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Abstract – One of the most important technologies for future mobile networks is multi-access edge computing (MEC). 
Computational duties can be redirected to edge servers rather than distant cloud servers by placing edge computing facilities at the 
edge of the wireless access network. This will meet the needs of 6G applications that demand high reliability and low latency. At the 
same time, as wireless network technology develops, a variety of computationally demanding and time-sensitive 6G applications 
appear. These jobs require lower latency and higher processing priority than traditional internet operations. This study presents a 
6G multi-access edge computing network design to reduce total system costs, creating a collective optimization challenge. To tackle 
this problem, Joint Computation Offloading and Task Migration Optimization (JCOTM), an approach based on deep reinforcement 
learning, is presented. This algorithm takes into consideration several factors, such as the allocation of system computing resources, 
network communication capacity, and the simultaneous execution of many calculation jobs. A Markov Decision Process is used to 
simulate the mixed integer nonlinear programming problem. The effectiveness of the suggested algorithm in reducing equipment 
energy consumption and task processing delays is demonstrated by experimental findings. Compared to other computing offloading 
techniques, it maximizes resource allocation and computing offloading methodologies, improving system resource consumption. 
The presented findings are based on a set of simulations done in TensorFlow and Python 3.7 for the Joint Computation Offloading 
and Task Management (JCOTM) method. Changing key parameters lets us find out that the JCOTM algorithm does converge, with 
rewards providing a measure of its success compared to various task offloading methods. 15 users and 4 RSUs are placed in the MEC 
network which faces resource shortages and is aware of users. According to the tests, JCOTM offers a lower average system offloading 
cost than local, edge, cloud, random computing and a game-theory-based technique. When there are more users and data, JCOTM 
continues to manage resources effectively and shows excellent speed in processing demands. It can be seen from these results that 
JCOTM makes it possible to offload efficiently as both server loads and user needs change in MEC environments.
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1.	 	INTRODUCTION

The upcoming launch of 6G networks promises a 
paradigm leap in connectivity in the quickly changing 
telecoms industry, bringing in a new era of blazingly 
fast speeds, responsiveness, and dependability [1]. To 
satisfy the demanding specifications of next-genera-
tion networks, it is essential to integrate cutting-edge 
technologies as the need for high-performance mobile 
apps keeps growing. Multi-access Edge Computing 
(MEC) stands out among these technologies as a cru-
cial remedy because it makes it possible to distribute 
computational jobs closer to the edge of wireless ac-
cess networks, which lowers latency and improves sys-
tem efficiency overall [2].

Multi-Access Edge Computing (MEC) is emerging as a 
transformative technology that significantly enhances 
network performance by reducing latency through lo-
calized data processing. This capability is essential for 
real-time applications, such as the Internet of Things 
(IoT) and augmented reality, where rapid response 
times are crucial. MEC further optimizes bandwidth ef-
ficiency by offloading processing tasks from the core 
network, leading to better resource utilization. The 
technology also improves user experiences by facilitat-
ing seamless interactions and supports a broad spec-
trum of IoT applications through real-time analytics at 
the edge. Additionally, MEC enhances security and pri-
vacy by minimizing data transmission over networks, 
thus aiding compliance with privacy regulations. Its 
scalable architecture accommodates the growing 
number of devices and applications in today’s fast-
paced technological environment. Overall, MEC stands 
out as a pivotal solution in modern networking, opti-
mizing system performance and alleviating pressure 
on central data centers [3].

Deep Reinforcement Learning (DRL) is a state-of-
the-art method for optimizing computation offload-
ing strategies in 6G environments in MEC. Network 
operators and service providers can intelligently and 
responsively distribute computing jobs to edge servers 
by utilizing DRL algorithms' adaptive and self-learning 
properties [4]. The main requirements of 6G networks, 
which place a premium on low latency, high depend-
ability, and effective resource use to serve a wide range 
of cutting-edge applications from augmented reality 
to driverless cars, are completely met by this integra-
tion. In light of this, conducting research and building 
a deep reinforcement learning-based computation 
offloading framework designed especially for 6G multi-
access edge computing networks is crucial [5].

This framework explores the complex interactions 
between DRL algorithms and computation offload-
ing techniques to optimize task allocation, improve 
system performance, and simplify resource manage-
ment in the context of sophisticated mobile networks 
[6]. This study aims to push the limits of innovation in 
mobile communications by investigating the synergies 

between DRL and computation offloading in the con-
text of 6G MEC networks. It provides a glimpse into the 
revolutionary potential of AI-driven solutions in influ-
encing the future of network architecture and service 
delivery [7].  

The upcoming 6G technology revolution will reshape 
different business sectors by improving network con-
nectivity and latency performance alongside the ca-
pability to implement time-sensitive software applica-
tions. The fundamental development behind network 
edge transformation rests upon Multi-Access Edge 
Computing (MEC) for handling computational resourc-
es local to the network boundary. Strategic computa-
tional load distribution from resource-limited devices 
to edge computing servers constitutes offloading, so 
applications and performance gain better efficiency 
and results [8].

6G networks require effective resource management 
because of the large number of IoT devices and com-
plex application systems that operate within these net-
works. Smart devices such as smartphones, along with 
sensors and autonomous vehicles, use the capability 
of offloading to transfer complex processing duties to 
edge servers situated nearby. The device offloading 
approach helps both devices conserve power and re-
duce battery drain while speeding up responses and 
enhancing the user experience altogether [9].

The main parts of offloading execution within MEC 
consist of many essential elements. The process de-
mands effective decision systems for finding suitable 
offloading targets among tasks alongside optimal 
edge server destinations. The implementation of MEC 
offloading requires an evaluation of the edge server 
workload together with network performance and the 
exact needs for each task, including latency tolerance 
and data magnitude. 

The combination of artificial intelligence (AI) with 
machine learning (ML) methods greatly improves the 
capability to make offloading decisions. Records from 
both history and current network situations supply AI 
algorithms with data to find optimal offloading tech-
niques that enhance the effectiveness of job distribu-
tion along with resource organization. The intelligent 
system delivers both enhanced performance and bet-
ter 6G network resilience because it rapidly adjusts to 
both conditions and potential failures [10].

Security, together with privacy issues, represents the 
highest concern throughout the offloading process. 
Edge servers require both strong encryption and pro-
tected communication protocols to ensure the security 
of sensitive data transferred from users. 6G networks 
must guarantee data confidentiality and integrity be-
cause such measures are vital for meeting user trust re-
quirements and following regulatory standards when 
they support a diverse set of applications and multiple 
devices.

The deployment of offloading systems within 6G 
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MEC encounters multiple difficulties. Device capability 
management, alongside network component interop-
erability and quality of service delivery requirements, 
make up the implementation challenges of these net-
works. Offloading methods need to establish coherent 
processing speed, energy utilization, and networking 
reliability ratios to deliver continuous user experiences.

The wireless network progression from 5G to 6G 
technology establishes a new standard of connectiv-
ity through heightened speed, together with inferior 
latency and better capacity. Multi-Access Edge Com-
puting (MEC) serves as the essential tool for network 
evolution since it distributes computation and storage 
capabilities near final user locations. An efficient mech-
anism for complex processing called offloading works 
effectively because of network decentralization. The 
transfer of computational operations from smartphone 
platforms and IoT sensors to enhanced edge servers 
through offloading describes this process. Application 
performance can be both optimized and real-time pro-
cessing and low-latency requirements fulfilled through 
this essential resource optimization procedure [11].

6G networks must manage unimaginable numbers 
of linked devices as well as applications, which include 
autonomous systems and AR and VR applications, be-
cause they require increased computational power. Ex-
tensive application processing needs exceed the capa-
bilities of local devices, thus making these applications 
require edge server support. The shifted task execution 
through offloading activates the edge servers to per-
form computations with better efficiency and thus im-
proves system performance at large. Several important 
advantages emerge from offloading, according to the 
diagram given in Fig. 1.

Fig. 1. Offloading Significant Benefits

Edge servers enable applications to lower latency while 
increasing response times because of their processing ca-
pabilities, which serve user satisfaction primarily in real-
time applications. Devices with limited resources can save 
power through edge-based transferring of complex pro-
cessing demands. The operation of IoT devices that de-
pend on battery power specifically requires this approach. 

Network scalability becomes possible through offloading 
because it enables distributed workloads across several 
edge servers instead of overloading devices and cloud-
based resources independently. The offloading process 
lowers the amount of data that needs to flow to cloud 
servers for analysis, resulting in reduced bandwidth usage 
and network congestion occurrences.

1.1.	 Decision-Making in Offloading

Making a task of offloading a decision involves evalu-
ating multiple conditions, which should include [12], 
[13], and [14]:

•	 Task characteristics and specific parameters such 
as computational difficulty, together with data vol-
ume and response time demands, play an essential 
role in deciding whether a computation should be 
transmitted off-device.

•	 Professional offloading decisions require immedi-
ate evaluation of network conditions, including 
server load, bandwidth availability, and network 
latency data.

•	 For successful offloading purposes, it is fundamen-
tal to recognize the processing abilities and energy 
use status of initiating devices.

Advanced algorithms together with models serve as 
tools to assist in this type of decision-making frame-
work. These may include:

•	 Advanced offloading algorithms make real-time 
compensations to fluctuating networks and sys-
tem work demands for better offloading results.

•	 The predictive analysis uses AI and ML technolo-
gies to develop offloading strategies by process-
ing historical and present network data. The tech-
nologies apply past data learning to optimize their 
functions in distributing resources across teams 
and assigning tasks more effectively.

1.2.	 Security and Privacy Concerns

Data security and privacy emerge as essential factors 
after its transport to edge servers. Key considerations 
include [8]:

•	 All transmission of sensitive information to edge 
servers require encryption to stop unauthorized 
users from accessing the data.

•	 A secure transmission protocol system must be es-
tablished to maintain safe data exchange between 
devices and edge servers.

•	 The protection of sensitive data requires imple-
menting measures that allow authorized users and 
devices to access it.

•	 The protection of user privacy requires organiza-
tions to maintain strict obedience to data protec-
tion laws like GDPR and HIPAA.
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1.3.	 Challenges in Implementing 
	 Offloading

Several key obstacles exist when implementing 
offloading via MEC in 6G networks [15]:

•	 The compatibility between different devices and 
applications, and network components becomes 
complex because standard protocols and inter-
faces are needed.

•	 Developing a favorable quality of service (QoS) re-
mains vital to achieving user satisfaction because 
sensitive applications require stable bandwidth 
along with minimal latency.

•	 Efficient operations of edge server’s dependent on 
resource management create significant problems 
because of load balancing difficulties and resource 
allocation demands.

•	 Modern computational frameworks are needed to 
execute effective operations for real-time decision-
making between abrupt condition changes.

1.4.	Future  Directions

6G technology development indicates that the fol-
lowing directions for MEC offloading will emerge [16]:

•	 The application of edge intelligence combined 
with artificial intelligence at horizontal distribution 
points results in improved decision-making ability 
that enables dynamic on-the-fly offloading adjust-
ments based on present conditions.

•	 Federated learning provides decentralized model 
training that keeps sensitive data on user devices 
and enables collective learning through decentral-
ized training.

•	 The adoption of decentralized architectural design 
brings better resistance and decreases dependen-
cy on centralized cloud infrastructure, which en-
ables better offloading outcomes.

•	 Edge computing operations demand specialized 
security frameworks that need development ac-
cording to specific edge needs, since platform evo-
lution will be mandatory.

6G Multi-Access Edge Computing depends on 
offloading as its core resource optimization and ap-
plication performance enhancement mechanism [17]. 
The method of moving computations to edge servers 
as a strategic step helps handle next-gen application 
requirements and delivers better energy efficiency 
and adaptable system capacity [18]. The complete re-
alization of 6G MEC requires attention towards smart 
calculation management techniques as well as secure 
protection frameworks and resolution of operational 
obstacles alongside technological evolution [19].

Through carefully assessing these technologies and 
their consequences for the mobile ecosystem, our re-

search strives to pave the way for more efficient, intel-
ligent, and responsive network infrastructures capable 
of addressing the rising needs of the digital age. Here's 
a summary of the primary contributions:

•	 The communication and task computation flow are 
simulated to determine the system delay and en-
ergy consumption formula. 

•	 The mixed integer nonlinear programming problem 
is challenging to solve directly because it is NP-hard. 
Thus, we convert it into a Markov Decision Process 
and propose a combined computation offloading 
and task migration optimization (JCOTM) technique 
based on deep reinforcement learning. 

The JCOTM algorithm's convergence and efficacy are 
demonstrated by experimental performance. Our sug-
gested approach can lower processing latency and equip-
ment energy usage in various system contexts compared 
to alternative computation offloading strategies.

The remaining sections of this paper are arranged as 
follows: In Section III, we outline the joint optimization 
issue and the 5 G-based 6G user-aware multi-access 
edge computing network architecture. Section IV intro-
duces the Deep Q-Network and the JCOTM algorithm's 
comprehensive process. Section V presents the simula-
tion parameters and outcomes, while Section VI wraps 
up our investigation.

2.	 RELATED WORK

This part of the study examines previous studies that 
aimed to improve how computation is distributed in 
Multi-Access Edge Computing (MEC). The literature is 
typically organized into binary offloading and making 
decisions about partial execution.

The tasks can be processed where they are created or 
sent to the MEC server for completion. [20] analyzes what 
the best single-user performance is when binary offload-
ing is used in ultra-dense networks. It highlights situations 
when binary offloading might be useful, and [21] devel-
ops an approach using both games and optimization for 
better results. They help to see the role of server-based 
processing and when it is more beneficial than running 
tasks locally, showing the need to decide wisely.

Several experts have used advanced techniques such 
as reinforcement learning (RL) to manage the compli-
cated issues in MEC. For example, [22] optimizes the 
use of resources and UAV routes at once, which demon-
strates how RL helps save power in fast-changing situa-
tions. [23] found that RL can handle some of the MEC’s 
important challenges, such as those related to mobility 
and managing changing channels.

This framework (MELO, presented in [24]) demon-
strates a decision-making system that uses reinforce-
ment learning and formulates the tasks as a Markov 
Decision Process. It points to more use of machine 
learning to assist in making choices in the context of 
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MEC. Alternatively, users with partial offloading can 
pass some of their work to the MEC server when re-
quired. The research in [25] deals with offloading cloud 
tasks to more than one device, with wireless interfer-
ence and separable semi-definite relaxation in mind. 
This technique points out how partial offloading is flex-
ible and able to ensure resources are used well, as dif-
ferent users require them.

Also, techniques such as convex optimization and 
segmentation optimization are used to optimize re-
source usage in multi-user MEC systems [26, 27]. They 
reveal how much effort is put into both minimizing ex-
penses and cutting back on delays that put efficiency 
and results in balance.

Different approaches, for example, [28], are now consid-
ering how load on servers affects energy use, reflecting 
the increased awareness that workloads and infrastruc-
ture affect each other. Unlike the strategies of the papers 
mentioned in [7], the authors of [29] and [30] stressed that 
the best way to reduce offloading costs is to pay attention 
to energy use, processing time, and delay.

[31] and [32] identify that with the advent of 6G, in-
telligent user edge computing relies heavily on deep 
reinforcement learning for request offloading and 
choosing resources. The article [33] also introduced 
the UMAP algorithm, which further demonstrates the 
benefits of combining different advanced algorithms 
to boost MEC performance.

Simply put, while the use of binary offloading helps 
with straightforward situations, using partial offload-
ing and more advanced techniques allows both the ap-
plication and network to adapt and respond to what 
the user needs. The field is seeing how delicate perfor-
mance, resource management, and what users experi-
ence are balanced in MEC.

This work [34] presented the UMAP algorithm that 
connects handling UAV movement to connecting us-
ers with access to a network, all through frequent opti-
mization. With deep reinforcement learning (DRL), the 
system learns to improve both where UAVs go and how 
they are associated, which helps reduce the amount of 
energy used and waiting time in the system. This way 
of working highlights that DRL is useful in environ-
ments that keep adapting, so agents can react to cur-
rent circumstances.

Even so, due to how complicated DRL models are to 
train, it can be quite challenging regarding whether 
they converge and the number of computer resourc-
es required, which means they aren’t always practi-
cal everywhere. Even though the advancement to 
closed-form MU transmission power helps efficiency, 
it may not be suited for different operating settings. 
To sum up, UMAP reflects important progress in MEC 
by offloading data, but points out that further study is 
needed to improve its work in different situations. This 
stresses the need to blend different optimization strat-
egies to help the entire system perform better. 

The proposed system involves 5G technology and 
6G user-aware Multi-access Edge Computing network 
(VAMECN) elements, which consist of 6G users, road-
side units, and cloud servers to handle upcoming 5G 
network offloading functions. The proposed method 
addresses the reduction of system delays along ener-
gy consumption optimization. The proposed solution 
adopts deep reinforcement learning to create JCOTM 
for addressing problems through performance demon-
strations

3.	 SYSTEM MODEL AND PROBLEM 
FORMULATION 

As illustrated in Fig. 2, we examine a 5 G-based user-
aware Mobile Edge Computing (MEC) network architec-
ture, which comprises N users, M Roadside Units (RSUs), 
and a cloud server. We define the index sets for users and 
RSUs as U = {1,2,…,N} and M =  {0,1,2,…, M, M+1, respec-
tively. Here, m=0 represents the local computing device, 
while m=M+1 denotes the cloud server [35]. The indices 
between 0 and M+1 correspond to the edge servers. 
We assume that the RSUs are uniformly distributed 
along the road, each covering a consistent area R. Each 
RSU is equipped with one or more MEC servers, posi-
tioning it as an edge computing node.

To effectively simulate the users' trajectories over 
time, we represent the continuous road as a series of 
discrete traffic areas. In Fig. 2, a typical urban road net-
work is segmented into PPP discrete areas, indexed by 
the set P={1, 2,…, P} We will next address the optimiza-
tion problem related to joint computation offloading 
and task migration over a defined period T [36]. This 
period is divided into ti time slots denote as T={1, 2,…, ti} 
at the initial time slot t0, users are randomly allocated 
within the network. As users move, they can either 
remain in their current traffic area or transition to an 
adjacent one. The transition probability from location l 
to l' for users can be expressed as Pr(l'│l). For instance,  
Pr(l│l)=0.5 indicates a 50 % probability that a user will 
remain in the same location. We assume the probability 
of moving from l to l' (where l≠l') is equivalent, allow-
ing us to calculate the position transfer probability as 
Pr(l'│l) =  (1-Pr(l│l))/2 [37]

Fig. 2. The architecture of our proposed 6G MEC 
network
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Each user of equipment (UE) is assumed to have a 
single compute-intensive task that requires processing. 
There exists a one-to-one correspondence between UEs 
and users. The n-th task can be characterized by a triple 
αn, βn, γn, where n ∈ v, αn denotes the data size of the task, 
βn represents the required CPU cycles for task completion, 
and γn indicates the maximum allowable delay. The binary 
offloading decision is represented by xmn ∈ {0,1}, for m ∈ 
M, n ∈ v. Specifically, xmn=0 indicates that task n will be 
processed on the local UE, while xmn=1 signifies that the 
task will be offloaded to the m-th MEC server [38]. 

Notably, when m=M+1, the task n is offloaded to the 
cloud server. The system's offloading decisions at the tth 
time slot is represented by the set 

X(t)={x01 (t),…, x(M+1)1 (t), x02 (t),…, x(M+1)N (t)}.  It is im-
portant to note that each UE can connect to either one 
RSU or the Base Station (BS) during a time slot [39], 
thereby necessitating the following constraint:

Subsequently, we will explore the communication 
and computation models of the User-Aware MEC Net-
work (UAMECN) system [40], deriving expressions for 
delay and energy consumption.

(1)

3.1.	 Model of Communication  

Base station-based communication algorithms cre-
ate transmission delays that happen when uploading 
cloud-server data. The rising number of tasks between 
users causes resource contention that produces net-
work instabilities alongside extended delays. MEC ad-
dresses the network bottleneck by establishing server 
locations that are nearer to user locations [41].

Non-orthogonal multiple Access (NOMA) stands as 
a vital 5G technology that enables non-orthogonal 
transmission during signal transmission and incorpo-
rates interference data actively while implementing 
successive interference cancellation (SIC) for accurate 
signal demodulation at receivers [42]. The receiver im-
plementation of NOMA provides additional complexity 
compared to OFDMA but delivers higher spectral effi-
ciency. The VAMECN system adopts NOMA for UE-to-BS 
communication links yet employs OFDMA for UE-to-
RSU links because the BS must serve more users [43].

The channel state follows a time-dependent finite 
continuous value pattern through which the new state 
appears solely from the previous state. The paper trans-
forms the state values into L discrete levels before repre-
senting them as finite-state Markov chains. Channel gain 
is a crucial parameter for calculating data transmission 
rates. We denote the channel gain of the wireless link 
between the user n and RSU m at time t as Γn

m (t), calcu-
lated using the formula [44]:

Here, gn
m represents small-scale fading, d(n, m) is the 

distance between the user n and RSU m, and r is the 

path loss index. The term d-r
n,m signifies path loss. The 

state space of the Markov chain is represented as L = 
{Υ1, Υ2,…, ΥL }, and Γn

m(t) is classified as Υ1 when Γ1* ≤ Γn
m 

< Γ2*; Γn
m is quantified as Υ2 when Γ2* ≤ Γn

m < Γ3*; and so 
on, Γn

m is quantified as ΥL when Γn
m ≥ ΓL*. ψgs, hs (t) is the 

transition probability that the channel gain shifts from 
the state gs to state hs. Consequently, the following is 
the L × L channel state transition probability matrix.

(2)

(3)

Where ψgs, hs (t) = Pr(Γn
m (t+1) = hs | Γn

m (t)= gs), and 
gs, hs ∈ L. Thus, according to the Shannon formula, the 
data transmission rate between the user and RSU at 
time slot t is calculated as follows.

(4)

Where bn
m (t) the orthogonally allotted bandwidth 

from RSU m to user n, m ∈ M and n ∈ U. bn
m (t), is denoted 

by the Gaussian white noise power is represented by σ2, 
while transmission power is indicated by bn

m (t) [45]. 

Next, we talk about how users and BS communicate. 
For instance, in the uplink, each UE will be assigned a 
distinct transmission strength, and signals will be su-
perimposed to send when multiple users are connect-
ed to the BS at the same time.

(5)

calculates the superimposed signal, where xn and 
xi stand for the target user n's and other users' 
transmission signals, respectively. The signal that 
was received is

(6)

After obtaining the data, the BS user rises out of SIC 
decoding in the decreasing order of channel gain. The 
interference signal for user n is the sum of the signals 
with lower equivalent channel gain [46]. In the declin-
ing sequence of their channel gains, we assume that N 
users share the same channel: Υ1

M+1 ≥ Υ2
M+1 ≥ ΥN

M+1. The 
data transmission rate un

M+1 (t) and the interference sig-
nal In (t) If the user is therefore

(7)

(8)

Equation (9) can therefore be used to evenly express 
the user n's data transmission rate [47].

(9)

The following displays the task n's energy usage and 
communication delay.

(10)

(11)

(12)

(13)
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where αn (t) is the amount of data left over from the n 
task. Since m = 0 indicates that the work will be pro-
cessed locally, there is no transmission delay, and no 
energy consumption, hence in this case, the value of m 
starts at 1 instead of 0.

3.2.	 Model of Computation

User n's task will be sent from the cloud server to the 
MEC server for computation when xnm (t)=1, m ∈ M\{0}. 
The calculation capability of the server m, commonly 
referred to as the CPU rate, is represented by the sym-
bol fm [48]. In particular, the local CPU rate is shown by 
f0, and the cloud server's CPU rate is indicated by fM+1. 
Because edge servers have distinct hardware configu-
rations f0 ≪ fm ≪ fM+1, m ∈ M {0, M+1}, They are generally 
more powerful than UE. The distribution of computer 
resources is not average.

Only one task or one task slice may be completed by 
each CPU (single core) in each time slot. To simplify 
the computation model, we assume that every UE has 
equal entitlement to obtain computing resources [49]. 
This implies that if n users decide to offload jobs to the 
same server, the computing resources allotted to each 
task are fm/n. As a result, we can determine the CPU rate 
assigned to the user n by using the formula

(14)

It is therefore possible to express the processing time 
for the user n as

(15)

where βn (t) is the remaining number of CPU cycles 
needed by the user n during the time slot t. It goes 
without saying that as server processing capacity rises, 
computation delay falls. In the meantime, as it influenc-
es the CPU time allotted to each user, the server load is 
also a crucial consideration. The energy used by local 
equipment in the absence of ask offloading is denoted 
by Enm

comp (t) [50]. 

(16)

Therefore, the energy consumption for user n. Where 
the effective switched capacitance is represented by 
µ=10-11 [51].

3.3.	Formulation  of the Problem

Through the explanation above, we have represented 
the computation and communication process. Based 
on our earlier work, we formulate the job completion 
delay and UE's energy usage as follows. 

(17)

where ξt, ξe ∈ [0,1] are two scalar weights of energy con-
sumption and latency, respectively. Keep in mind that 

the system latency is the highest of all task computa-
tion and communication delays. Consequently, the 
following is an expression for the joint computation 
offloading and task migration optimization problem

Subject to:

(18)

(19)

(20)

(21)

(22)

Table 1 lists the definitions and notations used in this 
paper. The challenge of optimization, Multiple variable 
constraints, makes JCOTM a non-convex mixed-integer 
linear programming issue. The correlation between the 
variables makes it challenging for us to solve it. As a re-
sult, we provide a proposed technique based on Deep 
Reinforcement Learning (DRL) and model the original 
problem as a Markov Decision Process (MDP) [52].

Table 1. Notations used in this paper

Notation Definition

U, N Index set/number of users

M, m Index set/number of RSUs

p, P Index set/number of traffic areas

l, L The set/number of channel gain states

xnm (t) xnm (t) = 1 if task n is offloaded to server m at time slot 
t, otherwise, xnm = 0

R Coverage range of one RSU

βn Required number of CPU cycles of task n
αn Data size of task n
γn max delay limit of task n

γl
The l-th state value after the channel gains 

discretization

Pr(l'│l) Transition probability from location l to l' of 6G users

dn,m
-r Pass loss

gn
m Small-scale fading

Γn
m (t)

Channel gain of the communication link between 6G 
user n and RSU m at time slot t

bn
m (t) Bandwidth of the link between 6G user n and RSU m 

at time slot t
ψgs, hs (t) Transition probability from state hi to hj of Γn

m (t)

σ2 Gaussian white noise power

Pn Transmission power of 6G users n
Tn

comm, Tn
comp Communication/computation delay of task n

Rn
m (t) Data transmission rate from 6G user n to RSU m
fm Computation capability of server m

En
comm, En

comp Communication/computation energy consumption 
of task n

ξt, ξe Scalar weight of delay/energy consumption

μ The effective switched capacitance

4.	 	OPTIMIZING COMPUTATION OFFLOADING 
BASED DRL

Reinforcement Learning (RL), a subfield of artificial 
intelligence, is the third machine learning technique, 
following Unsupervised Learning (UL) and Supervised 



572 International Journal of Electrical and Computer Engineering Systems

Learning (SL). Reinforcement learning involves an 
agent interacting with its surroundings to learn what 
actions would result in the greatest reward [53]. In su-
pervised and unsupervised learning, the data is static 
and does not require interaction with the environ-
ment, such as picture recognition. The deep network 
can learn the difference between samples by iterative 
training if sufficient samples are provided. However, RL 
is a dynamic and interactive learning process, and con-
stant contact with the environment also generates the 
necessary data.

As a result, reinforcement learning incorporates 
more objects, such as action, environment, state transi-
tion probability, and reward function, than supervised 
learning and unsupervised learning. As a result, when 
the complexity of a problem approaches that of the ac-
tual world, Reinforcement Learning may solve it more 
effectively [54]. Generally, there are two reinforcement 
learning algorithms: model-based and model-free. 
Model in this context refers to the environment's mod-
el. The primary distinction between the two algorithms 
is whether the agent knows the environment model. 
Model-based has the advantage of allowing the agent 
to pre-plan the action path based on the features of 
the known environment. However, it is challenging to 
get the desired outcome because of the discrepancy 
between the learned model and the actual world [55]. 

Consequently, Model-Free is frequently simpler to set 
up and modify. Value-based, policy-based, and Actor-
criticism are the three types of model-free algorithms. 
Policy-based algorithms model and learn the policy di-
rectly, whereas value-based algorithms learn the value 
function or the action-value function to acquire policy 
[56]. The benefits of the other two approaches are com-
bined in the Actor-Critic algorithms. 

While the critic produces the value of the action, the 
actor chooses the course of action based on policy. 
Consequently, the value function and policy impact 
on one another, accelerating the convergence process. 
One traditional value-based reinforcement learning al-
gorithm is Q-learning [57]. After learning the Q-values 
of state-action pairings, the agent chooses the action 
with the highest Q value. The Q-value, which is the ex-
pected reward received by acting a(a ∈ A) under state 
s(s ∈ S) at some time, is expressed as Q* (s, a) = maxπ  
E[rt + γrt+1 + γrt+2

21 +...|st = s, at = a, π] [43]. Q-learning 
optimizes the policy by updating the complete Q-table 
in each iteration, using the Q-table to hold the Q-values 
of all state-action pairs. The formula 

(23)

The current state, s, the action was taken at s, s', the 
state that follows action a, and a', the next possible ac-
tion at the state s', are all represented in Equation (23). 
The parameters indicate the learning rate and discount 
factor α and γ, respectively. The reward results from se-
lecting an action and is denoted by r. Q-learning up-
dates the current Q-value using the maximum Q-value 

of the subsequent stage. Here, the goal Q-value is de-
noted by r + γ max┬a' Q(s', a'), while the estimated Q-
value is denoted by Q(s, a) [58]. It goes without saying 
that when the state and action spaces are too big, the 
Q-table will grow limitless and require more storage 
space. A promising approach, DQN (Deep Q-Network), 
which combines the Q learning algorithm and the 
deep neural network, addresses the issue.

4.1.	 Deep Q-Network Algorithm
One significant development in Deep Reinforcement 

Learning was Google DeepMind Technologies' 2013 
proposal of DQN. Figure 3 depicts the DQN structure. 
DQN has two main advantages over classical Q learn-
ing. First, it changes the Q-table updating process into 
a function-fitting problem, which fits a function rather 
than a Q-table to produce Q values. In DQN, a deep 
neural network predicts Q values. Two neural networks 
predominate.

Fig. 3. The DQN structure

One is the main network, which modifies the param-
eters for every iteration, and the other is the target net-
work, whose parameters are largely fixed [59]. At the 
same intervals, the target network replicates the pa-
rameters from the primary network. As a result, back-
propagation only actually trains the primary network. 
Second, each step of the agent is stored in a unique 
structure called experience replay, which is denoted by 
(s, a, r, s'). During each network training cycle, a batch 
of experiences will be randomly selected from the ex-
perience replay for learning. Q-learning can be learned 
from past and present experiences because it is an off-
policy algorithm [60]. 

Therefore, adding prior experience at random during 
the learning process will increase the neural network's 
efficiency and break the correlation between training 
samples. The following loss function is used for DQN 
updates at iteration i.

(24)

Where the goal Q-value for iteration i is [(r +γ ax┬a' 
)Q(s', a'; θi

- ). Until the agent learns to select the best 
course of action for every state, the neural network is 
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trained, and its parameters are updated by minimizing 
the value of the loss function in (24), which is the dif-
ference between the goal and estimated Q-values [61]. 
In the following subsection, the specifics of our sug-
gested JCOTM algorithm will be displayed.

4.2.	 JCOTM Algorithm 

The optimization issue JCOTM is formulated as a DRL 
process in this subsection. In this case, the agent is a 
central management system, which interacts with the 
surroundings and makes choices. As a result, the agent 
will broadcast the computation offloading decisions to 
every UE after gathering status data from servers and 
automobiles [62]. We must define the three essential 
components of DQN—the State, Action, and Reward 
functions—in our algorithm to use it to solve the prob-
lem we have been given. Action is the potential behav-
ior of each step, whereas the state is used to represent 
the environment model. The reward produced by each 
action, which may be good or negative, is determined 
using the reward function.

•	 State: Sn (t) represents the condition of the user n 
at time slot t. The communication state is described 
by Γn

m (t), bn
m (t), while the user state is described 

by ln (t), αn (t), and βn (t). The channel gain and the 
allotted communication bandwidth between the 
user n and RSU m at time slot t are denoted by Γn

m 
(t) and bn

m (t), respectively. The traffic area where 
the user n is at a time slot t is shown by ln (t),. The re-
maining data amount is represented by αn (t), while 
the necessary number of CPU cycles is represented 
by βn (t). Consequently, sn (t) can be written like this:

(25)

•	 Action: Vector an (t) ∈ RM+1 indicates whether task 
n is offloaded to a server m, which is the binary 
offloading decision. The environment changes 
from its present state to the next state when the 
agent selects one action for each time slot t. an(t) is 
defined as follows

(26)

•	 Reward system: To determine whether the chosen 
course of action is good, the environment provides 
the agent with an indicator value called reward. 
The optimization objective in this article is to re-
duce the system cost, which is composed of energy 
consumption and latency. System cost is hence the 
reward function.

(27)

Fig. 4 depicts the architecture of the JCOTM algo-
rithm, which is based on deep reinforcement learning. 
With the same structure, we employ k-deep neural net-
works (DNN) to forecast binary offloading choices. The 
action is the neural network's output, while the pres-

ent state of the environment is its input [63]. We add 
a decoding layer after the output layer to translate the 
decimal values into binary. The binary action vector's 
dimension in our suggested offloading paradigm is 
N(M+2). We compute the system offloading cost, which 
is the reward function specified in the preceding mate-
rial, for each of the output k binary offloading actions. 
The experience replay unit is initially empty, and a k 
DNNs start with random parameter values θ0

k.

Fig. 4. The architecture of the proposed JCOTM 
algorithm

The agent chooses the best f-loading action to mini-
mize the reward value in each iteration. The algorithm 
regularly updates the network parameters and ran-
domly selects a batch of samples from the experience 
replay unit for training. Gradient descent is used to ad-
just the parameters to minimize the cross-entropy loss 
because we switch the DNN's output from predicting 
the Q-value to action [64].

(28)

Algorithm 1 displays the JCOTM algorithm's pseudo 
code.

Algorithm 1. The JCOTM Algorithm is based on DRL.

1:	 Input: status of the environment State(t)

2:	 Output: decision for offloading Action(t)

3:	 Initialization:

4:		  initialize environment state State(t)

5:		  The offloading procedure begins by using 
		  an identically structured k DNNs.

6:		  initialize experience replay.

7:	 for t = 0,1,...,T: do

8:		  Input the current environment state St.

9:		  Get the outputs of each DNN.

10:		  Apply decoding techniques to the output 
		  values to obtain At

i.

11:		  The offloading decision At is selected  
		  through arg min Rt where by  
		  Rt=arg mini=1,...,k Q(St, At

i).
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12:		  After execution of Action(t) environment 
		  progresses to its new status St+1.

13:		  The experience reply receives a tuple 
		  At, Rt, St, St+1.

14:		  The parameters within DNNs get updated 
		  through data from randomly chosen 
		  training batches.

15:	 end for 

5.	 	ANALYSIS OF SIMULATION

To assess the effectiveness of our suggested JCOTM 
method, we create various simulation tests in this part. 
TensorFlow and Python 3.7 serve as the foundation 
for the simulation environment. First, by modifying 
the model's important parameters, we confirm that 
the JCOTM algorithm is convergent. Next, we assess 
the development of the deep reinforcement learning-
based system offloading technique by comparing the 
average system offloading cost of JCOTM with other 
task offloading policies.

To construct a resource-constrained user-aware MEC 
network, we set the number of users N = 15 and the 
number of RSUs M = 4. Each P = 4 traffic region that 
makes up the route has a single RSU with a coverage 
diameter of R = 1 km. Each UE, edge server, and cloud 
server has CPU frequencies of 0.6×109, 1×1010, and 
1×1012, respectively [65]. The Gaussian white noise 
power σ2 is -88dB, and the overall bandwidth B is 10 
MHz. The data size of job n αn is assumed to be be-
tween 10M and 30M, and ρ = 960 Cycles/Byte is the 
number of CPU cycles needed for one byte [66]. Table 2 
is a list of some important parameters. We will then do 
our simulation exercises and examine the outcomes. 

Table 2. Simulation parameters

Parameter Value
f0 0.6 GHz

fm 10 GHz

fM+1
1 THz

αn [10, 30] Mb

σ2 -88 dB

ρ 960 Cycles/Byte

B 10 MHz

R 1 km

P 4

M 4

N 15

5.1.	 JCOTM Convergence 

JCOTM convergence has been measured by the re-
ward ratio, by dividing the cost of the optimal offload-
ing policy by enumerating the cost of the policy cre-
ated by JCOTM, as the assessment indicator to confirm 
the convergence of JCOTM [67]. Consequently, the al-

gorithm performs better the closer the reward ratio is 
to 1. It is defined as follows: 

(29)

Fig. 5. Convergence of JCOTM Offloading Cost Over 
Iterations

Fig. 4 shows the cost of JCOTM keeps falling and 
eventually stabilizes as the number of simulations ris-
es, in an environment with 20 users. As time goes on, 
JCOTM gets closer to the best policy than before.

5.2.	 Performance of Different 
	 Offloading Policies 

This paragraph evaluates different offloading com-
puting methods within the context. Our suggested 
method, JCOTM, joins the following different offload-
ing rules, which form the basis of this analysis. 

1.	 UE performs all its tasks individually without server 
transfers when performing local computing. The 
system cost results from the weighted sum of ener-
gy expended by devices, together with local com-
putational delays. 

2.	 Using edge servers as processing centers is known 
as edge computing, where all operations are trans-
ferred instead of running on the local devices [68]. 
The system cost includes computational delay 
and transmission delay, together with UE energy 
consumption that happens when data needs to 
be transferred. The concept of Edge computing in 
this application means all workloads are sent to ex-
ecute on a single MEC server. 

3.	 Cloud Computing works just like conventional opera-
tor cloud services, where all functions get processed 
on cloud-based servers. The distance between users 
and the cloud server results in higher transmission 
delays alongside increased energy consumption. 

4.	 The random computing policy makes offloading 
decisions by selecting from available options ran-
domly. A single operation can receive processing 
either within the local network or an edge server, 
or through the cloud infrastructure.

5.	 The VAMECN compute offloading problem receives 
dynamic non-cooperative game model analysis 
through DGTA, which leads to the determination of 
Nash Equilibrium solutions [69]. Each user receives 
a chance to select their optimal offloading strategy 
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per DGTA algorithm iteration since this method 
relies on game theory. Figure 6 shows the system 
offloading expenses of the six different policies 
while the user count varies. It is evident that when 
the number of users for all policies increases, the 
system cost progressively increases as well.

Policies for offloading and the inferior offloading per-
formance are attained by DGTA. Additionally, random 
computing outperforms edge and local computing, but 
cloud computing outperforms random computing. Fur-
thermore, the local computing strategy's offloading cost 
is higher than edge computing's when there are fewer 
than sixteen users, while the opposite is true when there 
are more than sixteen. The rationale is that if several 
workloads are offloaded to the same MEC server [70], 
there will be less computing power available for each 
user, which will raise the cost of computation. 

Fig. 6. The average system offloading cost is 
compared to varying user counts

The average system offloading cost under various 
job data sizes is compared in Fig. 7. Here, we used Fig. 
7 to independently determine the offloading cost. Av-
erage system offloading costs for varying user counts 
are compared. The 10MB to 80MB data size range. The 
average cost of computing offloading progressively 
rises as task data sizes increase. JCOTM outperforms 
the other offloading policies since it optimizes the allo-
cation of system resources [71], whereas other policies 
either do not accomplish the best allocation of system 
resources or only use a specific type of computing re-
sources. Local computing has the highest offloading 
cost, followed by edge computing.

Fig. 7. Average system offloading cost comparison 
for activities with varying data volumes

On the other hand, cloud computing, random com-
puting, and DGTA have reduced average system offload-
ing costs. The effect of varying numbers of MEC servers 
on the average system offloading cost is seen in Fig. 8. 

Fig. 8. Comparison of the average cost of system offloading for varying MEC server counts

Fig. 9. The average system offloading cost is compared to MEC servers with varying computational capacities
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Naturally, the curves are straight lines parallel to the 
x-axis because local and cloud computing are unaf-
fected. Using Figure 7, as illustrated in Figure 8. Com-
parison of average system offloading costs for tasks 
with varying task data sizes [72]. The edge computing 
offloading cost curve resembles a horizontal straight 
line as the number of MEC servers increases. 

Since all jobs are offloaded to a single MEC server 
for computation under the edge computing policy, 
increasing the number of MEC servers has a minimal 
effect on offloading costs, making this easy to explain 
[73]. The curves drop as the number of MEC servers 
grows since additional MEC servers can minimize mode 
computing delay for random computing and DGTA 
rules. The chart shows that the average JCOTM system 
offloading cost is nearly unaffected by the quantity of 
MEC servers.

One argument is that the cost curve does not exhibit 
a noticeable downward trend because the resource-
constrained environment we have simulated can only 
satisfy the computational needs of every user.

 The average system offloading cost for MEC serv-
ers with varying computing capacities is compared in 
Figure 9. Likewise, the computing power of MEC serv-
ers has little bearing on cloud or local computing. The 
chart indicates that the lower the offloading cost, the 
greater the computational capability of MEC servers. 
Additionally, when MEC servers' processing power in-
creases, the offloading cost's rate of decline progres-
sively slows down.

Compared to the other policies, JCOTM has a lower 
average system offloading cost. Additionally, edge 
computing outperforms cloud computing in terms of 
offloading costs when MEC server processing power 
reaches above 30GHz, and when it reaches over 40GHz, 
edge computing. We infer that the average system 
offloading cost is mostly determined by the computa-
tional capacity of MEC servers.

6.	 CONCLUSION 

This paper addresses the joint multi-user computa-
tion offloading and task migration optimization prob-
lem under user-aware Multi-access Edge Computing 
networks. It considers several factors, including the dis-
tribution of system computing resources, communica-
tion bandwidth, and concurrent multiple computation 
tasks. It then suggests a deep reinforcement learning-
based JCOTM algorithm to reduce system latency and 
energy consumption. To increase communication rate 
and quality and decrease communication latency, we 
completely consider the Non-Orthogonal Multiple Ac-
cess technology in the upcoming 5G network during 
the problem modeling process. 

The algorithm abstracts the offloading policy and 
system resources into the binary action vector and 
environment state, respectively. Additionally, a deep 

neural network is used to forecast offloading choices. 
Until the best offloading choice is found, the agent 
uses several iterative training courses to perceive the 
condition of the environment. We create simulation ex-
periments to assess the algorithm's performance and 
convergence. The simulation findings demonstrate 
that JCOTM outperforms other offloading strategies 
under various experiment situations and converges 
with varying algorithm parameter values. As a result, 
the technique we suggested can successfully lower the 
VAMECN system's overall delay and energy usage.
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