
Optimizing Computation Offloading in 6G
Multi-Access Edge Computing Using Deep
Reinforcement Learning

565

Original Scientific Paper

Abstract – One of the most important technologies for future mobile networks is multi-access edge computing (MEC).
Computational duties can be redirected to edge servers rather than distant cloud servers by placing edge computing facilities at the
edge of the wireless access network. This will meet the needs of 6G applications that demand high reliability and low latency. At the
same time, as wireless network technology develops, a variety of computationally demanding and time-sensitive 6G applications
appear. These jobs require lower latency and higher processing priority than traditional internet operations. This study presents a
6G multi-access edge computing network design to reduce total system costs, creating a collective optimization challenge. To tackle
this problem, Joint Computation Offloading and Task Migration Optimization (JCOTM), an approach based on deep reinforcement
learning, is presented. This algorithm takes into consideration several factors, such as the allocation of system computing resources,
network communication capacity, and the simultaneous execution of many calculation jobs. A Markov Decision Process is used to
simulate the mixed integer nonlinear programming problem. The effectiveness of the suggested algorithm in reducing equipment
energy consumption and task processing delays is demonstrated by experimental findings. Compared to other computing offloading
techniques, it maximizes resource allocation and computing offloading methodologies, improving system resource consumption.
The presented findings are based on a set of simulations done in TensorFlow and Python 3.7 for the Joint Computation Offloading
and Task Management (JCOTM) method. Changing key parameters lets us find out that the JCOTM algorithm does converge, with
rewards providing a measure of its success compared to various task offloading methods. 15 users and 4 RSUs are placed in the MEC
network which faces resource shortages and is aware of users. According to the tests, JCOTM offers a lower average system offloading
cost than local, edge, cloud, random computing and a game-theory-based technique. When there are more users and data, JCOTM
continues to manage resources effectively and shows excellent speed in processing demands. It can be seen from these results that
JCOTM makes it possible to offload efficiently as both server loads and user needs change in MEC environments.

Keywords:	 deep reinforcement learning, sixth generation (6 G), multi-edge computing (MEC), offloading, deep Q-network

Volume 16, Number 7, 2025

Mamoon M. Saeed
Department of Communications
and Electronics Engineering,
University of Modern Sciences
(UMS), Sana'a, Yemen
mamoon530@gmail.com

Rashid A. Saeed*
College of Business and
Commerce,
Lusail University, Lusail, Qatar
rabdelhaleem@lu.edu.qa

Hashim Elshafie
Department of Computer
Engineering,
College of Computer Science,
King Khalid University,
Main Campus, Al Farah,
Abha 61421,
Kingdom of Saudi Arabia, KSA
helshafie@kku.edu.sa

Ala Eldin Awouda
Mechanical Engineering
Department,
College of Engineering,
Bisha University, Bisha, KSA
aadam@ub.edu.sa

School of Electronics of
Engineering,
Faculty of Engineering,
Sudan University of Science and
Technology,
Khartoum, Sudan

Zeinab E. Ahmed
Department of Computer
Engineering,
University of Gezira,
Wad-Madani, Sudan
Zeinab.e.ahmed@gmail.com

Mayada A. Ahmed
School of Electronics of
Engineering,
Faculty of Engineering,
Sudan University of Science and
Technology,
Khartoum, Sudan
mayadanott13@gmail.com

Rania A Mokhtar
School of Electronics of
Engineering,
Faculty of Engineering,
Sudan University of Science and
Technology,
Khartoum, Sudan
ragiliter@gmail.com

Received: May 8, 2025; Received in revised form: June 7, 2025; Accepted: June 12, 2025

*Corresponding author

566 International Journal of Electrical and Computer Engineering Systems

1.	 	INTRODUCTION

The upcoming launch of 6G networks promises a
paradigm leap in connectivity in the quickly changing
telecoms industry, bringing in a new era of blazingly
fast speeds, responsiveness, and dependability [1]. To
satisfy the demanding specifications of next-genera-
tion networks, it is essential to integrate cutting-edge
technologies as the need for high-performance mobile
apps keeps growing. Multi-access Edge Computing
(MEC) stands out among these technologies as a cru-
cial remedy because it makes it possible to distribute
computational jobs closer to the edge of wireless ac-
cess networks, which lowers latency and improves sys-
tem efficiency overall [2].

Multi-Access Edge Computing (MEC) is emerging as a
transformative technology that significantly enhances
network performance by reducing latency through lo-
calized data processing. This capability is essential for
real-time applications, such as the Internet of Things
(IoT) and augmented reality, where rapid response
times are crucial. MEC further optimizes bandwidth ef-
ficiency by offloading processing tasks from the core
network, leading to better resource utilization. The
technology also improves user experiences by facilitat-
ing seamless interactions and supports a broad spec-
trum of IoT applications through real-time analytics at
the edge. Additionally, MEC enhances security and pri-
vacy by minimizing data transmission over networks,
thus aiding compliance with privacy regulations. Its
scalable architecture accommodates the growing
number of devices and applications in today’s fast-
paced technological environment. Overall, MEC stands
out as a pivotal solution in modern networking, opti-
mizing system performance and alleviating pressure
on central data centers [3].

Deep Reinforcement Learning (DRL) is a state-of-
the-art method for optimizing computation offload-
ing strategies in 6G environments in MEC. Network
operators and service providers can intelligently and
responsively distribute computing jobs to edge servers
by utilizing DRL algorithms' adaptive and self-learning
properties [4]. The main requirements of 6G networks,
which place a premium on low latency, high depend-
ability, and effective resource use to serve a wide range
of cutting-edge applications from augmented reality
to driverless cars, are completely met by this integra-
tion. In light of this, conducting research and building
a deep reinforcement learning-based computation
offloading framework designed especially for 6G multi-
access edge computing networks is crucial [5].

This framework explores the complex interactions
between DRL algorithms and computation offload-
ing techniques to optimize task allocation, improve
system performance, and simplify resource manage-
ment in the context of sophisticated mobile networks
[6]. This study aims to push the limits of innovation in
mobile communications by investigating the synergies

between DRL and computation offloading in the con-
text of 6G MEC networks. It provides a glimpse into the
revolutionary potential of AI-driven solutions in influ-
encing the future of network architecture and service
delivery [7].

The upcoming 6G technology revolution will reshape
different business sectors by improving network con-
nectivity and latency performance alongside the ca-
pability to implement time-sensitive software applica-
tions. The fundamental development behind network
edge transformation rests upon Multi-Access Edge
Computing (MEC) for handling computational resourc-
es local to the network boundary. Strategic computa-
tional load distribution from resource-limited devices
to edge computing servers constitutes offloading, so
applications and performance gain better efficiency
and results [8].

6G networks require effective resource management
because of the large number of IoT devices and com-
plex application systems that operate within these net-
works. Smart devices such as smartphones, along with
sensors and autonomous vehicles, use the capability
of offloading to transfer complex processing duties to
edge servers situated nearby. The device offloading
approach helps both devices conserve power and re-
duce battery drain while speeding up responses and
enhancing the user experience altogether [9].

The main parts of offloading execution within MEC
consist of many essential elements. The process de-
mands effective decision systems for finding suitable
offloading targets among tasks alongside optimal
edge server destinations. The implementation of MEC
offloading requires an evaluation of the edge server
workload together with network performance and the
exact needs for each task, including latency tolerance
and data magnitude.

The combination of artificial intelligence (AI) with
machine learning (ML) methods greatly improves the
capability to make offloading decisions. Records from
both history and current network situations supply AI
algorithms with data to find optimal offloading tech-
niques that enhance the effectiveness of job distribu-
tion along with resource organization. The intelligent
system delivers both enhanced performance and bet-
ter 6G network resilience because it rapidly adjusts to
both conditions and potential failures [10].

Security, together with privacy issues, represents the
highest concern throughout the offloading process.
Edge servers require both strong encryption and pro-
tected communication protocols to ensure the security
of sensitive data transferred from users. 6G networks
must guarantee data confidentiality and integrity be-
cause such measures are vital for meeting user trust re-
quirements and following regulatory standards when
they support a diverse set of applications and multiple
devices.

The deployment of offloading systems within 6G

567Volume 16, Number 7, 2025

MEC encounters multiple difficulties. Device capability
management, alongside network component interop-
erability and quality of service delivery requirements,
make up the implementation challenges of these net-
works. Offloading methods need to establish coherent
processing speed, energy utilization, and networking
reliability ratios to deliver continuous user experiences.

The wireless network progression from 5G to 6G
technology establishes a new standard of connectiv-
ity through heightened speed, together with inferior
latency and better capacity. Multi-Access Edge Com-
puting (MEC) serves as the essential tool for network
evolution since it distributes computation and storage
capabilities near final user locations. An efficient mech-
anism for complex processing called offloading works
effectively because of network decentralization. The
transfer of computational operations from smartphone
platforms and IoT sensors to enhanced edge servers
through offloading describes this process. Application
performance can be both optimized and real-time pro-
cessing and low-latency requirements fulfilled through
this essential resource optimization procedure [11].

6G networks must manage unimaginable numbers
of linked devices as well as applications, which include
autonomous systems and AR and VR applications, be-
cause they require increased computational power. Ex-
tensive application processing needs exceed the capa-
bilities of local devices, thus making these applications
require edge server support. The shifted task execution
through offloading activates the edge servers to per-
form computations with better efficiency and thus im-
proves system performance at large. Several important
advantages emerge from offloading, according to the
diagram given in Fig. 1.

Fig. 1. Offloading Significant Benefits

Edge servers enable applications to lower latency while
increasing response times because of their processing ca-
pabilities, which serve user satisfaction primarily in real-
time applications. Devices with limited resources can save
power through edge-based transferring of complex pro-
cessing demands. The operation of IoT devices that de-
pend on battery power specifically requires this approach.

Network scalability becomes possible through offloading
because it enables distributed workloads across several
edge servers instead of overloading devices and cloud-
based resources independently. The offloading process
lowers the amount of data that needs to flow to cloud
servers for analysis, resulting in reduced bandwidth usage
and network congestion occurrences.

1.1.	 Decision-Making in Offloading

Making a task of offloading a decision involves evalu-
ating multiple conditions, which should include [12],
[13], and [14]:

•	 Task characteristics and specific parameters such
as computational difficulty, together with data vol-
ume and response time demands, play an essential
role in deciding whether a computation should be
transmitted off-device.

•	 Professional offloading decisions require immedi-
ate evaluation of network conditions, including
server load, bandwidth availability, and network
latency data.

•	 For successful offloading purposes, it is fundamen-
tal to recognize the processing abilities and energy
use status of initiating devices.

Advanced algorithms together with models serve as
tools to assist in this type of decision-making frame-
work. These may include:

•	 Advanced offloading algorithms make real-time
compensations to fluctuating networks and sys-
tem work demands for better offloading results.

•	 The predictive analysis uses AI and ML technolo-
gies to develop offloading strategies by process-
ing historical and present network data. The tech-
nologies apply past data learning to optimize their
functions in distributing resources across teams
and assigning tasks more effectively.

1.2.	 Security and Privacy Concerns

Data security and privacy emerge as essential factors
after its transport to edge servers. Key considerations
include [8]:

•	 All transmission of sensitive information to edge
servers require encryption to stop unauthorized
users from accessing the data.

•	 A secure transmission protocol system must be es-
tablished to maintain safe data exchange between
devices and edge servers.

•	 The protection of sensitive data requires imple-
menting measures that allow authorized users and
devices to access it.

•	 The protection of user privacy requires organiza-
tions to maintain strict obedience to data protec-
tion laws like GDPR and HIPAA.

568 International Journal of Electrical and Computer Engineering Systems

1.3.	 Challenges in Implementing
	 Offloading

Several key obstacles exist when implementing
offloading via MEC in 6G networks [15]:

•	 The compatibility between different devices and
applications, and network components becomes
complex because standard protocols and inter-
faces are needed.

•	 Developing a favorable quality of service (QoS) re-
mains vital to achieving user satisfaction because
sensitive applications require stable bandwidth
along with minimal latency.

•	 Efficient operations of edge server’s dependent on
resource management create significant problems
because of load balancing difficulties and resource
allocation demands.

•	 Modern computational frameworks are needed to
execute effective operations for real-time decision-
making between abrupt condition changes.

1.4.	Future Directions

6G technology development indicates that the fol-
lowing directions for MEC offloading will emerge [16]:

•	 The application of edge intelligence combined
with artificial intelligence at horizontal distribution
points results in improved decision-making ability
that enables dynamic on-the-fly offloading adjust-
ments based on present conditions.

•	 Federated learning provides decentralized model
training that keeps sensitive data on user devices
and enables collective learning through decentral-
ized training.

•	 The adoption of decentralized architectural design
brings better resistance and decreases dependen-
cy on centralized cloud infrastructure, which en-
ables better offloading outcomes.

•	 Edge computing operations demand specialized
security frameworks that need development ac-
cording to specific edge needs, since platform evo-
lution will be mandatory.

6G Multi-Access Edge Computing depends on
offloading as its core resource optimization and ap-
plication performance enhancement mechanism [17].
The method of moving computations to edge servers
as a strategic step helps handle next-gen application
requirements and delivers better energy efficiency
and adaptable system capacity [18]. The complete re-
alization of 6G MEC requires attention towards smart
calculation management techniques as well as secure
protection frameworks and resolution of operational
obstacles alongside technological evolution [19].

Through carefully assessing these technologies and
their consequences for the mobile ecosystem, our re-

search strives to pave the way for more efficient, intel-
ligent, and responsive network infrastructures capable
of addressing the rising needs of the digital age. Here's
a summary of the primary contributions:

•	 The communication and task computation flow are
simulated to determine the system delay and en-
ergy consumption formula.

•	 The mixed integer nonlinear programming problem
is challenging to solve directly because it is NP-hard.
Thus, we convert it into a Markov Decision Process
and propose a combined computation offloading
and task migration optimization (JCOTM) technique
based on deep reinforcement learning.

The JCOTM algorithm's convergence and efficacy are
demonstrated by experimental performance. Our sug-
gested approach can lower processing latency and equip-
ment energy usage in various system contexts compared
to alternative computation offloading strategies.

The remaining sections of this paper are arranged as
follows: In Section III, we outline the joint optimization
issue and the 5 G-based 6G user-aware multi-access
edge computing network architecture. Section IV intro-
duces the Deep Q-Network and the JCOTM algorithm's
comprehensive process. Section V presents the simula-
tion parameters and outcomes, while Section VI wraps
up our investigation.

2.	 RELATED WORK

This part of the study examines previous studies that
aimed to improve how computation is distributed in
Multi-Access Edge Computing (MEC). The literature is
typically organized into binary offloading and making
decisions about partial execution.

The tasks can be processed where they are created or
sent to the MEC server for completion. [20] analyzes what
the best single-user performance is when binary offload-
ing is used in ultra-dense networks. It highlights situations
when binary offloading might be useful, and [21] devel-
ops an approach using both games and optimization for
better results. They help to see the role of server-based
processing and when it is more beneficial than running
tasks locally, showing the need to decide wisely.

Several experts have used advanced techniques such
as reinforcement learning (RL) to manage the compli-
cated issues in MEC. For example, [22] optimizes the
use of resources and UAV routes at once, which demon-
strates how RL helps save power in fast-changing situa-
tions. [23] found that RL can handle some of the MEC’s
important challenges, such as those related to mobility
and managing changing channels.

This framework (MELO, presented in [24]) demon-
strates a decision-making system that uses reinforce-
ment learning and formulates the tasks as a Markov
Decision Process. It points to more use of machine
learning to assist in making choices in the context of

569Volume 16, Number 7, 2025

MEC. Alternatively, users with partial offloading can
pass some of their work to the MEC server when re-
quired. The research in [25] deals with offloading cloud
tasks to more than one device, with wireless interfer-
ence and separable semi-definite relaxation in mind.
This technique points out how partial offloading is flex-
ible and able to ensure resources are used well, as dif-
ferent users require them.

Also, techniques such as convex optimization and
segmentation optimization are used to optimize re-
source usage in multi-user MEC systems [26, 27]. They
reveal how much effort is put into both minimizing ex-
penses and cutting back on delays that put efficiency
and results in balance.

Different approaches, for example, [28], are now consid-
ering how load on servers affects energy use, reflecting
the increased awareness that workloads and infrastruc-
ture affect each other. Unlike the strategies of the papers
mentioned in [7], the authors of [29] and [30] stressed that
the best way to reduce offloading costs is to pay attention
to energy use, processing time, and delay.

[31] and [32] identify that with the advent of 6G, in-
telligent user edge computing relies heavily on deep
reinforcement learning for request offloading and
choosing resources. The article [33] also introduced
the UMAP algorithm, which further demonstrates the
benefits of combining different advanced algorithms
to boost MEC performance.

Simply put, while the use of binary offloading helps
with straightforward situations, using partial offload-
ing and more advanced techniques allows both the ap-
plication and network to adapt and respond to what
the user needs. The field is seeing how delicate perfor-
mance, resource management, and what users experi-
ence are balanced in MEC.

This work [34] presented the UMAP algorithm that
connects handling UAV movement to connecting us-
ers with access to a network, all through frequent opti-
mization. With deep reinforcement learning (DRL), the
system learns to improve both where UAVs go and how
they are associated, which helps reduce the amount of
energy used and waiting time in the system. This way
of working highlights that DRL is useful in environ-
ments that keep adapting, so agents can react to cur-
rent circumstances.

Even so, due to how complicated DRL models are to
train, it can be quite challenging regarding whether
they converge and the number of computer resourc-
es required, which means they aren’t always practi-
cal everywhere. Even though the advancement to
closed-form MU transmission power helps efficiency,
it may not be suited for different operating settings.
To sum up, UMAP reflects important progress in MEC
by offloading data, but points out that further study is
needed to improve its work in different situations. This
stresses the need to blend different optimization strat-
egies to help the entire system perform better.

The proposed system involves 5G technology and
6G user-aware Multi-access Edge Computing network
(VAMECN) elements, which consist of 6G users, road-
side units, and cloud servers to handle upcoming 5G
network offloading functions. The proposed method
addresses the reduction of system delays along ener-
gy consumption optimization. The proposed solution
adopts deep reinforcement learning to create JCOTM
for addressing problems through performance demon-
strations

3.	 SYSTEM MODEL AND PROBLEM
FORMULATION

As illustrated in Fig. 2, we examine a 5 G-based user-
aware Mobile Edge Computing (MEC) network architec-
ture, which comprises N users, M Roadside Units (RSUs),
and a cloud server. We define the index sets for users and
RSUs as U = {1,2,…,N} and M = {0,1,2,…, M, M+1, respec-
tively. Here, m=0 represents the local computing device,
while m=M+1 denotes the cloud server [35]. The indices
between 0 and M+1 correspond to the edge servers.
We assume that the RSUs are uniformly distributed
along the road, each covering a consistent area R. Each
RSU is equipped with one or more MEC servers, posi-
tioning it as an edge computing node.

To effectively simulate the users' trajectories over
time, we represent the continuous road as a series of
discrete traffic areas. In Fig. 2, a typical urban road net-
work is segmented into PPP discrete areas, indexed by
the set P={1, 2,…, P} We will next address the optimiza-
tion problem related to joint computation offloading
and task migration over a defined period T [36]. This
period is divided into ti time slots denote as T={1, 2,…, ti}
at the initial time slot t0, users are randomly allocated
within the network. As users move, they can either
remain in their current traffic area or transition to an
adjacent one. The transition probability from location l
to l' for users can be expressed as Pr(l'│l). For instance,
Pr(l│l)=0.5 indicates a 50 % probability that a user will
remain in the same location. We assume the probability
of moving from l to l' (where l≠l') is equivalent, allow-
ing us to calculate the position transfer probability as
Pr(l'│l) = (1-Pr(l│l))/2 [37]

Fig. 2. The architecture of our proposed 6G MEC
network

570 International Journal of Electrical and Computer Engineering Systems

Each user of equipment (UE) is assumed to have a
single compute-intensive task that requires processing.
There exists a one-to-one correspondence between UEs
and users. The n-th task can be characterized by a triple
αn, βn, γn, where n ∈ v, αn denotes the data size of the task,
βn represents the required CPU cycles for task completion,
and γn indicates the maximum allowable delay. The binary
offloading decision is represented by xmn ∈ {0,1}, for m ∈
M, n ∈ v. Specifically, xmn=0 indicates that task n will be
processed on the local UE, while xmn=1 signifies that the
task will be offloaded to the m-th MEC server [38].

Notably, when m=M+1, the task n is offloaded to the
cloud server. The system's offloading decisions at the tth
time slot is represented by the set

X(t)={x01 (t),…, x(M+1)1 (t), x02 (t),…, x(M+1)N (t)}. It is im-
portant to note that each UE can connect to either one
RSU or the Base Station (BS) during a time slot [39],
thereby necessitating the following constraint:

Subsequently, we will explore the communication
and computation models of the User-Aware MEC Net-
work (UAMECN) system [40], deriving expressions for
delay and energy consumption.

(1)

3.1.	 Model of Communication

Base station-based communication algorithms cre-
ate transmission delays that happen when uploading
cloud-server data. The rising number of tasks between
users causes resource contention that produces net-
work instabilities alongside extended delays. MEC ad-
dresses the network bottleneck by establishing server
locations that are nearer to user locations [41].

Non-orthogonal multiple Access (NOMA) stands as
a vital 5G technology that enables non-orthogonal
transmission during signal transmission and incorpo-
rates interference data actively while implementing
successive interference cancellation (SIC) for accurate
signal demodulation at receivers [42]. The receiver im-
plementation of NOMA provides additional complexity
compared to OFDMA but delivers higher spectral effi-
ciency. The VAMECN system adopts NOMA for UE-to-BS
communication links yet employs OFDMA for UE-to-
RSU links because the BS must serve more users [43].

The channel state follows a time-dependent finite
continuous value pattern through which the new state
appears solely from the previous state. The paper trans-
forms the state values into L discrete levels before repre-
senting them as finite-state Markov chains. Channel gain
is a crucial parameter for calculating data transmission
rates. We denote the channel gain of the wireless link
between the user n and RSU m at time t as Γn

m (t), calcu-
lated using the formula [44]:

Here, gn
m represents small-scale fading, d(n, m) is the

distance between the user n and RSU m, and r is the

path loss index. The term d-r
n,m signifies path loss. The

state space of the Markov chain is represented as L =
{Υ1, Υ2,…, ΥL }, and Γn

m(t) is classified as Υ1 when Γ1* ≤ Γn
m

< Γ2*; Γn
m is quantified as Υ2 when Γ2* ≤ Γn

m < Γ3*; and so
on, Γn

m is quantified as ΥL when Γn
m ≥ ΓL*. ψgs, hs (t) is the

transition probability that the channel gain shifts from
the state gs to state hs. Consequently, the following is
the L × L channel state transition probability matrix.

(2)

(3)

Where ψgs, hs (t) = Pr(Γn
m (t+1) = hs | Γn

m (t)= gs), and
gs, hs ∈ L. Thus, according to the Shannon formula, the
data transmission rate between the user and RSU at
time slot t is calculated as follows.

(4)

Where bn
m (t) the orthogonally allotted bandwidth

from RSU m to user n, m ∈ M and n ∈ U. bn
m (t), is denoted

by the Gaussian white noise power is represented by σ2,
while transmission power is indicated by bn

m (t) [45].

Next, we talk about how users and BS communicate.
For instance, in the uplink, each UE will be assigned a
distinct transmission strength, and signals will be su-
perimposed to send when multiple users are connect-
ed to the BS at the same time.

(5)

calculates the superimposed signal, where xn and
xi stand for the target user n's and other users'
transmission signals, respectively. The signal that
was received is

(6)

After obtaining the data, the BS user rises out of SIC
decoding in the decreasing order of channel gain. The
interference signal for user n is the sum of the signals
with lower equivalent channel gain [46]. In the declin-
ing sequence of their channel gains, we assume that N
users share the same channel: Υ1

M+1 ≥ Υ2
M+1 ≥ ΥN

M+1. The
data transmission rate un

M+1 (t) and the interference sig-
nal In (t) If the user is therefore

(7)

(8)

Equation (9) can therefore be used to evenly express
the user n's data transmission rate [47].

(9)

The following displays the task n's energy usage and
communication delay.

(10)

(11)

(12)

(13)

571Volume 16, Number 7, 2025

where αn (t) is the amount of data left over from the n
task. Since m = 0 indicates that the work will be pro-
cessed locally, there is no transmission delay, and no
energy consumption, hence in this case, the value of m
starts at 1 instead of 0.

3.2.	 Model of Computation

User n's task will be sent from the cloud server to the
MEC server for computation when xnm (t)=1, m ∈ M\{0}.
The calculation capability of the server m, commonly
referred to as the CPU rate, is represented by the sym-
bol fm [48]. In particular, the local CPU rate is shown by
f0, and the cloud server's CPU rate is indicated by fM+1.
Because edge servers have distinct hardware configu-
rations f0 ≪ fm ≪ fM+1, m ∈ M {0, M+1}, They are generally
more powerful than UE. The distribution of computer
resources is not average.

Only one task or one task slice may be completed by
each CPU (single core) in each time slot. To simplify
the computation model, we assume that every UE has
equal entitlement to obtain computing resources [49].
This implies that if n users decide to offload jobs to the
same server, the computing resources allotted to each
task are fm/n. As a result, we can determine the CPU rate
assigned to the user n by using the formula

(14)

It is therefore possible to express the processing time
for the user n as

(15)

where βn (t) is the remaining number of CPU cycles
needed by the user n during the time slot t. It goes
without saying that as server processing capacity rises,
computation delay falls. In the meantime, as it influenc-
es the CPU time allotted to each user, the server load is
also a crucial consideration. The energy used by local
equipment in the absence of ask offloading is denoted
by Enm

comp (t) [50].

(16)

Therefore, the energy consumption for user n. Where
the effective switched capacitance is represented by
µ=10-11 [51].

3.3.	Formulation of the Problem

Through the explanation above, we have represented
the computation and communication process. Based
on our earlier work, we formulate the job completion
delay and UE's energy usage as follows.

(17)

where ξt, ξe ∈ [0,1] are two scalar weights of energy con-
sumption and latency, respectively. Keep in mind that

the system latency is the highest of all task computa-
tion and communication delays. Consequently, the
following is an expression for the joint computation
offloading and task migration optimization problem

Subject to:

(18)

(19)

(20)

(21)

(22)

Table 1 lists the definitions and notations used in this
paper. The challenge of optimization, Multiple variable
constraints, makes JCOTM a non-convex mixed-integer
linear programming issue. The correlation between the
variables makes it challenging for us to solve it. As a re-
sult, we provide a proposed technique based on Deep
Reinforcement Learning (DRL) and model the original
problem as a Markov Decision Process (MDP) [52].

Table 1. Notations used in this paper

Notation Definition

U, N Index set/number of users

M, m Index set/number of RSUs

p, P Index set/number of traffic areas

l, L The set/number of channel gain states

xnm (t) xnm (t) = 1 if task n is offloaded to server m at time slot
t, otherwise, xnm = 0

R Coverage range of one RSU

βn Required number of CPU cycles of task n
αn Data size of task n
γn max delay limit of task n

γl
The l-th state value after the channel gains

discretization

Pr(l'│l) Transition probability from location l to l' of 6G users

dn,m
-r Pass loss

gn
m Small-scale fading

Γn
m (t)

Channel gain of the communication link between 6G
user n and RSU m at time slot t

bn
m (t) Bandwidth of the link between 6G user n and RSU m

at time slot t
ψgs, hs (t) Transition probability from state hi to hj of Γn

m (t)

σ2 Gaussian white noise power

Pn Transmission power of 6G users n
Tn

comm, Tn
comp Communication/computation delay of task n

Rn
m (t) Data transmission rate from 6G user n to RSU m
fm Computation capability of server m

En
comm, En

comp Communication/computation energy consumption
of task n

ξt, ξe Scalar weight of delay/energy consumption

μ The effective switched capacitance

4.	 	OPTIMIZING COMPUTATION OFFLOADING
BASED DRL

Reinforcement Learning (RL), a subfield of artificial
intelligence, is the third machine learning technique,
following Unsupervised Learning (UL) and Supervised

572 International Journal of Electrical and Computer Engineering Systems

Learning (SL). Reinforcement learning involves an
agent interacting with its surroundings to learn what
actions would result in the greatest reward [53]. In su-
pervised and unsupervised learning, the data is static
and does not require interaction with the environ-
ment, such as picture recognition. The deep network
can learn the difference between samples by iterative
training if sufficient samples are provided. However, RL
is a dynamic and interactive learning process, and con-
stant contact with the environment also generates the
necessary data.

As a result, reinforcement learning incorporates
more objects, such as action, environment, state transi-
tion probability, and reward function, than supervised
learning and unsupervised learning. As a result, when
the complexity of a problem approaches that of the ac-
tual world, Reinforcement Learning may solve it more
effectively [54]. Generally, there are two reinforcement
learning algorithms: model-based and model-free.
Model in this context refers to the environment's mod-
el. The primary distinction between the two algorithms
is whether the agent knows the environment model.
Model-based has the advantage of allowing the agent
to pre-plan the action path based on the features of
the known environment. However, it is challenging to
get the desired outcome because of the discrepancy
between the learned model and the actual world [55].

Consequently, Model-Free is frequently simpler to set
up and modify. Value-based, policy-based, and Actor-
criticism are the three types of model-free algorithms.
Policy-based algorithms model and learn the policy di-
rectly, whereas value-based algorithms learn the value
function or the action-value function to acquire policy
[56]. The benefits of the other two approaches are com-
bined in the Actor-Critic algorithms.

While the critic produces the value of the action, the
actor chooses the course of action based on policy.
Consequently, the value function and policy impact
on one another, accelerating the convergence process.
One traditional value-based reinforcement learning al-
gorithm is Q-learning [57]. After learning the Q-values
of state-action pairings, the agent chooses the action
with the highest Q value. The Q-value, which is the ex-
pected reward received by acting a(a ∈ A) under state
s(s ∈ S) at some time, is expressed as Q* (s, a) = maxπ
E[rt + γrt+1 + γrt+2

21 +...|st = s, at = a, π] [43]. Q-learning
optimizes the policy by updating the complete Q-table
in each iteration, using the Q-table to hold the Q-values
of all state-action pairs. The formula

(23)

The current state, s, the action was taken at s, s', the
state that follows action a, and a', the next possible ac-
tion at the state s', are all represented in Equation (23).
The parameters indicate the learning rate and discount
factor α and γ, respectively. The reward results from se-
lecting an action and is denoted by r. Q-learning up-
dates the current Q-value using the maximum Q-value

of the subsequent stage. Here, the goal Q-value is de-
noted by r + γ max┬a' Q(s', a'), while the estimated Q-
value is denoted by Q(s, a) [58]. It goes without saying
that when the state and action spaces are too big, the
Q-table will grow limitless and require more storage
space. A promising approach, DQN (Deep Q-Network),
which combines the Q learning algorithm and the
deep neural network, addresses the issue.

4.1.	 Deep Q-Network Algorithm
One significant development in Deep Reinforcement

Learning was Google DeepMind Technologies' 2013
proposal of DQN. Figure 3 depicts the DQN structure.
DQN has two main advantages over classical Q learn-
ing. First, it changes the Q-table updating process into
a function-fitting problem, which fits a function rather
than a Q-table to produce Q values. In DQN, a deep
neural network predicts Q values. Two neural networks
predominate.

Fig. 3. The DQN structure

One is the main network, which modifies the param-
eters for every iteration, and the other is the target net-
work, whose parameters are largely fixed [59]. At the
same intervals, the target network replicates the pa-
rameters from the primary network. As a result, back-
propagation only actually trains the primary network.
Second, each step of the agent is stored in a unique
structure called experience replay, which is denoted by
(s, a, r, s'). During each network training cycle, a batch
of experiences will be randomly selected from the ex-
perience replay for learning. Q-learning can be learned
from past and present experiences because it is an off-
policy algorithm [60].

Therefore, adding prior experience at random during
the learning process will increase the neural network's
efficiency and break the correlation between training
samples. The following loss function is used for DQN
updates at iteration i.

(24)

Where the goal Q-value for iteration i is [(r +γ ax┬a'
)Q(s', a'; θi

-). Until the agent learns to select the best
course of action for every state, the neural network is

573Volume 16, Number 7, 2025

trained, and its parameters are updated by minimizing
the value of the loss function in (24), which is the dif-
ference between the goal and estimated Q-values [61].
In the following subsection, the specifics of our sug-
gested JCOTM algorithm will be displayed.

4.2.	 JCOTM Algorithm

The optimization issue JCOTM is formulated as a DRL
process in this subsection. In this case, the agent is a
central management system, which interacts with the
surroundings and makes choices. As a result, the agent
will broadcast the computation offloading decisions to
every UE after gathering status data from servers and
automobiles [62]. We must define the three essential
components of DQN—the State, Action, and Reward
functions—in our algorithm to use it to solve the prob-
lem we have been given. Action is the potential behav-
ior of each step, whereas the state is used to represent
the environment model. The reward produced by each
action, which may be good or negative, is determined
using the reward function.

•	 State: Sn (t) represents the condition of the user n
at time slot t. The communication state is described
by Γn

m (t), bn
m (t), while the user state is described

by ln (t), αn (t), and βn (t). The channel gain and the
allotted communication bandwidth between the
user n and RSU m at time slot t are denoted by Γn

m
(t) and bn

m (t), respectively. The traffic area where
the user n is at a time slot t is shown by ln (t),. The re-
maining data amount is represented by αn (t), while
the necessary number of CPU cycles is represented
by βn (t). Consequently, sn (t) can be written like this:

(25)

•	 Action: Vector an (t) ∈ RM+1 indicates whether task
n is offloaded to a server m, which is the binary
offloading decision. The environment changes
from its present state to the next state when the
agent selects one action for each time slot t. an(t) is
defined as follows

(26)

•	 Reward system: To determine whether the chosen
course of action is good, the environment provides
the agent with an indicator value called reward.
The optimization objective in this article is to re-
duce the system cost, which is composed of energy
consumption and latency. System cost is hence the
reward function.

(27)

Fig. 4 depicts the architecture of the JCOTM algo-
rithm, which is based on deep reinforcement learning.
With the same structure, we employ k-deep neural net-
works (DNN) to forecast binary offloading choices. The
action is the neural network's output, while the pres-

ent state of the environment is its input [63]. We add
a decoding layer after the output layer to translate the
decimal values into binary. The binary action vector's
dimension in our suggested offloading paradigm is
N(M+2). We compute the system offloading cost, which
is the reward function specified in the preceding mate-
rial, for each of the output k binary offloading actions.
The experience replay unit is initially empty, and a k
DNNs start with random parameter values θ0

k.

Fig. 4. The architecture of the proposed JCOTM
algorithm

The agent chooses the best f-loading action to mini-
mize the reward value in each iteration. The algorithm
regularly updates the network parameters and ran-
domly selects a batch of samples from the experience
replay unit for training. Gradient descent is used to ad-
just the parameters to minimize the cross-entropy loss
because we switch the DNN's output from predicting
the Q-value to action [64].

(28)

Algorithm 1 displays the JCOTM algorithm's pseudo
code.

Algorithm 1. The JCOTM Algorithm is based on DRL.

1:	 Input: status of the environment State(t)

2:	 Output: decision for offloading Action(t)

3:	 Initialization:

4:		 initialize environment state State(t)

5:		 The offloading procedure begins by using
		 an identically structured k DNNs.

6:		 initialize experience replay.

7:	 for t = 0,1,...,T: do

8:		 Input the current environment state St.

9:		 Get the outputs of each DNN.

10:		 Apply decoding techniques to the output
		 values to obtain At

i.

11:		 The offloading decision At is selected
		 through arg min Rt where by
		 Rt=arg mini=1,...,k Q(St, At

i).

574 International Journal of Electrical and Computer Engineering Systems

12:		 After execution of Action(t) environment
		 progresses to its new status St+1.

13:		 The experience reply receives a tuple
		 At, Rt, St, St+1.

14:		 The parameters within DNNs get updated
		 through data from randomly chosen
		 training batches.

15:	 end for

5.	 	ANALYSIS OF SIMULATION

To assess the effectiveness of our suggested JCOTM
method, we create various simulation tests in this part.
TensorFlow and Python 3.7 serve as the foundation
for the simulation environment. First, by modifying
the model's important parameters, we confirm that
the JCOTM algorithm is convergent. Next, we assess
the development of the deep reinforcement learning-
based system offloading technique by comparing the
average system offloading cost of JCOTM with other
task offloading policies.

To construct a resource-constrained user-aware MEC
network, we set the number of users N = 15 and the
number of RSUs M = 4. Each P = 4 traffic region that
makes up the route has a single RSU with a coverage
diameter of R = 1 km. Each UE, edge server, and cloud
server has CPU frequencies of 0.6×109, 1×1010, and
1×1012, respectively [65]. The Gaussian white noise
power σ2 is -88dB, and the overall bandwidth B is 10
MHz. The data size of job n αn is assumed to be be-
tween 10M and 30M, and ρ = 960 Cycles/Byte is the
number of CPU cycles needed for one byte [66]. Table 2
is a list of some important parameters. We will then do
our simulation exercises and examine the outcomes.

Table 2. Simulation parameters

Parameter Value
f0 0.6 GHz

fm 10 GHz

fM+1
1 THz

αn [10, 30] Mb

σ2 -88 dB

ρ 960 Cycles/Byte

B 10 MHz

R 1 km

P 4

M 4

N 15

5.1.	 JCOTM Convergence

JCOTM convergence has been measured by the re-
ward ratio, by dividing the cost of the optimal offload-
ing policy by enumerating the cost of the policy cre-
ated by JCOTM, as the assessment indicator to confirm
the convergence of JCOTM [67]. Consequently, the al-

gorithm performs better the closer the reward ratio is
to 1. It is defined as follows:

(29)

Fig. 5. Convergence of JCOTM Offloading Cost Over
Iterations

Fig. 4 shows the cost of JCOTM keeps falling and
eventually stabilizes as the number of simulations ris-
es, in an environment with 20 users. As time goes on,
JCOTM gets closer to the best policy than before.

5.2.	 Performance of Different
	 Offloading Policies

This paragraph evaluates different offloading com-
puting methods within the context. Our suggested
method, JCOTM, joins the following different offload-
ing rules, which form the basis of this analysis.

1.	 UE performs all its tasks individually without server
transfers when performing local computing. The
system cost results from the weighted sum of ener-
gy expended by devices, together with local com-
putational delays.

2.	 Using edge servers as processing centers is known
as edge computing, where all operations are trans-
ferred instead of running on the local devices [68].
The system cost includes computational delay
and transmission delay, together with UE energy
consumption that happens when data needs to
be transferred. The concept of Edge computing in
this application means all workloads are sent to ex-
ecute on a single MEC server.

3.	 Cloud Computing works just like conventional opera-
tor cloud services, where all functions get processed
on cloud-based servers. The distance between users
and the cloud server results in higher transmission
delays alongside increased energy consumption.

4.	 The random computing policy makes offloading
decisions by selecting from available options ran-
domly. A single operation can receive processing
either within the local network or an edge server,
or through the cloud infrastructure.

5.	 The VAMECN compute offloading problem receives
dynamic non-cooperative game model analysis
through DGTA, which leads to the determination of
Nash Equilibrium solutions [69]. Each user receives
a chance to select their optimal offloading strategy

575Volume 16, Number 7, 2025

per DGTA algorithm iteration since this method
relies on game theory. Figure 6 shows the system
offloading expenses of the six different policies
while the user count varies. It is evident that when
the number of users for all policies increases, the
system cost progressively increases as well.

Policies for offloading and the inferior offloading per-
formance are attained by DGTA. Additionally, random
computing outperforms edge and local computing, but
cloud computing outperforms random computing. Fur-
thermore, the local computing strategy's offloading cost
is higher than edge computing's when there are fewer
than sixteen users, while the opposite is true when there
are more than sixteen. The rationale is that if several
workloads are offloaded to the same MEC server [70],
there will be less computing power available for each
user, which will raise the cost of computation.

Fig. 6. The average system offloading cost is
compared to varying user counts

The average system offloading cost under various
job data sizes is compared in Fig. 7. Here, we used Fig.
7 to independently determine the offloading cost. Av-
erage system offloading costs for varying user counts
are compared. The 10MB to 80MB data size range. The
average cost of computing offloading progressively
rises as task data sizes increase. JCOTM outperforms
the other offloading policies since it optimizes the allo-
cation of system resources [71], whereas other policies
either do not accomplish the best allocation of system
resources or only use a specific type of computing re-
sources. Local computing has the highest offloading
cost, followed by edge computing.

Fig. 7. Average system offloading cost comparison
for activities with varying data volumes

On the other hand, cloud computing, random com-
puting, and DGTA have reduced average system offload-
ing costs. The effect of varying numbers of MEC servers
on the average system offloading cost is seen in Fig. 8.

Fig. 8. Comparison of the average cost of system offloading for varying MEC server counts

Fig. 9. The average system offloading cost is compared to MEC servers with varying computational capacities

576 International Journal of Electrical and Computer Engineering Systems

Naturally, the curves are straight lines parallel to the
x-axis because local and cloud computing are unaf-
fected. Using Figure 7, as illustrated in Figure 8. Com-
parison of average system offloading costs for tasks
with varying task data sizes [72]. The edge computing
offloading cost curve resembles a horizontal straight
line as the number of MEC servers increases.

Since all jobs are offloaded to a single MEC server
for computation under the edge computing policy,
increasing the number of MEC servers has a minimal
effect on offloading costs, making this easy to explain
[73]. The curves drop as the number of MEC servers
grows since additional MEC servers can minimize mode
computing delay for random computing and DGTA
rules. The chart shows that the average JCOTM system
offloading cost is nearly unaffected by the quantity of
MEC servers.

One argument is that the cost curve does not exhibit
a noticeable downward trend because the resource-
constrained environment we have simulated can only
satisfy the computational needs of every user.

 The average system offloading cost for MEC serv-
ers with varying computing capacities is compared in
Figure 9. Likewise, the computing power of MEC serv-
ers has little bearing on cloud or local computing. The
chart indicates that the lower the offloading cost, the
greater the computational capability of MEC servers.
Additionally, when MEC servers' processing power in-
creases, the offloading cost's rate of decline progres-
sively slows down.

Compared to the other policies, JCOTM has a lower
average system offloading cost. Additionally, edge
computing outperforms cloud computing in terms of
offloading costs when MEC server processing power
reaches above 30GHz, and when it reaches over 40GHz,
edge computing. We infer that the average system
offloading cost is mostly determined by the computa-
tional capacity of MEC servers.

6.	 CONCLUSION

This paper addresses the joint multi-user computa-
tion offloading and task migration optimization prob-
lem under user-aware Multi-access Edge Computing
networks. It considers several factors, including the dis-
tribution of system computing resources, communica-
tion bandwidth, and concurrent multiple computation
tasks. It then suggests a deep reinforcement learning-
based JCOTM algorithm to reduce system latency and
energy consumption. To increase communication rate
and quality and decrease communication latency, we
completely consider the Non-Orthogonal Multiple Ac-
cess technology in the upcoming 5G network during
the problem modeling process.

The algorithm abstracts the offloading policy and
system resources into the binary action vector and
environment state, respectively. Additionally, a deep

neural network is used to forecast offloading choices.
Until the best offloading choice is found, the agent
uses several iterative training courses to perceive the
condition of the environment. We create simulation ex-
periments to assess the algorithm's performance and
convergence. The simulation findings demonstrate
that JCOTM outperforms other offloading strategies
under various experiment situations and converges
with varying algorithm parameter values. As a result,
the technique we suggested can successfully lower the
VAMECN system's overall delay and energy usage.

7.	 References

[1]	 S. Alamuri et al. “Transition From 5G to 6G Com-

munication Technologies: Workforce Evolution

and Skill Development Needs”, 5G/6G Advance-

ments in Communication Technologies for Agile

Management, IGI Global Scientific Publishing,

2025, pp. 117-142.

[2]	 S. R. Alkaabi, M. A. Gregory, S. Li, “Multi-access

edge computing handover strategies, manage-

ment, and challenges: a review”, IEEE Access, Vol.

12, 2024, pp. 4660-4673.

[3]	 A. Elnaim et al. “Energy Consumption for Cogni-

tive Radio Network Enabled Multi-Access Edge

Computing”, Proceedings of the 3rd International

Conference on Emerging Smart Technologies and

Applications, Taiz, Yemen, 10-11 October 2023,

pp. 1-5.

[4]	 P. Wei, K. Guo, J. Wang, W. Feng, S. Jin, “Reinforce-

ment learning-empowered mobile edge comput-

ing for 6G edge intelligence”, IEEE Access, Vol. 10,

2022, pp. 65156-65192.

[5]	 M. M. Saeed et al. “Anomaly detection in 6G net-

works using machine learning methods”, Electron-

ics, Vol. 12, No. 15, 2023, p. 3300.

[6]	 M. Khani, M. M. Sadr, S. Jamali, “Deep reinforce-

ment learning‐based resource allocation in multi‐

access edge computing”, Concurrency and Com-

putation: Practice and Experience, Vol. 36, No. 15,

2024, p. e7995.

[7] M. M. Saeed, E. S. Ali, R.A. Saeed, “Data-driven tech-

niques and security issues in wireless networks”,

Data-Driven Intelligence in Wireless Networks,

CRC Press, 2023, pp. 107-154.

[8]	 M. I. Khattak, H. Yuan, A. Khan, A. Ahmad, I. Ullah,

M. Ahmed, “Evolving Multi-Access Edge Comput-

ing (MEC) for Diverse Ubiquitous Resources Uti-

lization: A Survey”, Telecommunication Systems,

Vol. 88, No. 2, 2025, pp. 1-41.

[9]	 M. M. Saeed et al. “Multi-Access Edge Computing

Using Intelligent Mobile User Resource Allocation

In 6G”, Proceedings of the IEEE 4th International

Maghreb Meeting of the Conference on Sciences

and Techniques of Automatic Control and Com-

puter Engineering, Tripoli, Libya, 19-21 May 2024.

[10]	 J. C. Cepeda-Pacheco, M. C. Domingo, “Reinforce-

ment Learning and Multi-Access Edge Computing

for 6G-Based Underwater Wireless Networks”, IEEE

Access, Vol. 13, 2025, pp. 60627-60642.

[11]	 R. Dulot, L. Mendiboure, Y. Pousset, V. Deniau,

F. Launay, “non-orthogonal multiple access for

offloading in multi-access edge computing: A

survey”, IEEE Access, Vol. 11, 2023, pp. 118983-

119016.

[12]	 R. O. Ogundokun et al. “Non-Orthogonal Mul-

tiple Access Enabled Mobile Edge Computing in

6G Communications: A Systematic Literature Re-

view”, Sustainability, Vol. 15, No. 9, 2023, p. 7315.

[13]	 S. Jahandar et al. “Handover Decision with Multi-

Access Edge Computing in 6G Networks: A Sur-

vey”, Results in Engineering, 2025, p. 103934.

[14]	 T. K. Rodrigues, J. Liu, N. Kato, “Offloading deci-

sion for mobile multi-access edge computing

in a multi-tiered 6G network”, IEEE Transactions

on Emerging Topics in Computing, Vol. 10, No. 3,

2021, pp. 1414-1427.

[15]	 H. Hui, Q. Ye, Y. Zhou, “6G-empowered offload-

ing for realtime applications in multi-access edge

computing”, IEEE Transactions on Network Sci-

ence and Engineering, Vol. 10, No. 3, 2022, pp.

1311-1325.

[16]	 L. Zhao et al. “Open-source multi-access edge

computing for 6G: Opportunities and challenges”,

IEEE Access, Vol. 9, 2021, pp. 158426-158439.

[17]	 M. Hassan, K. Hamid, R. A. Saeed, H. Alhumyani,

A. Alenizi, “Reconfigurable Intelligent Surfaces in

6G mMIMO NOMA Networks: A Comprehensive

Analysis”, International Journal of Electrical and

Computer Engineering Systems, Vol. 16, No. 2,

2025, pp. 87-97.

[18]	 I. Begić, A. S. Kurdija, Ž. Ilić, “A Framework for 5G

Network Slicing Optimization using 2-Edge-Con-

nected Subgraphs for Path Protection”, Interna-

tional Journal of Electrical and Computer Engi-

neering Systems, Vol. 15, No. 8, 2024, pp. 675-685.

[19]	 W. Daniar, K. Asmoro, S. Y. Shin, “Joint optimization of

phase shift and task offloading for RIS-assisted multi-

access edge computing in beyond 6G communica-

tion”, ICT Express, Vol. 10, No. 3, 2024, pp. 620-625.

[20] X. Chen et al. “Optimized computation offloading

performance in virtual edge computing systems

via deep reinforcement learning”, IEEE Internet of

Things Journal, Vol. 6, No. 3, 2018, pp. 4005-4018.

[21]	 J. Zhang, W. Xia, F. Yan, L. Shen, “Joint computation

offloading and resource allocation optimization in

heterogeneous networks with mobile edge com-

puting”, IEEE Access, Vol. 6, 2018, pp. 19324-19337.

[22]	 H. Sun, J. Wang, D. Yong, M. Qin, N. Zhang, “Deep

reinforcement learning-based computation

offloading for mobile edge computing in 6G”, IEEE

Transactions on Consumer Electronics, Vol. 70, No.

4, 2024, pp. 7482-7493.

[23]	 H. Huang, Q. Ye, Y. Zhou, “6G-empowered offload-

ing for real-time applications in multi-access edge

computing”, IEEE Transactions on Network Sci-

ence and Engineering, Vol. 10, No. 3, 2022, pp.

1311-1325.

[24]	 M.-H. Chen, B. Liang, M. Dong, “Joint offloading

decision and resource allocation for multi-user

multi-task mobile cloud”, Proceedings of the IEEE

International Conference on Communications,

Kuala Lumpur, Malaysia, 22-27 May 2016, pp. 1-6.

[25]	 X. Chen, L. Jiao, W. Li, X. Fu, “Efficient multi-user

computation offloading for mobile-edge cloud

computing”, IEEE/ACM Transactions on Network-

ing, Vol. 24, No. 5, 2015, pp. 2795-2808.

[26]	 C. You, K. Huang, H. Chae, B.-H. Kim, “Energy-efficient

resource allocation for mobile-edge computation

offloading”, IEEE Transactions on Wireless Communi-

cations, Vol. 16, No. 3, 2016, pp. 1397-1411.

[27]	 J. Ren, G. Yu, Y. Cai, Y. He, “Latency optimization for

resource allocation in mobile-edge computation

offloading”, IEEE Transactions on Wireless Com-

munications, Vol. 17, No. 8, 2018, pp. 5506-5519.

Volume 16, Number 7, 2025 577

[28]	 Y. Dai, D. Xu, S. Maharjan, Y. Zhang, “Joint compu-

tation offloading and user association in multi-

task mobile edge computing”, IEEE Transactions

on Vehicular Technology, Vol. 67, No. 12, 2018, pp.

12313-12325.

[29]	 L. Huang, X. Feng, L. Zhang, L. Qian, Y. Wu, “Multi-

server multi-user multi-task computation offload-

ing for mobile edge computing networks”, Sen-

sors, Vol. 19, No. 6, 2019, p. 1446.

[30]	 A. R. Askhedkar, B. Chaudhari, R. A. Saeed, H. Al-

humyani, A. Alenizi, “Performance of TVWS-based

LoRa Transmissions using Multi-Armed Bandit”, In-

ternational Journal of Electrical and Computer En-

gineering Systems, Vol. 15, No. 9, 2024, pp. 759-769.

[31]	 D. Wang, H. Qin, B. Song, X. Du, M. Guizani, “Re-

source allocation in information-centric wireless

networking with D2D-enabled MEC: A deep rein-

forcement learning approach”, IEEE Access, Vol. 7,

2019, pp. 114935-114944.

[32]	 A. A. Elnaim et al. “Energy Consumption for Cognitive

Radio Network Enabled Multi-Access Edge Comput-

ing”, Proceedings of the 3rd International Conference

on Emerging Smart Technologies and Applications,

Taiz, Yemen, 10-11 October 2023, pp. 1-5.

[33]	 Y. Liu, H. Yu, S. Xie, Y. Zhang, “Deep reinforcement

learning for offloading and resource allocation

in 6G user edge computing and networks”, IEEE

Transactions on Vehicular Technology, Vol. 68, No.

11, 2019, pp. 11158-11168.

[34]	 J. Chen et al. “Deep reinforcement learning based

resource allocation in multi-UAV-aided MEC net-

works”, IEEE Transactions on Communications, Vol.

71, No. 1, 2022, pp. 296-309.

[35]	 W. Zhang, Z. Zheng, “Task migration for mobile

edge computing using deep reinforcement learn-

ing”, Future Generation Computer Systems, Vol.

96, 2019, pp. 111-118.

[36]	 B. Di, L. Song, Y. Li, G. Y. Li, “Non-orthogonal mul-

tiple access for high-reliable and low-latency V2X

communications in 5G systems”, IEEE journal on

selected areas in communications, Vol. 35, No. 10,

2017, pp. 2383-2397.

[37]	 Y. Wu et al. “NOMA-assisted multi-access mobile

edge computing: A joint optimization of compu-

tation offloading and time allocation”, IEEE Trans-

actions on Vehicular Technology, Vol. 67, No. 12,

2018, pp. 12244-12258.

[38]	 Y. Saito et al. “Non-orthogonal Multiple Access

(NOMA) for Cellular Future Radio Access”, Proceed-

ings of the IEEE 77th Vehicular Technology Confer-

ence, Dresden, Germany, 2-5 June 2013, pp. 1-5.

[39]	 Z. Ding, P. Fan, H. V. Poor, “Impact of user pairing

on 5G nonorthogonal multiple-access downlink

transmissions”, IEEE Transactions on Vehicular

Technology, Vol. 65, No. 8, 2015, pp. 6010-6023.

[40]	 G. Kivanc, H. Liu, “Computationally efficient band-

width allocation and power control for OFDMA”,

IEEE transactions on wireless communications,

Vol. 2, No. 6, 2003, pp. 1150-1158.

[41]	 M. Barakat et al. “Performance Evaluation of Multi-

Access Edge Computing for Blended Learning

Services”, Proceedings of the 21st Learning and

Technology Conference, Jeddah, Saudi Arabia, 15-

16 January 2024, pp. 197-202.

[42]	 Z. Wu, D. Yan, “Deep reinforcement learning-based

computation offloading for 5G 6G user-aware

multi-access edge computing network”, China

Communications, Vol. 18, No. 11, 2021, pp. 26-41.

[43]	 V. Mnih et al. “Human-level control through deep

reinforcement learning”, Nature, Vol. 518, 2015,

pp. 529-533.

[44]	 H. W. Kuhn, “Extensive games and the problem

of information”, Contributions to the Theory of

Games, Vol. 2, No. 28, 1953, pp. 193-216.

[45]	 M. M. Saeed et al. “Task reverse offloading with

deep reinforcement learning in multi-access edge

computing”, Proceedings of the 9th International

Conference on Computer and Communication

Engineering, Kuala Lumpur, Malaysia, 15-16 Au-

gust 2023, pp. 322-327.

[46]	 M. K. Hasan et al. “An improved binary spider wasp

optimization algorithm for intrusion detection for

industrial Internet of Things”, IEEE Open Journal

of the Communications Society, Vol. 6, 2024, pp.

2926-2944.

[47]	 Z. E. Ahmed et al. “TinyML network applications for

smart cities”, TinyML for Edge Intelligence in IoT and

LPWAN Networks, Elsevier, 2024, pp. 423-451.

578 International Journal of Electrical and Computer Engineering Systems

[48]	 M. M. Saeed, R. A. Saeed, Z. E. Ahmed, “TinyML for

5G networks”, TinyML for Edge Intelligence in IoT

and LPWAN Networks, Elsevier, 2024, pp. 167-229.

[49]	 S. Khan et al. “Optimizing deep neural network

architectures for renewable energy forecasting”,

Discover Sustainability, Vol. 5, No. 1, 2024, p. 394.

[50]	 Z. Chen, F. Wang, X. Zhang, “Joint Optimization

for Cooperative Service-Caching, Computation-

Offloading, and Resource-Allocations Over EH/MEC

6G Ultra-Dense Mobile Networks”, IEEE Transactions

on Wireless Communications, 2025. (in press)

[51]	 Z. Hu et al. “DRL-Based Trajectory Optimization

and Task Offloading in Hierarchical Aerial MEC”, in

IEEE Internet of Things Journal, Vol. 12, No. 3, 2025,

pp. 3410-3423.

[52]	 S. Zhang et al. “Stackelberg Game-Based Multi-

Agent Algorithm for Resource Allocation and Task

Offloading in MEC-Enabled C-ITS”, IEEE Transac-

tions on Intelligent Transportation Systems, 2025.

(in press)

[53]	 J. Carlos, M. C. Domingo, “Reinforcement Learning

and Multi-Access Edge Computing for 6G-Based

Underwater Wireless Networks”, IEEE Access, Vol.

13, 2025, pp. 60627-60642.

[54]	 M. Hevesli, A. M. Seid, A. Erbad, M. Abdallah “Multi-

Agent DRL for Queue-Aware Task Offloading in

Hierarchical MEC-Enabled Air-Ground Networks”,

IEEE Transactions on Cognitive Communications

and Networking, 2025. (in press)

[55]	 J. Bi et al. “Energy-Minimized Partial Computation

Offloading in Satellite–Terrestrial Edge Comput-

ing Networks”, IEEE Internet of Things Journal, Vol.

12, No. 5, 2025, pp. 5931-5944.

[56]	 M. Ahmed et al. “Advancements in RIS-Assisted

UAV for Empowering Multiaccess Edge Comput-

ing: A Survey”, IEEE Internet of Things Journal, Vol.

12, No. 6, 2025, pp. 6325-6346.

[57]	 D. M. Rani, Supreethi K P, B. B. Jayasingh, “Deep

Reinforcement Learning for Dynamic Task Sched-

uling in Edge-Cloud Environments”, International

Journal of Electrical and Computer Engineering

Systems, Vol. 15, No. 10, 2024, pp. 837-850.

[58]	 J. Pacheco, “Contribution to the enhancement of

IoT-based application development and optimiza-

tion of underwater communications, by artificial

intelligence, edge computing, and 5G networks

and beyond, in smart cities/seas”, Department of

Network Engineering, Polytechnic University of

Catalonia, Barcelona, Spain, 2024, PhD Thesis.

[59]	 Z. Wang et al. “AUV-assisted node repair for IoUT

relying on multiagent reinforcement learning”,

IEEE Internet Things Journal, Vol. 11, No. 3, 2024,

pp. 4139-4151.

[60]	 J. Cao et al. “Multi-agent reinforcement learning

charging scheme for underwater rechargeable

sensor networks”, IEEE Communication Letters,

Vol. 28, No. 3, 2024, pp. 508-512.

[61]	 Z. Zhao et al. “A transmission-reliable topology

control framework based on deep reinforcement

learning for UWSNs”, IEEE Internet Things Journal,

Vol. 10, No. 15, 2023, pp. 13317-13332.

[62]	 Z. Zhang et al. “Environment- and energy-aware

AUV-assisted data collection for the Internet of

Underwater Things”, IEEE Internet Things J., Vol.

11, No. 15, 2024, pp. 26406-26418.

[63]	 X. Hou et al. “Environment-aware AUV trajectory de-

sign and resource management for multi-tier under-

water computing”, IEEE Journal on Selected Areas in

Communications, Vol. 41, No. 2, 2023, pp. 474-490.

[64]	 K. G. Omeke, M. Mollel, S. T. Shah, L. Zhang, Q. H.

Abbasi, M. A. Imran, “Toward a sustainable Inter-

net of Underwater Things based on AUVs, SWIPT,

and reinforcement learning”, IEEE Internet Things

Journal, Vol. 11, No. 5, 2024, pp. 7640-7651.

[65]	 P. Q. Truong et al. “Computation Offloading and

Resource Allocation Optimization for Mobile Edge

Computing-Aided UAV-RIS Communications”, IEEE

Access, Vol. 12, 2024, pp. 107971-107983.

[66]	 Y. Sadovaya et al. “Enhancing Service Continuity

in Non-Terrestrial Networks via Multi-Connectivity

Offloading”, IEEE Communications Letters, Vol. 28,

No. 10, 2024, pp. 2333-2337.

[67]	 K. Ali, “Multiradio Parallel Offloading in Multi-

access Edge Computing: Optimizing Load Shares,

Scheduling, and Capacity”, IEEE Internet of Things

Journal, Vol. 11, No. 3, 2024, pp. 4047-4062.

[68]	 Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, “6G

Wireless Networks: Vision, Requirements, Architec-

Volume 16, Number 7, 2025 579

ture, and Key Technologies”, IEEE Vehicular Technol-
ogy Magazine, Vol. 14, No. 3, 2019, pp. 28-41.

[69]	 Z. Wang et al. “AUV-Assisted Node Repair for IoUT
Relying on Multiagent Reinforcement Learning”,
IEEE Internet of Things Journal, Vol. 11, No. 3, 2024,
pp. 4139-4151.

[70]	 J. Cao et al. “Multi-Agent Reinforcement Learning
Charging Scheme for Underwater Rechargeable
Sensor Networks”, IEEE Communications Letters,
Vol. 28, No. 3, 2024, pp. 508-512.

[71]	 P. G. Satheesh, T. Sasikala, “FEDRESOURCE: Feder-
ated Learning Based Resource Allocation in Mod-

ern Wireless Networks”, International Journal of

Electrical and Computer Engineering Systems,

Vol. 14, No. 9, 2023, pp. 1023-1030.

[72]	 Z. Zhang et al. “Environment- and Energy-Aware

AUV-Assisted Data Collection for the Internet of

Underwater Things”, IEEE Internet of Things Jour-

nal, Vol. 11, No. 15, 2024, pp. 26406-26418.

[73]	 X. Hou et al. “Environment-Aware AUV Trajectory

Design and Resource Management for Multi-Tier

Underwater Computing”, IEEE Journal on Selected

Areas in Communications, Vol. 41, No. 2, 2023, pp.

474-490.

580 International Journal of Electrical and Computer Engineering Systems

