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Abstract - Agriculture, a cornerstone of global economies, faces persistent challenges in efficient crop monitoring. This study
introduces a groundbreaking loT-based framework, integrated with a novel Deep Ensemble Learning (DEL) technique. The cuurent
study objective is to enhance rice and sugarcane yield through monitoring soil parameters precisely. The framework employs an
array of sensors, including moisture and pH sensors, to determine key soil properties: moisture content, pH level, Nutrient Retention
Capability (NRC), and oxygen content. These parameters are crucial in assessing nutrient availability, Organic Carbon Content (OCC),
soil texture, and root health. Data captured by sensors is transmitted via an Arduino kit to the cloud, where it undergoes analysis by
advanced deep learning models, namely Bidirectional Long Short-Term Memory (Bi-LSTM). The ensemble of models ensures high
accuracy in predicting soil parameter. The farmers acquires the processed data through a mobile application that offers actionable
insights and facilitating real-time, automated agricultural interventions. Empirical results from field trials demonstrate a significant
enhancement in soil parameter detection and monitoring accuracy.The application enables the loT and DEL-based system in rice
and sugarcane fields that enhances the crop yeild by 97% compared to traditional schemes. The study demonstrates the potential
of integrating loT and machine learning in agriculture paradigm shift towards the precision farming, and sets a new standard for
sustainable, efficient agricultural practices.
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Al Artificial intelligence ISNPHC Integrated Soil Nutrient Prediction and
Bi-LSTM Bidirectional Long Short-Term Memory Health Classification

csv Comma-Separated Values LSTM Long Short-Term Memory
DEL Deep Ensemble Learning ML Machine Learning

DL Deep Learning NPK nutrients

GFRC Global Report on the Food Crisis NRC nutrient retention capacity
GRBF Generalized Radial Basis Function PPV Positive Prediction Value
GRU Gated Recurrent Unit RelLU Rectified Linear Unit

HAR Human Activity Recognition RNN Recurrent Neural Network
HTTP Hypertext Transfer Protocol TAN Tree Augmented Naive Bayes
s Intelligent Irrigation System TL Transfer Learning

loT Internet of Things TPR True Positive Rate
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1. INTRODUCTION

Agriculture, vital to India's economy, predominantly
relying on traditional practices. It serves not only the
cornerstone of food production but also as a primary
source of income for a large portion of Indian popu-
lation. The Global Report on the Food Crisis (GFRC)
mid-year update of 2023 underscores the alarming
state of the global food crisis, emphasising the ur-
gent need for innovation in agricultural practices [1],
[2]. Persistent conflicts, economic downturns, and ex-
treme weather events continue to exacerbate global
hunger and malnutrition [3]. Conventional agriculture
faces several challenges, including heavy reliance on
pesticides, high resource consumption, and labor-
intensive processes. A significant concern is the in-
adequate financial returns for farmers. Furthermore,
optimal plant growth requires meticulous routines
and daily monitoring. Each crop species requires spe-
cific management, typically involving manual water-
ing and nutrient application, which is inefficient and
laborious [4].

The Technological advancements are gradually ad-
dressing limitations through Smart farming, Internet of
Things (loT), artificial intelligence (Al), and robotic ma-
chinery to enhance agricultural productivity. However,
these innovations can be costly and require specialised
knowledge for effective implementation [5, 6]. Preci-
sion farming, a critical sector in the agricultural, heav-
ily relies on the integration and transfer of information
technology. In this context, loT plays a vital role by fa-
cilitating the transmission of data to farmers[7-9].

The sensor technology has gained prominence in ag-
riculture for real-time data collection, with applications
extending to healthcare, military, and telecommuni-
cations. In farming, sensors are deployed to monitor
soil and environmental conditions that are crucial for
crop growth. Soil quality: encompassing soil types and
ecosystem characteristics is vital for sustainable plant
growth. However, accurately assessing soil quality is
complex, and necessitating advanced automatic tech-
niques [10]. The effective farming hinges on a robust
system for monitoring soil characteristics. loT devices
are well-suited for this purpose, enhancing various as-
pects agricultural management [11].

The Key factors for soil condition surveillance include
soil temperature and moisture content. Proper balance
of these factors aids in determining optimal irrigation
schedules. Although watering is not directly correlated
with other soil parameters like pH, vitamins, minerals,
and salinity levels, these factors remain significant for
soil classification [12]. The current research focuses on
two major Indian crops, paddy and sugarcane where
enhancing yield depends on the effective manage-
ment of soil parameters. Traditional schemes for moni-
toring soil parameters have limitations,motivation the
adoption of deep ensemble learning for soil parameter
classification in this study.

The primary objective is this research is to improve
crop growth by optimizing irrigation watering practic-
es and applying nutrients in acordance with real-time
field conditions. Thus, to address these challenges, an
loT-based framework is proposed for crop growth mon-
itoring, employing soil parameter analysis. The main
contributions of this study are as follows:

« Deployment of soil sensors for crop growth
monitoring,and addressing power constraint chal-
lenges.

«  Extraction of complex soil features using novel
Deep Learning (DL) models such as Gated Recur-
rent Units(GRU) and Bidirectional Long Short Term
Memory(Bi-LSTM) networks.

«  Adoption of the Bi-LSTM model to effectively cap-
ture both past and future temporal dependencies
in agricultural time series data.This bidirectional
context modelling facilitates accurate interpre-
tation of the dynamic patterns in crop growth,
weather varioations, and soil conditions.

. Enhancement of classification performance
through an ensemble learning technique that inte-
grating features derived from multiple DL models
[13-15].

2. RELATED WORK

The intergation of loT and Machine Learning (ML)
Technologies into agriculture has gained consider-
able attention in a recent research, with various studies
demonstrationg their potential to enhance crop moni-
toring and yield.

Sharma et al. developed a smart irrigation system
for rice cultivation using loT,and Intelligent Irrigation
System (IIS). The system employs soil sensors to con-
tinuously monitor soil conditions in rice fields. The
sensors data transmitted wirelessly to a web-based da-
tabase. The databse processes the soil information to
determine optimal watering levels and subsequently
controls water nozzles through HTTP protocols.The
collected data ate stored on a central server and visual-
ized through a interactive dashboard. The key feature
of system is an ability to remotely control water pumps
based on parameters like soil moisture and flow rate,
thereby showcasing the practical applicability of loT in
precision irrigation. [3, 16]

Similarly, Bhushan et al. [16] addressed the challenge
of user interfaces in agricultural loT devices dy design-
ing a low-power remote communication module. This
work emphasizes the transition from wired to wireless
systems, highlighting to towards more flexible and
user-friendly loT solutions for agriculture. The study
furhter anticipates substantial growth in agriculture
productivity by 2024 using loT and wireless sensor net-
works. This vision is rooted in the ability of loT to effec-
tively manage soil quality, crop temperature require-
ments, and irrigation practices [17].
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Sahu et al.[3] extended the integrating of loT in ag-
riculture by incorporating ML for comprehensive crop
monitoring. In their approach, wireless sensors collect
field data, which is subsequently transformed into CSV
format for ML-based processing. The study emphasises
the practical deployment of ML modules in agriculture
environments and demonstrates how soil parameters
and environmental conditions affect plant growth. The
application of real-time data within ML models offers
valuable insights into climate prediction and the opti-
mization of farming practices, ultimately conserving
time, and resources while mitigating crop losses for
farmers [18].

Vijayalakshmi et al. explored the application of su-
pervised ML algorithms to classify and map crops
based on soil types. The study highlights the efficacy
of combining loT and ML, particularly through ensem-
ble techniques, to achieve precise crop type selection.
Thereby, contributing to enhanced agricultural yield
[19]. In related study, Afzaal et al. [20] applied various
supervised learning methods to improve potato pro-
duction in Canada's Atlantic region. While Nishant et al.
[21] emphasised the importance of improved stacked
extrapolation approaches for generating more accu-
rate crop yield forecasts. The collective studies demon-
strate the potential growth of deep learning models to
furhter improve accuracy and efficiency in agricultural
decison making.

Senapaty et al. [22] delved on the analysis of soil nu-
trients through IoT enabled framework for precision
farming. Their framework encompasses multiple stages
including data acquision through loT sensors, preserv-
ing real-time data on cloud platforms, accessing data
through an Android application, data preparation and
subsequent analysis leveraging diverse computational
techniques [22]. This approach not only contributes to
enhanced crop yeild but also reduces dependency on
chemical fertilizers,reinforcing the critical role of loT in
optimising agricultural productivity.

3. METHODOLOGY

This section provides an overview of smart crop
growth monitoring with a focus on soil parameters.
In this framework a variety of sensors are deployed in
paddy and sugarcane fields to measure key soil param-
eters such as pH, moisture, temperature, dissolved oxy-
gen content, nitrogen content levels, nutrient reten-
tion capacity (NRC), and nutrient availability. The col-
lected sensor data is transmitted to the cloud via an
Arduino based interface. Once stored in the cloud, the
data is processed and analysed using a Deep Ensemble
Learning technique as illustrated in the Fig 1.

The Bi-LSTM network is leverged to extract deeper
temporal features from the sensor data. An ensemble
learning approach is applied by integrating the fea-
tures derived from the both models to generate a
high-quality feature vector. Thector is subsequently
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employed for classification,enabling the system to de-
termine whether the filed requires irirgation/water or
nutrient suppementation. Based on the classification
results, the cloud platform communicates with the Ar-
duino kit, which in turn activates the motor for irriga-
tion ON/OFF control and dispatches signal to a drone
for precision nutrient application. The architecture of
the proposed crop growth monitoring systeme based
on soil parameters is depicted in Fig. 2.

Data Collection
Deep Ensemble Leaming

Bi-LSTM

o pe . Water or
Classification
- Nutrient Reqirod

Arduino Kit

Motor ON/OFF m
Applying Nutrients

Fig.1. Flow diagram for proposed scheme

Cloud
Storage

Oxygen
Content

Moisture m
Level

PH
Sensor

Nitrogen
Content {{0)}

Deep Ensemble
Leamning

Fig. 2. Overview of the Crop Growth Monitoring
System Architecture, Highlighting Soil Parameter-
Based Sensing, Data Processing, and Automated
Response Mechanisms

A. Data Acquisition Using Soil Sensors

Real-time data are collected from rice and sugarcane
fields through the deployemnt of soil sensors. The type
of sensors employed for data acquisition are summa-
rized in Table 1 and Table 2. Specifically, an electrochem-
ical sensor is employed to measure the pH value and
nutrient content in both paddy and sugarcane fields.
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Table 1. Sensors and its Measurements in Paddy
Crop Field Monitoring

Soil Sensor Ideal Alert iR,
Parameters Used Level Level
PH PH Sensor 6.0 to 6.7 <60& AdJPSt r\utnents i
>6.7 outside ideal range.

Moisture Moisture Device Device Water plants if

Level Sensor  reads 270 reads435  moisture is high

Overwatering

Oxygen Oxygen o X
Content Meter 0 to 40% lowers soil oxygen,

avoid

Table 2. Sensors and its Measurements in
Sugarcane Crop Field Monitoring

Soil Ideal Alert Actions/
Sensor Used
Parameters Level Level Reasons
Adjust
Electrochemical <5.5& nutrients if
PH Sensor 351065 >6.5 outside the
ideal range
80 to
85% Keep
. (early appropriate
Mfg:lre Moisture Sensor  stage), 50 - moisture
to 65% according to
(ripening growth stage
stage)
Nitrogen Fertilizein a
9 NPK Sensor - - 3:1:2 ratio for
Content
healthy crops
Oxygen Soil Oxygen 001003 0.3to Act;f(e)gsgen
Content Meter ’ i 0.7 .
rooting

Soil moisture sensors are employed to measure field
humidity and water levels. The oxygen sensors capture
dissolved oxygen content in the soil, an essential pa-
rameter for effective plant rooting. The soil acidity and
alkalinity are determined leveraging a pH sensor, which
directly influences microbial activity and micronutrient
availability. The pH scale ranges from 0 to 14, with 7
denoting neutrality. The values lower than 5.5 indicate
high acidity, values between 5.5 and 6.5 indicte mild
acidity, values between 6.5 and 7.5 represent neutral-
ity, values beyond 7.5 reflect slightly alkaline, and val-
ues above 8.5 indicate high alkalinity. In addition, the
Light Dependent Resistor (LDR) based soil color sens-
ing scheme is leveraged to determine RGB color values
which serve as an indirect indicator of soil quality.

The data collection carried out multiple paddy and
sugarcane fields in consultation with knowledgeable
farmers and agricultural specialists. The topographical
map of the region is referenced to account for water
availability ensuring somprehensive field coverage. A
GPS sensor, integrated with an Arduino UNO board, is
employed to determine the latitude and longitude of
the field locations enabling spatial tagging of soil data.
The informtion combined with sensor measurements is
uploaded to cloud storage for further processing.

The communication infrastructure includes a wire-
less networking module connected to the Arduino
board enabling the TCP-enabled internet connectiv-

ity facilitating Wi-Fi. The various sensors such as pH,m
oisureelectrochemical temperature and NPK are con-
nected to the Arduino microcontroller board with data
aquisituion acheieved through programmed control.
The sensor configurations used for data collection are
illustrated in the input unit of Fig.1. Once data is ac-
quired and preserved in cloud.Further, the collected
data undergoes analysis and classification leveraging
an ensemble of Transfer learning (TL) techniquies. This
analytical framework facilitates precise assessment of
water and nutrient requirements for paddy and sugar-
cane crops. According to the experiemtnal results ac-
tution are triggered automatically wherein drones are
deployed for targeted nutrient application and water
pumps are controlled for optimized irirgation.

B. Deep Ensemble Learning Method

In this study, a deep ensemble learning method is
employed to enhance crop growth monitoring perfor-
mance. The architecture integrates Bi-LSTM and GRU
models. The Bi-LSTM is employed to analyse temporal
parameter dependencies in soil data while GRU model
focuses on capturing critical soil parameters such as
nutrients nutrient levels,pH and moisture content. By
combine the predicitive capabilities of both modles the
ensemble approach generates high-quality outputs
that support precise decision-making for crop growth
management.The detailed analysis and netwoek archi-
tecture are described in the subsequent subsection.

The soil sensor data uploaded to the cloud undergoes
processing throguh a deep learning network. The LSTM
based architecture is adopted to address the vanishing
gradient commonly encountered in backpropagation.
For soil parameter analysis, a multilayer architecture is
implemented to ensure robust prediction.The Bi-LSTM
model consit of n layers, where the input data are pro-
cessed sequentially across multiple time steps in both
forward and backward directions,thereby capturing
past and future contextula dependencies.

The LSTM network operates through three primary
gates: the input, forget, and output gate that regulate
information flow. Additionally, a candidate gate regu-
lates cell state updates. Their roles are mathematically
expressed as in eq. 1 to 4.

it=0(W, ht+W _ht-1+B) (1)
ft=o(W, ht+W ht-1+B) 2)
ot=o(W_ ht+W _ht-1+B) 3)
kt=o(W_ ht+W ht-1+B,) (4)

Where, it ft, ot, and kt represent the input gate, for-
get gate, output gate, and candidate gate, respectively.
W, and W, are the weight parameters of the succes-
sive cell in layer n respectively. B, Bf, B, and B, are
denotes the bias parameters of the input gate, forget
gate, output gate, and candidate gate, respectively. The
cell state of the LSTM network is defined as follows:

Ct=ft.Ct-1+it.kt (5)
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In this formulation, the weight parameter and bias
parameter of each cell are distributed across all layers
of the LSTM network. The Hadamard element-wise op-
erations together with the sigmoid function and the
hyperbolic tangent (tanh) activation function regulate
information flow and reduce the number of hidden
neurons and weight parameters. In this work, the Bi-
LSTM processes soil parameters, such as nutrients, pH,
moisture, and humidity in both forward and backward
directions. The concatenation of forward and backward
hidden states are estimated and the outcome is fed
into successive layers:

o= .htb (6)

The Bi-LSTM demonstrates improved capability in
modeling sequential dependencies through bidirec-
tional processing and it also requires less momory for
problem-solving makes this mechanism more efficient
sharing compared to conventional deep learnign ap-
proaches. Further, to complement Bi- LSTM,the GRU is
adopted as the secondary network within ensemble.
While RNNs are effective in handling sequential data
through hidden state updates.However, RNN suffering
from gradient instability over long sequences.

Therefore, GRU simplify the architecture by introduc-
ing two gates: reset adn update that regualte memory

PH Sensor

Moisture Sensor

Oxygen Meter

Electrochemical Sensor

NPK Sensor
Soil Oxygen Meter A TaTaE S
£ Kernel Size =2 &1
\_r_/l
No. of
Kernel=16

flow across time steps,thereby capturing both long and
short-term depenencies with reduced complexity. The
memory in the RNN network is maintained through a
hidden state, calculated using the formula:

ht=fl(w, h, ,+w, x +B) (7)

Where, htis the hidden state of the RNN, x, is the input
data, w, and w, are the weight parameters of the hid-
den nodes, and B is the bias parameter. f is a nonlinear
activation function. The current state pt is estimated as:

(8)

Bi-LSTM is adept at modelling complex time patterns
but is limited by the problems of vanishing and exploding
gradients, and its accuracy decreases over longer time du-
rations. Thus, this network was proposed to address these
issues, but its extensive training process can be a limita-
tion for real-time applications. In our research, we employ
the GRU, a variation of the recurrent neural network.

ptzwph +B,

Both RNN and GRU feature chain-based self-looping
units, but GRU's units are more complex. GRU has two
gates: update and reset, which regulate the flow of soil
data. These gates map soil parameters in the range
[0,1], where the number represents the proportion of
memory retained. Thus, GRU can handle both long-
term and short-term dependencies in time-series data.

virt)

vr2)

N\ /
N l .' i
gl
; \’v‘ ’-
' ———
Output
/ Prediction
.
r Y
Bi-LSTM with .
DEL Approach At

Fig 4. Bi-LSTM structure adapted for DEL method

The GRU's two novel gates, reset and update, are
mathematically expressed as follows: The reset gate
R_t controls the data transferred from the previous hid-
den state to the current hidden state:

R=o(w,[h,, x]+B,) 9)

The memory state m, is defined using the reset gate
and a hyperbolic activation function:

-1

(10)

The update gate U, localizes which hidden states
need updating:

mt=tanh(w.(R .h, , x))

e e

U=o(w,[ht,, x,1+B,) amn

Finally, the hidden state link is generated using both
the reset and update gates:

h=(1-U) h, +U, m, (12)

Volume 17, Number 2, 2026

The output layer of the network generates outputs
based on the final hidden state. Depending on the spe-
cific task, this output could be a single number, an ar-
ray of values, or a probability distribution among soil
parameter classifications.

The prediction classification outputs of the Bi-LSTM
technique and the GRU technique are integrated to
enhance soil parameter analysis for better crop growth
in cultivation fields. The advantage of using the deep
ensemble technique lies in its ability to leverage ex-
pertise from multiple classification systems, creating a
more robust and effective deep learning model. In this
research, the outcomes of two distinct DL models are
combined to form a multilayered deep ensemble learn-
ing model. As the output of each model corresponds
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to a single node, these nodes are each connected to
a single neuron, activated by the Softmax function us-
ing a 3-dimensional vector. A batch normalisation lay-
er is included to improve the precision of the output.
Each batch received is processed by this layer, which
normalises it using its specific average and standard
deviation, then rescales the data using two trainable
parameters. Essentially, batch normalisation adjusts its
inputs in a coordinated manner. The RelLU activation
function is employed in this activation layer to enhance
the training speed of the network. The dropout layer
serves as a regularisation method that, during training,
randomly deactivates a predetermined proportion of
neurons within the network. This prevents overfitting
and encourages the development of robust and sparse
features. It utilises the average and standard deviation
of each batch to normalise unit values. This approach
can accelerate optimisation by scaling components to
a similar scale, irrespective of the network's depth. To
further prevent overfitting, it randomly eliminates a set
ratio of units from the neural network during training.

4. RESULTS AND DISCUSSION

The soil parameters listed in Tables 1 and 2 are collected
from paddy and sugarcane cultivation fields to effectively
monitor crop growth. The collected data is pre-processed
before being fed into two novel deep learning tech-
niques: the Bi-LSTM network and the GRU network. These
dual networks perform a deeper feature analysis of the
input data, generating individual classification outputs.
To integrate the prediction results of both deep learning
networks by employing the Deep Ensemble technique.
The classification results of the soil parameter analysis are
obtained as single-node outputs from the dropout layer
ensuring robustenssnd reduced overfitting.

A. Performance Analysis

Table 3 and Table 4 present the classification outputs
of NPK achieved by the proposed DEL technique across
various categories. These tables display the maximum
prediction accuracy achieved through DEL model. The
DEL technique effectively classified soil nutrients into four
categories: organic carbon, nitrogen, phosphorus, and
potassium for both sugarcane and paddy cultivate fields.

In the paddy field, the classification of the four soil nu-
trient classes achieved a Positive Prediction Value (PPV) of
0.8912 and a True Positive Rate (TPR) of 0.9132. Addition-
ally, the model attained an overall accuracy and F1 - of
0.9365 and 0.9736, respectively that indicates a reliable
prediction performance for nutrient classification.

In the sugarcane field, the four nutrient classes are
classified with a PPV of 0.8712 and a TPR of 0.9232. Fur-
thermore, the accuracy and F1-score for soil nutrient
classification in the sugarcane field are approximately
0.9765 and 0.9636, respectively. The sugarcane cultivate
results demonstrates the higher accuracy comapred to
paddy field classification with consistently strong pre-
cision and recall balance.

Table 3. TPR and PPV content of soil nutrients in the

paddy field
Concentration PPV TPR Accuracy  F1Score
Low 0.865 1 0.986 0.9325
Medium 0.8795 0.832 0.906 0.9625
High 0.8965 0.9012 0.9023 0.9726
Average 0.8912 0.9132 0.9365 0.9736

Table 4. TPR and PPV content of soil nutrients in

sugarcane
Concentration PPV TPR Accuracy  F1Score
Low 0.855 0.5881 0.956 0.9425
Medium 0.8695 0.822 0.966 0.9525
High 0.8765 0.9312 0.9723 0.9626
Average 0.8712 0.9232 0.9765 0.9636

medium high average
Concentration
T T
w
]
3
S
-Accuracy
I F Score
low medium high average
Concentration

Fig. 4. TPR and PPV content of soil nutrient in
paddy field

Values

low medium high
Concentration

average

medium
Concentration

average

Fig. 5. TPR and PPV content of soil nutrient
in sugarcane field

Figs. 4 and 5 illustrate the graphical representations
of accuracy and F1-score for soil nutrient classifica-
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tion in both paddy and sugarcane fields. The proposed
technique effectively classifies soil nutrients, soil pH,
and soil moisture across both paddy and sugarcane
fields.

In the paddy field, the classification of organic car-
bon achieved an accuracy and F1-score of approxi-
mately 0.9303 and 0.956, respectively. In the sugarcane
field, the corresponding values for organic carbon are
approximately 0.9405 and 0.9685, respectively. The re-
sults are presented in Table 5 which emphasizes the
classifiaction outcomes for soil pararmetes across the
paddy and sugarcane fields.

Table 5. Soil Parameter Classification Under
Different Classes

) Paddy Sugarcane
Soil Parameters
Accuracy F1-Score  Accuracy  F1-Score

Organic Carbon 0.9303 0.956 0.9405 0.9685
Nitrogen 0.9325 0.9611 0.9625 0.9645
Phosphorous 0.9456 0.9405 0.9524 0.9654
Pottasium 0.9085 0.9125 0.9025 0.9125
Soil PH 0.8725 0.8735 0.8751 0.8574
Moisture 0.8565 0.8567 0.8125 0.8525

For nitrogen classification, the F1-score in both pad-
dy and sugarcane fields is approximately 0.9611 and
0.9645, respectively. In the paddy field, the accuracy of
DEL for classifying nitrogen, potassium, and phospho-
rus concentrations is approximately 0.9456, 0.9025,
and 0.8725, respectively. In the sugarcane field, the
accuracy and F1-score for soil pH classification are ap-
proximately 0.8725 and 0.8735, respectively. Addition-
ally, soil moisture classification achieves an accuracy of
approximately 0.8565 in the paddy field and approxi-
mately 0.8525 in the sugarcane field. Thus, the perfor-
mance metrices are illustrated in Fig. 5.

&
N N &
& S
F, N & & o o

Soil Parameters

Fig. 6. Soil Parameter Classification under Different
Classes

The comparative analysis of the prediction classifi-
cation results presented in Table 6. The performance
of the proposed DEL technique in the context of soil
parameter classification. The results build upon the in-
sights discussed earlier in this study. Noteably,the DEL
stands out as a remarkable achievement, reaching an
impressive 97.5%. which indicates significantly sur-
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passes the performance of traditional DL techniques.
This high level of accuracy is critical for precision agri-
culture where accurate assessment of soil nutrient lev-
els and environmental conditions directly impacts crop
health and yeild.

The study also includes four benchmarking tech-
niques for comparison, providing a clear perspective
on the state-of-the-art performance of DEL. The results,
graphically represented in Fig.6, clearly demonstrate
DEL's superiority robustness and reliability over the
traditional DL approaches. These findings reinforce the
potential of DEL framework as an effective and pow-
erful tool for agricultural research enabling enhanced
crop management and decision-making.

Table 6. Comparative Analysis of Soil Parameter
Classification Accuracy

Techniques Nitrogen Phosphorous Potassium Ph Moisture
ISNPHC 0.9503 0.9412 0.9029 0.8281 0.8752
HAR 0.732 0.8627 0.7584 0.8692 0.8546
GRBF 0.8369 0.9 0.7854 0.8865 0.8185
TAN 0.8125 0.8896 0.7854 0.8695 0.8524
(DI 0.9925 0.9456 0.9085 0.8725 0.8565
[Proposed]
1 T T T
> I Nitrogen
8 [ Phosphorous
é 1 | I Potassium 1
< [ soil o+
[ Moisture 4
& & #

Fig. 7. Comparative Analysis of Soil Parameter
Classification Accuracy

A notable aspect of DEL's success is its ability to han-
dle multiple soil parameters including organic carbon,
nitrogen, phosphorus, potassium, soil pH, and mois-
ture. The traditional DL models often struggle with
multi-parameter classification due to the complexity
of the soil data. In contrast, the DEL's deep ensemble
approach effectively address these challenges as
evidenced by its outstanding performance across all
evaluated soil parameters. Furthermore, the results in-
dicate that DEL maintains consistent predictive across
different crop fields, including paddy and sugarcane.
This versatility suggests that the technique can be ap-
plied to a wide range of agricultural contexts, offering
valuable insights into soil nutrient levels regardless of
the specific crop being cultivated.

5. CONCLUSION

In this research study, a novel DEL technique is de-
signed to classify soil parameters obtained from soil
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sensors into six distinct categories: soil pH, moisture,
nitrogen, phosphorus, potassium, and organic carbon.
The DEL technique employs two advanced deep learn-
ing models: Bi-LSTM and GRU, to enhance prediction
accuracy. To assess the effectiveness of the DEL meth-
od, a comprehensive simulation study is conducted us-
ing a standardised dataset. The results demonstrate the
superior performance of the DEL technique compared
to conventional DL methods. Especially, the accuracy
values achieved for soil nutrient classification in sugar-
cane and paddy fields are remarkable, reaching 0.9765
and 0.9365, respectively. The results signifies a substan-
tial improvement in soil parameter prediction.

The demonstrated capabilities of the DEL technique
have the potential to rimplication fro real-time agricul-
tureal operations. By leveraging automation this ap-
proach can streamline agricultural practices, optimis-
ing crop management and resource allocation. How-
ever, certain soil parameters like potassium, pH, and
moisture, exhibited moderate accuracy that indicating
areas for improvement. Future research can focus on
refining feature selection and optimising DL architec-
tures and testing the scalability of the DEL technique
on larger adn more diverse datasets. Overall, this study
embhasizes the potential of DEL as a cutting edge so-
lution for precise soil parameter classification with
strong applicability in modern precision agriculture.
The outstanding accuracy achieved in our experiments
underscores its relevance and promise for improving
decision-making in crop management.

6. REFERENCES

[11 G.Kaur, “Food Security in India: A Comprehensive
Examination of Progress, Challenges, and Path-
ways to Sustainable Development’, International
Journal For Multidisciplinary Research, Vol. 7,
2025.

[2] B.Philip, G. A. Mathew, R.T. Sebastian, A. A. Thom-
as, “From Farm to Future: Charting India’s Agricul-
tural Path to Global Competitiveness and SDGs
Alignment’, Current Agriculture Research Journal,
Vol. 12, No. 3, 2025, pp. 1239-1248.

[31 C.D.R.Sahu, A.l. Mukadam, S. D. Das, S. Das, “In-
tegration of Machine Learning and loT System for
Monitoring Different Parameters and Optimising
farming’, Proceedings of the International Confer-
ence on Intelligent Technologies, Hubli, India, 25-
27 June 2021, pp. 1-5.

[4] D. Rani, N. Kumar, B. Bhushan, “Implementation
of an Automated Irrigation System for Agriculture
Monitoring using loT Communication’, Proceed-
ings of the 5th International Conference on Signal

100

[10]

[11]

Processing, Computing and Control, Solan, India,
10-12 October 2019, pp. 138-143.

Rishab R, Prajwal M, Somashekara G, Santhrupth
H R, “The Economic Impacts of Ai-driven Agricul-
ture on Small-scale Farmers in Emerging Econom-
ics”, International Journal For Multidisciplinary Re-
search, Vol. 7, 2025.

K. Elhattab, S. Elatar, “Evaluating low-cost internet
of things and artificial intelligence in agriculture’,
Indonesian Journal of Electrical Engineering and
Computer Science, Vol. 37, No. 2, 2025, pp. 968-
975.

A.Vangala, A. K. Das, N. Kumar, M. Alazab, “Smart
Secure Sensing for loT-Based Agriculture: Block-
chain Perspective’, IEEE Sensors Journal, Vol. 21,
No. 16, 2021, pp. 17591-17607.

K. Sekaran, M. N. Meqgdad, P. Kumar, S. Rajan, S.
Kadry, “Smart agriculture management system
using internet of things’, TELKOMNIKA -Telecom-
munication, Computing, Electrical & Electron-
ics, and Instrumentation & Control, Vol. 18, No. 3,
2020, pp. 1275-1284.

Dinesh P. M, Sabeenian R. S, Lokeshvar R. G, Para-
masivam M. E, Thanish S, Manjunathan A, “IOT
Based Smart Farming Application”, E3S Web Con-
ferences, Vol. 399, 2023, p. 04012.

D. Saikia, R. Khatoon, “Smart monitoring of soil
parameters based on loT" International Journal of
Advanced Technology and Engineering Explora-
tion, Vol. 9, No. 88, 2022.

G. Zhang, X. Li, “Estimate Cotton Water Consump-
tion from Shallow Groundwater under Different
Irrigation Schedules’, Agronomy, Vol. 12, No. 1,
2022, p. 213.

R. Singh, S. Srivastava, R. Mishra, “Al and loT-Based
Monitoring System for Increasing the Yield in
Crop Production’, Proceedings of the Internation-
al Conference on Electrical and Electronics Engi-
neering, Gorakhpur, India, 14-15 February 2020,
pp. 301-305.

Md. B. Rahman et al. “Smart Crop Cultivation Sys-
tem Using Automated Agriculture Monitoring En-
vironment in the Context of Bangladesh Agricul-
ture’, Sensors, Vol. 23, No. 20, 2023, p. 8472.

International Journal of Electrical and Computer Engineering Systems



[14]

[15]

[16]

[17]

G.S.Nagaraja, K. Vanishree, F. Azam,“Novel Frame-
work for Secure Data Aggregation in Precision Ag-
riculture with Extensive Energy Efficiency”, Journal
of Computer Networks and Communications, Vol.
2023, No. 1, 2023, p. 5926294.

B. B. Sharma, N. Kumar, “loT-Based Intelligent
Irrigation System for Paddy Crop Using an In-
ternet-Controlled Water Pump’, https://www.
igi-global.com/article/iot-based-intelligent-irri-
gation-system-for-paddy-crop-using-an-internet-
controlled-water-pump/www.igi-global.com/
article/iot-based-intelligent-irrigation-system-for-
paddy-crop-using-an-internet-controlled-water-

pump/273708 (accessed: 2025)

M. W. Rasooli, B. Bhushan, N. Kumar, “Applicabil-
ity Of Wireless Sensor Networks & lot In Saffron
& Wheat Crops: A Smart Agriculture Perspective’,
International Journal of Scientific & Technology
Research, Vol. 9, No. 2, 2020, pp. 2456-2461.

R. Vijayalakshmi, M. Thangamani, M. Ganthimathi,
M. Ranjitha, P. Malarkodi, “An automatic procedure
for crop mapping using agricultural monitoring’,
Journal of Physics: Conference Series, Vol. 1950,
No. 1,2021, p.012053.

Volume 17, Number 2, 2026

(18]

[19]

[20]

[21]

[22]

F. Abbas, H. Afzaal, A. A. Farooque, S. Tang, “Crop
Yield Prediction through Proximal Sensing and
Machine Learning Algorithms’, Agronomy, Vol. 10,
No. 7, 2020, p. 1046.

P.S. Nishant, P. Sai Venkat, B. L. Avinash, B. Jabber,
“Crop Yield Prediction based on Indian Agricul-
ture using Machine Learning’, Proceedings of the
International Conference for Emerging Technol-
ogy, Belgaum, India, 5-7 June 2020, pp. 1-4.

M. K. Senapaty, A. Ray, N. Padhy, “loT-Enabled Soil
Nutrient Analysis and Crop Recommendation
Model for Precision Agriculture’, Computers, Vol.
12,No. 3,2023, p.61.

Md. D. Hossain, M. A. Kashem, S. Mustary, “loT-
Based Smart Soil Fertiliser Monitoring And ML-
Based Crop Recommendation System’, Proceed-
ings of the International Conference on Electrical,
Computer and Communication Engineering, Chit-
tagong, Bangladesh, 23-25 February 2023, pp. 1-6.

P. Agarwal, D. Gorijavolu, G. H. Sastry, V. Marriboy-
ina, D. V. Babu, G. K. Kishore, “Real-time crop field
monitoring system using agriculture loT systems”,
International Journal of Nanotechnology, Vol. 20,
2023, pp. 586-599.

101



