the machine (hh).
•	 Peak current density in the winding (Jpk).

Fig. 4 illustrates the process of generating the dataset 
used for training the Bayesian neural network (BNN). 
The dataset was constructed to capture the complex 
nonlinear relationships between the design param-
eters of the BLDC motor and the corresponding output 
torque values. To ensure diversity and representative-
ness, multiple variations of key design parameters—
such as stator and rotor dimensions, air gap length, 
winding configurations, and material properties—were 
systematically simulated. Each configuration was ana-
lyzed using FEA, producing torque outputs under speci-
fied operating conditions. This process resulted in a 
dataset consisting of 2000 distinct patterns (N = 2000), 
derived from a commercial outer-rotor BLDC motor. 
The large number of samples provides sufficient cov-
erage of the design space, allowing the BNN to learn 
both linear and nonlinear dependencies effectively. 
By incorporating such a dataset, the network is better 
equipped to generalize across unseen configurations, 
thereby improving its predictive accuracy and robust-

ness in motor design optimization. The ranges for the 
design parameters and output torque of the motor are 
provided in Table 1. Lastly, the dataset was utilized to 
train the BNN according to the procedure outlined in 
Fig. 5. The BNN has the following structure:

•	 An input corresponding to the desired output 
torque

•	 Six units in the hidden layer
•	 Twelve outputs in the output layer, representing 

the twelve design parameters that need to be de-
termined

In this research, the training algorithm of the BNN is 
based on the quasi-Newton optimization method. This 
approach is chosen because it provides a balance be-
tween computational efficiency and convergence ac-
curacy. Unlike traditional gradient descent methods, 
which may suffer from slow convergence or becoming 
trapped in local minima, quasi-Newton methods ap-
proximate the Hessian matrix of second-order deriva-
tives to achieve faster and more stable convergence. By 
leveraging curvature information of the error surface, 
the algorithm can adjust the learning step more in-
telligently, thereby reducing the number of iterations 
required to reach an optimal solution. This makes the 
quasi-Newton method particularly suitable for training 
complex models such as BNNs, where robustness and 
efficiency are essential in handling high-dimensional 
parameter spaces and ensuring reliable generalization.

The number of hidden nodes is initially determined 
using a heuristic approach, guided by the sizes of the 
input and output layers. This provides a reasonable 
starting point, ensuring that the network has sufficient 
capacity to capture the underlying nonlinear relation-
ships without becoming overly complex. To enable ef-
fective learning from the training data, the number of 
training epochs is set to 1000. This choice balances pro-
viding enough iterations for convergence with avoid-
ing excessive training that could lead to overfitting. By 
combining an informed initialization of hidden nodes 
with an adequate number of training epochs, the BNN 
is structured to achieve reliable performance, accurate-
ly capturing the mapping between design parameters 
and output responses with both precision and stability.

Table 2 presents the variations in hyperparameters 
across different re-estimation periods. These adjust-
ments result from the Bayesian optimization process, 
which systematically refines hyperparameters to en-
hance model accuracy and stability. By periodically re-
estimating and updating these parameters, the BNN 
sustains optimal performance throughout training, 
leading to more accurate predictions and improved 
generalization to unseen data.

Once trained, the BNN acts as an effective mapping 
tool, translating desired output torque values into cor-
responding motor design parameters. Fig. 5 illustrates 
the relationship between target torque and the associ-
ated design variables. BNN’s ability to accurately map 
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these relationships is crucial for optimizing BLDC mo-
tor designs, as it streamlines the design process and 
reduces the need for extensive trial-and-error experi-
mentation.

Fig. 4. Principle of generating the dataset for the 
BNN training

Table 1. Ranges of the design parameters and 
output torque of the motor

Design Parameters Ranges

rso(mm) [22.5004   27.4921]

rsi(mm) [9.0005   10.9982]

dm(mm) [3.6000    4.3998]

dc(mm) [0.9001    1.0996]

ds(mm) [0.4500    0.5500]

fm [0.7715    0.9428]

fp [0.6302    0.7700]

ft [0.9000    1.0998]

fb [0.9000    1.0999]

go(mm) [0.4500    0.5499]

hh(mm) [22.5019   27.4992]

Jpk(MA/m2 ) [0.7201    0.8798]

Output Torque (N.m) [0.0470    0.2275]

Fig. 5. Principle of updating the weights and biases 
of the BNN

Fig. 6. Principle of calculating the design 
parameters of the motor using the pre-trained BNN

Table 2. Change of the hyperparameters according 
to the periods of re-estimation

Re-estimation Periods α β

1 0.3304 479.271  

2 1.2190 479.4954  

3 2.5027 479.3550

The final motor design parameters, obtained after 
completing the optimization process, are outlined in 
Table 3. These parameters represent the optimized con-
figuration derived from the BNN’s predictions, reflect-
ing a balance between performance objectives and 
design constraints. The information in Table 3 serves as 
a comprehensive summary of the key design variables, 
providing a clear reference for evaluating the effective-
ness of the BNN-driven optimization approach.

Table 3. Design parameters of the motor obtained 
after the design process

Parameters Values

rso(mm) 25.1423

rsi(mm) 10.0374

dm(mm) 3.9904

dc(mm) 1.0000

ds(mm) 0.4988

fm 0.8576

fp 0.6998

ft 0.9950

fb 0.9980

go(mm) 0.4985

hh(mm) 25.0006

Jpk(MA/m2 ) 0.8011

Table 4 compares the target output torque with the 
actual output torque, showing only a very small per-
centage difference. This minimal error confirms that the 
BNN can accurately predict motor performance by cap-
turing the complex relationships between design pa-
rameters and torque. The low error rate demonstrates 
both high precision and strong reliability, ensuring that 
the predicted torque is almost identical to the desired 
target. Such accuracy is crucial for optimizing BLDC 
motor designs, as it enables improved performance, 
reduces the number of design iterations, and increases 
confidence in the model’s predictions.

This research does not incorporate optimization tech-
niques for BLDC motor design—such as cost minimiza-
tion, compact dimensions, or material efficiency—into 
its framework. Instead, the focus is placed on develop-
ing a fast and accurate design methodology. While this 
approach provides valuable insights into the design 
process, the absence of optimization considerations 
limits its applicability in scenarios where economic fea-
sibility, space constraints, or manufacturing efficiency 
are critical. Therefore, integrating optimization strate-
gies in future studies would enhance the practical rel-
evance of the proposed design method.
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Table 4. Comparison between the target and true 
torques

Target Torque (N.m) True Torque (N.m) Error (%)

0.1 0.0967 3.3

0.125 0.1256 -0.48

0.175 0.1751 -0.0571

0.2 0.2018 -0.9

5.	 CONCLUSIONS

This study highlights the effectiveness of BNNs in 
optimizing the design of BLDC motors, demonstrating 
their potential as a powerful alternative to convention-
al optimization methods. To support the training pro-
cess, FEA was employed to generate a comprehensive 
dataset that accurately captures the complex nonlinear 
relationships between design parameters—such as di-
mensions, material properties, and winding configura-
tions—and motor performance characteristics, includ-
ing torque, efficiency, and thermal behavior. This data 
set enables BNN to learn these intricate mappings and 
provide reliable performance predictions across a wide 
range of operating conditions.

A key contribution of this research is the integration 
of Bayesian optimization for hyperparameter tuning of 
the multi-layer perceptron (MLP) structure underlying 
the BNN in BLDC motor design. Unlike manual trial-
and-error methods, Bayesian optimization systemati-
cally explores the hyperparameter space in a data-driv-
en manner, leading to improved training accuracy, en-
hanced stability, and reduced computational cost. This 
approach also minimizes the risk of overfitting while 
significantly improving the model’s ability to general-
ize to unseen design scenarios.

Looking forward, future research will extend the appli-
cation of BNNs in BLDC motor design optimization, with 
a particular focus on addressing practical constraints 
such as reducing material costs, improving energy ef-
ficiency, and enhancing manufacturability. Moreover, 
incorporating multi-objective optimization—balancing 
trade-offs between cost, weight, torque ripple, and ther-
mal performance—could further advance the applica-
bility of BNN-based methods in industrial motor design.
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