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Abstract – Agriculture, a cornerstone of  global economies, faces persistent challenges in efficient crop monitoring. This study 
introduces a groundbreaking IoT-based framework, integrated with a novel Deep Ensemble Learning (DEL) technique. The cuurent 
study objective is to enhance rice and sugarcane yield through monitoring soil parameters precisely. The framework employs an 
array of sensors, including moisture and pH sensors, to determine key soil properties: moisture content, pH level, Nutrient Retention 
Capability (NRC), and oxygen content. These parameters are crucial in assessing nutrient availability, Organic Carbon Content (OCC), 
soil texture, and root health. Data captured by sensors is transmitted via an Arduino kit to the cloud, where it undergoes analysis by 
advanced deep learning models, namely Bidirectional Long Short-Term Memory (Bi-LSTM). The ensemble of models ensures high 
accuracy in predicting soil parameter. The farmers acquires the processed data through a mobile application that offers actionable 
insights and facilitating real-time, automated agricultural interventions. Empirical results from field trials demonstrate a significant 
enhancement in soil parameter detection and monitoring accuracy.The application enables the IoT and DEL-based system in rice 
and sugarcane fields that enhances the crop yeild by 97% compared to traditional schemes. The study demonstrates the potential 
of integrating IoT and machine learning in agriculture paradigm shift towards the precision farming, and sets a new standard for 
sustainable, efficient agricultural practices.
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1.	 	INTRODUCTION

Agriculture, vital to India's economy, predominantly 
relying on traditional practices. It serves not only the 
cornerstone of food production but also as a primary 
source of income for a large portion of Indian popu-
lation. The Global Report on the Food Crisis (GFRC) 
mid-year update of 2023 underscores the alarming 
state of the global food crisis, emphasising the ur-
gent need for innovation in agricultural practices [1], 
[2]. Persistent conflicts, economic downturns, and ex-
treme weather events continue to exacerbate global 
hunger and malnutrition [3]. Conventional agriculture 
faces several challenges, including heavy reliance on 
pesticides, high resource consumption, and labor-
intensive processes. A significant concern is the in-
adequate financial returns for farmers. Furthermore, 
optimal plant growth requires meticulous routines 
and daily monitoring. Each crop species requires spe-
cific management, typically involving manual water-
ing and nutrient application, which is inefficient and 
laborious [4]. 

The Technological advancements are gradually ad-
dressing limitations through Smart farming, Internet of 
Things (IoT), artificial intelligence (AI), and robotic ma-
chinery to enhance agricultural productivity. However, 
these innovations can be costly and require specialised 
knowledge for effective implementation [5, 6]. Preci-
sion farming, a critical sector in the agricultural, heav-
ily relies on the integration and transfer of information 
technology. In this context, IoT plays a vital role by fa-
cilitating the transmission of data to farmers[7-9].

The sensor technology has gained prominence in ag-
riculture for real-time data collection, with applications 
extending to healthcare, military, and telecommuni-
cations. In farming, sensors are deployed to monitor 
soil and environmental conditions that are crucial for 
crop growth. Soil quality: encompassing soil types and 
ecosystem characteristics is vital for sustainable plant 
growth. However, accurately assessing soil quality is 
complex, and necessitating advanced automatic tech-
niques [10]. The effective farming hinges on a robust 
system for monitoring soil characteristics. IoT devices 
are well-suited for this purpose, enhancing various as-
pects agricultural management [11]. 

The Key factors for soil condition surveillance include 
soil temperature and moisture content. Proper balance 
of these factors aids in determining optimal irrigation 
schedules. Although watering is not directly correlated 
with other soil parameters like pH, vitamins, minerals, 
and salinity levels, these factors remain significant for 
soil classification [12]. The current research focuses on 
two major Indian crops, paddy and sugarcane where 
enhancing yield depends on the effective manage-
ment of soil parameters. Traditional schemes for moni-
toring soil parameters have limitations,motivation the 
adoption of deep ensemble learning for soil parameter 
classification in this study. 

The primary objective is this research is to improve 
crop growth by optimizing irrigation watering practic-
es and applying nutrients  in acordance with real-time 
field conditions. Thus, to address these challenges, an 
IoT-based framework is proposed for crop growth mon-
itoring, employing soil parameter analysis. The main 
contributions of this study are as follows:

•	 Deployment of soil sensors for crop growth 
monitoring,and addressing power constraint chal-
lenges.

•	 Extraction of complex soil features using novel 
Deep Learning (DL) models such as Gated Recur-
rent Units(GRU) and Bidirectional Long Short Term 
Memory(Bi-LSTM) networks.

•	 Adoption of the Bi-LSTM model to effectively cap-
ture both past and future temporal dependencies 
in agricultural time series data.This bidirectional 
context modelling facilitates accurate interpre-
tation of the dynamic patterns in crop growth, 
weather varioations, and soil conditions.

•	 Enhancement of classification performance 
through an ensemble learning technique that inte-
grating features derived from multiple DL models 
[13-15].

2.	 RELATED WORK

The intergation of IoT and Machine Learning (ML) 
Technologies into agriculture has  gained consider-
able attention in a recent research, with various studies 
demonstrationg their potential to enhance crop moni-
toring and yield.

Sharma et al. developed a smart irrigation system 
for rice cultivation using IoT,and Intelligent Irrigation 
System (IIS). The system employs soil sensors to con-
tinuously monitor soil conditions in rice fields. The 
sensors data transmitted wirelessly to a web-based da-
tabase. The databse processes the soil information to 
determine optimal watering levels and subsequently 
controls water nozzles through HTTP protocols.The 
collected data ate stored on a central server and visual-
ized through a interactive dashboard. The key feature 
of system is an ability to remotely control water pumps 
based on parameters like soil moisture and flow rate, 
thereby showcasing the practical applicability of IoT in 
precision irrigation. [3, 16]

Similarly, Bhushan et al. [16] addressed the challenge 
of user interfaces in agricultural IoT devices dy design-
ing a low-power remote communication module. This 
work emphasizes the transition from wired to wireless 
systems, highlighting to towards more flexible and 
user-friendly IoT solutions for agriculture. The study 
furhter anticipates substantial growth in agriculture 
productivity by 2024 using IoT and wireless sensor net-
works. This vision is rooted in the ability of IoT to effec-
tively  manage soil quality, crop temperature require-
ments, and irrigation practices [17].
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Sahu et al.[3] extended the integrating of IoT in ag-
riculture by incorporating ML for comprehensive crop 
monitoring. In their approach, wireless sensors collect 
field data, which is subsequently transformed into CSV 
format for ML-based processing. The study emphasises 
the practical deployment of  ML modules in agriculture 
environments and demonstrates how soil parameters 
and environmental conditions affect plant growth. The 
application of real-time data within ML models offers 
valuable insights into climate prediction and the opti-
mization of  farming practices, ultimately conserving  
time, and resources while mitigating crop losses for 
farmers [18].

Vijayalakshmi et al. explored the application of su-
pervised ML algorithms to classify and map crops 
based on soil types. The study highlights the efficacy 
of combining IoT and ML, particularly through ensem-
ble techniques, to achieve precise crop type selection. 
Thereby, contributing to enhanced agricultural yield 
[19]. In related study, Afzaal et al. [20] applied various 
supervised learning methods to improve potato pro-
duction in Canada's Atlantic region. While Nishant et al. 
[21] emphasised the importance of improved stacked 
extrapolation approaches for generating more accu-
rate crop yield forecasts. The collective studies demon-
strate the potential growth of deep learning models to 
furhter improve accuracy and efficiency in agricultural 
decison making.

Senapaty et al. [22] delved on the analysis of soil nu-
trients through IoT enabled framework for precision 
farming. Their framework encompasses multiple stages 
including data acquision through IoT sensors, preserv-
ing real-time data on cloud platforms,  accessing data 
through an Android application, data preparation and 
subsequent analysis leveraging diverse computational 
techniques [22]. This approach not only contributes to 
enhanced crop yeild but also reduces dependency on 
chemical fertilizers,reinforcing the critical role of IoT in  
optimising agricultural productivity.

3.	 Methodology

This section provides an overview of smart crop 
growth monitoring with a focus on soil parameters. 
In this framework a variety of sensors are deployed in 
paddy and sugarcane fields to measure key soil param-
eters such as pH, moisture, temperature, dissolved oxy-
gen content, nitrogen content levels, nutrient reten-
tion capacity (NRC), and nutrient availability. The col-
lected sensor data is  transmitted  to the cloud via an 
Arduino based interface. Once stored in the cloud, the 
data is processed and analysed using a Deep Ensemble 
Learning technique as illustrated in the Fig 1.

The Bi-LSTM network is leverged  to extract deeper 
temporal features from the sensor data. An ensemble 
learning approach is applied by integrating the fea-
tures derived from the both models to generate a 
high-quality feature vector. Thector is subsequently 

employed for classification,enabling the system to de-
termine whether the filed requires  irirgation/water or 
nutrient suppementation. Based on the classification 
results, the cloud platform communicates with the  Ar-
duino kit, which in turn activates the motor for irriga-
tion ON/OFF control  and dispatches signal to a drone 
for precision nutrient application. The architecture of 
the proposed crop growth monitoring systeme based 
on soil parameters is depicted in Fig. 2.

Fig.1. Flow diagram for proposed scheme

Fig. 2. Overview of the Crop Growth Monitoring 
System Architecture, Highlighting Soil Parameter-
Based Sensing, Data Processing, and Automated 

Response Mechanisms

A. Data Acquisition Using Soil Sensors

Real-time data are collected from rice and sugarcane 
fields through the deployemnt of soil sensors. The type 
of sensors employed for data acquisition are summa-
rized in Table 1 and Table 2. Specifically, an electrochem-
ical sensor is employed to measure  the pH value and 
nutrient content in both  paddy and sugarcane fields.
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Table 1. Sensors and its Measurements in Paddy 
Crop Field Monitoring

Soil 
Parameters

Sensor 
Used

Ideal 
Level

Alert 
Level Actions/Reasons

PH PH Sensor 6.0 to 6.7 <6.0 & 
>6.7

Adjust nutrients if 
outside ideal range.

Moisture 
Level

Moisture 
Sensor

Device 
reads 270

Device 
reads 435

Water plants if 
moisture is high

Oxygen 
Content

Oxygen 
Meter 0 to 40% -

Overwatering 
lowers soil oxygen, 

avoid

Table 2. Sensors and its Measurements in 
Sugarcane Crop Field Monitoring

Soil 
Parameters Sensor Used Ideal 

Level
Alert 
Level

Actions/
Reasons

PH Electrochemical 
Sensor 5.5 to 6.5 <5.5 & 

>6.5

Adjust 
nutrients if 
outside the 
ideal range

Moisture 
Level Moisture Sensor

80 to 
85% 

(early 
stage), 50 

to 65% 
(ripening 

stage)

-

Keep 
appropriate 

moisture 
according to 
growth stage

Nitrogen 
Content NPK Sensor - -

Fertilize in a 
3:1:2 ratio for 
healthy crops

Oxygen 
Content

Soil Oxygen 
Meter 0.0 to 0.3 0.3 to 

0.7

Act if oxygen 
affects 
rooting

Soil moisture sensors are employed to measure field 
humidity and water levels. The oxygen sensors capture 
dissolved oxygen content in the soil, an essential pa-
rameter for effective plant rooting. The soil acidity and 
alkalinity are determined leveraging a pH sensor, which 
directly influences microbial activity and micronutrient 
availability. The pH scale ranges from 0 to 14, with 7 
denoting neutrality. The values lower than 5.5 indicate 
high acidity, values between 5.5 and 6.5 indicte mild 
acidity, values between 6.5 and 7.5 represent  neutral-
ity, values beyond 7.5 reflect slightly alkaline, and val-
ues above 8.5 indicate high alkalinity. In addition, the  
Light Dependent Resistor (LDR) based soil color sens-
ing scheme is leveraged to determine RGB color values 
which serve as an indirect indicator of soil quality. 

The data collection carried out multiple paddy and 
sugarcane fields in consultation with knowledgeable 
farmers and agricultural specialists. The  topographical 
map of the region is referenced to account for water 
availability ensuring somprehensive field coverage. A 
GPS sensor,  integrated with an Arduino UNO board, is 
employed to determine the latitude and longitude of 
the field locations enabling spatial tagging of soil data.  
The informtion combined with sensor measurements is 
uploaded to cloud storage for further processing.

The communication infrastructure includes a wire-
less networking module connected to the Arduino 
board enabling the TCP-enabled internet connectiv-

ity facilitating Wi-Fi. The various sensors such as pH,m
oisure,electrochemical,temperature and NPK are con-
nected to the Arduino microcontroller board with data 
aquisituion acheieved through programmed control. 
The sensor configurations used for data collection are 
illustrated in the input unit of Fig.1. Once data is ac-
quired and preserved in cloud.Further, the collected 
data undergoes analysis and classification leveraging 
an ensemble of Transfer learning (TL) techniquies. This 
analytical framework facilitates precise assessment of 
water and nutrient requirements for paddy and sugar-
cane crops. According to the experiemtnal results ac-
tution are triggered automatically wherein drones are 
deployed for targeted nutrient application and water 
pumps are controlled for optimized irirgation. 

B. Deep Ensemble Learning Method

In this study, a deep ensemble learning method is 
employed to enhance crop growth monitoring perfor-
mance. The architecture integrates Bi-LSTM and GRU 
models. The Bi-LSTM is employed to analyse temporal 
parameter dependencies in soil data while GRU model 
focuses on capturing critical soil parameters such as 
nutrients nutrient levels,pH and moisture content. By 
combine the predicitive capabilities of both modles the 
ensemble approach generates high-quality outputs 
that support precise decision-making for crop growth 
management.The detailed analysis and netwoek archi-
tecture are  described in the subsequent subsection.

The soil sensor data uploaded to the cloud undergoes 
processing throguh a deep learning network. The LSTM 
based architecture is adopted to address the vanishing 
gradient commonly encountered in  backpropagation. 
For soil parameter analysis, a multilayer architecture is 
implemented to ensure robust prediction.The Bi-LSTM 
model consit of n layers, where the input data are pro-
cessed sequentially across multiple time steps in both 
forward and backward directions,thereby capturing 
past and future contextula dependencies. 

The LSTM network operates through three primary 
gates: the input, forget, and output gate that regulate 
information flow. Additionally, a candidate gate regu-
lates cell state updates. Their roles are mathematically 
expressed as in eq. 1 to 4.

it=σ(Wt1ht+Wt2ht-1+Bi)

ft=σ(Wt1ht+Wt2ht-1+Bf)

ot=σ(Wt1ht+Wt2ht-1+B0)

kt=σ(Wt1ht+Wt2ht-1+Bk)

(1)

(2)

(3)

(4)

Where, it ,ft , ot , and kt represent the input gate, for-
get gate, output gate, and candidate gate, respectively. 
Wt1 and Wt2 are the weight parameters of the succes-
sive cell in layer n respectively. Bi, Bf, B0, and Bk are 
denotes the bias parameters of the input gate, forget 
gate, output gate, and candidate gate, respectively. The 
cell state of the LSTM network is defined as follows:

Ct=ft.Ct-1+it.kt (5)
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In this formulation, the weight parameter and bias 
parameter of each cell are distributed across all layers 
of the LSTM network. The Hadamard element-wise op-
erations together with the sigmoid function and the 
hyperbolic tangent (tanh) activation function regulate 
information flow and reduce the number of hidden 
neurons and weight parameters. In this work, the Bi-
LSTM processes soil parameters, such as nutrients, pH, 
moisture, and humidity in both forward and backward 
directions. The concatenation of forward and backward 
hidden states are estimated and the outcome is fed 
into successive layers:

htfb
=htf

 .htb
(6)

The Bi-LSTM demonstrates improved capability in 
modeling sequential dependencies through bidirec-
tional processing and it also requires less momory for 
problem-solving makes this mechanism more efficient 
sharing compared to conventional deep learnign ap-
proaches. Further, to complement Bi- LSTM,the GRU is 
adopted as the secondary network within ensemble. 
While RNNs are effective in handling sequential data 
through hidden state updates.However, RNN suffering 
from gradient instability over long sequences. 

Therefore, GRU simplify the architecture by introduc-
ing two gates: reset adn update that regualte memory 

ht=fl(w1 ht-1+w2 xt+B) (7)

Where, ht is the hidden state of the RNN, xt is the input 
data, w1 and w2 are the weight parameters of the hid-
den nodes, and B is the bias parameter. fl is a nonlinear 
activation function. The current state pt is estimated as:

pt=wpht+Bp (8)

Bi-LSTM is adept at modelling complex time patterns 
but is limited by the problems of vanishing and exploding 
gradients, and its accuracy decreases over longer time du-
rations. Thus, this network was proposed to address these 
issues, but its extensive training process can be a limita-
tion for real-time applications. In our research, we employ 
the GRU, a variation of the recurrent neural network.

Both RNN and GRU feature chain-based self-looping 
units, but GRU's units are more complex. GRU has two 
gates: update and reset, which regulate the flow of soil 
data. These gates map soil parameters in the range 
[0,1], where the number represents the proportion of 
memory retained. Thus, GRU can handle both long-
term and short-term dependencies in time-series data. 

flow across time steps,thereby capturing both long and 
short-term depenencies with reduced complexity. The 
memory in the RNN network is maintained through a 
hidden state, calculated using the formula:

Fig 4. Bi-LSTM structure adapted for DEL method

The GRU's two novel gates, reset and update, are 
mathematically expressed as follows: The reset gate 
R_t controls the data transferred from the previous hid-
den state to the current hidden state:

Rt=σ(ωR [ht-1, xt]+BR) (9)

The memory state mt is defined using the reset gate 
and a hyperbolic activation function:

mt=tanh(ω.(Rt.ht-1, xt)) (10)

The update gate Ut localizes which hidden states 
need updating:

Ut=σ(ωU [ht-1, xt ]+BU) (11)

Finally, the hidden state link is generated using both 
the reset and update gates:

ht=(1-Ut) ht-1+Ut mt (12)

The output layer of the network generates outputs 
based on the final hidden state. Depending on the spe-
cific task, this output could be a single number, an ar-
ray of values, or a probability distribution among soil 
parameter classifications.

The prediction classification outputs of the Bi-LSTM 
technique and the GRU technique are integrated to 
enhance soil parameter analysis for better crop growth 
in cultivation fields. The advantage of using the deep 
ensemble technique lies in its ability to leverage ex-
pertise from multiple classification systems, creating a 
more robust and effective deep learning model. In this 
research, the outcomes of two distinct DL models are 
combined to form a multilayered deep ensemble learn-
ing model. As the output of each model corresponds 
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to a single node, these nodes are each connected to 
a single neuron, activated by the Softmax function us-
ing a 3-dimensional vector. A batch normalisation lay-
er is included to improve the precision of the output. 
Each batch received is processed by this layer, which 
normalises it using its specific average and standard 
deviation, then rescales the data using two trainable 
parameters. Essentially, batch normalisation adjusts its 
inputs in a coordinated manner. The ReLU activation 
function is employed in this activation layer to enhance 
the training speed of the network. The dropout layer 
serves as a regularisation method that, during training, 
randomly deactivates a predetermined proportion of 
neurons within the network. This prevents overfitting 
and encourages the development of robust and sparse 
features. It utilises the average and standard deviation 
of each batch to normalise unit values. This approach 
can accelerate optimisation by scaling components to 
a similar scale, irrespective of the network's depth. To 
further prevent overfitting, it randomly eliminates a set 
ratio of units from the neural network during training.

4.	  RESULTS AND DISCUSSION 

The soil parameters listed in Tables 1 and 2 are collected 
from paddy and sugarcane cultivation fields to effectively 
monitor crop growth. The collected data is pre-processed 
before being fed into two novel deep learning tech-
niques: the Bi-LSTM network and the GRU network. These 
dual networks perform a deeper feature analysis of the 
input data, generating individual classification outputs. 
To integrate the prediction results of both deep learning 
networks by employing the Deep Ensemble technique. 
The classification results of the soil parameter analysis are 
obtained as single-node outputs from the dropout layer 
ensuring robustenssnd reduced overfitting.

A. Performance Analysis

Table 3 and Table 4 present the classification outputs 
of NPK achieved by the proposed DEL technique across 
various categories. These tables display the maximum 
prediction accuracy achieved through DEL model. The 
DEL technique effectively classified soil nutrients into four 
categories: organic carbon, nitrogen, phosphorus, and 
potassium for both sugarcane and paddy cultivate fields.

In the paddy field, the classification of the  four soil nu-
trient classes achieved a Positive Prediction Value (PPV) of 
0.8912 and a True Positive Rate (TPR) of 0.9132. Addition-
ally, the model attained an overall accuracy and F1 - of 
0.9365 and 0.9736, respectively that indicates a reliable 
prediction performance for nutrient classification.

In the sugarcane field, the four nutrient classes are 
classified with a PPV of 0.8712 and a TPR of 0.9232. Fur-
thermore, the accuracy and F1-score for soil nutrient 
classification in the sugarcane field are approximately 
0.9765 and 0.9636, respectively. The sugarcane cultivate 
results demonstrates the higher accuracy comapred to 
paddy field classification with consistently strong pre-
cision and recall balance.

Table 3. TPR and PPV content of soil nutrients in the 
paddy field

Concentration PPV TPR Accuracy F1 Score
Low 0.865 1 0.986 0.9325

Medium 0.8795 0.832 0.906 0.9625

High 0.8965 0.9012 0.9023 0.9726

Average 0.8912 0.9132 0.9365 0.9736

Table 4. TPR and PPV content of soil nutrients in 
sugarcane

Concentration PPV TPR Accuracy F1 Score
Low 0.855 0.5881 0.956 0.9425

Medium 0.8695 0.822 0.966 0.9525

High 0.8765 0.9312 0.9723 0.9626

Average 0.8712 0.9232 0.9765 0.9636

Fig. 4. TPR and PPV content of soil nutrient in 
paddy field

Figs. 4 and 5 illustrate the graphical representations 
of accuracy and F1-score for soil nutrient classifica-

Fig. 5. TPR and PPV content of soil nutrient                         
in sugarcane field
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tion in both paddy and sugarcane fields. The proposed 
technique effectively classifies soil nutrients, soil pH, 
and soil moisture across both paddy and sugarcane 
fields. 

In the paddy field, the classification of organic car-
bon achieved an accuracy and F1-score of approxi-
mately 0.9303 and 0.956, respectively. In the sugarcane 
field, the corresponding values for organic carbon are 
approximately 0.9405 and 0.9685, respectively. The re-
sults are presented in Table 5 which emphasizes the 
classifiaction outcomes for soil pararmetes across the 
paddy and sugarcane fields. 

Table 5. Soil Parameter Classification Under 
Different Classes

Soil Parameters
Paddy Sugarcane

Accuracy F1-Score Accuracy F1-Score 
Organic Carbon 0.9303 0.956 0.9405 0.9685

Nitrogen 0.9325 0.9611 0.9625 0.9645

Phosphorous 0.9456 0.9405 0.9524 0.9654

Pottasium 0.9085 0.9125 0.9025 0.9125

Soil PH 0.8725 0.8735 0.8751 0.8574

Moisture 0.8565 0.8567 0.8125 0.8525

For nitrogen classification, the F1-score in both pad-
dy and sugarcane fields is approximately 0.9611 and 
0.9645, respectively. In the paddy field, the accuracy of 
DEL for classifying nitrogen, potassium, and phospho-
rus concentrations is approximately 0.9456, 0.9025, 
and 0.8725, respectively. In the sugarcane field, the 
accuracy and F1-score for soil pH classification are ap-
proximately 0.8725 and 0.8735, respectively. Addition-
ally, soil moisture classification achieves an accuracy of 
approximately 0.8565 in the paddy field and approxi-
mately 0.8525 in the sugarcane field. Thus, the perfor-
mance metrices are illustrated in Fig. 5.

Fig. 6. Soil Parameter Classification under Different 
Classes

The comparative analysis of the prediction classifi-
cation results presented in Table 6. The performance 
of the proposed DEL technique in the context of soil 
parameter classification. The results build upon the in-
sights discussed earlier in this study. Noteably,the DEL 
stands out as a remarkable achievement, reaching an 
impressive 97.5%. which indicates significantly sur-

passes the performance of traditional DL techniques. 
This high level of accuracy is critical for precision agri-
culture where accurate assessment of  soil nutrient lev-
els and environmental conditions directly impacts crop 
health and yeild.

The study also includes  four benchmarking tech-
niques  for comparison, providing a clear perspective 
on the state-of-the-art performance of DEL. The results, 
graphically represented in Fig.6, clearly demonstrate 
DEL's superiority robustness and reliability over the 
traditional DL approaches. These findings reinforce the 
potential of DEL framework as an effective and pow-
erful tool for agricultural research enabling enhanced 
crop management and decision-making.

Table 6. Comparative Analysis of Soil Parameter 
Classification Accuracy

Techniques Nitrogen Phosphorous Potassium Ph Moisture

ISNPHC 0.9503 0.9412 0.9029 0.8281 0.8752

HAR 0.732 0.8627 0.7584 0.8692 0.8546

GRBF 0.8369 0.9 0.7854 0.8865 0.8185

TAN 0.8125 0.8896 0.7854 0.8695 0.8524

DEL 
[Proposed] 0.9925 0.9456 0.9085 0.8725 0.8565

Fig. 7. Comparative Analysis of Soil Parameter 
Classification Accuracy

A notable aspect of DEL's success is its ability to han-
dle multiple soil parameters including organic carbon, 
nitrogen, phosphorus, potassium, soil pH, and mois-
ture. The traditional DL models often struggle with 
multi-parameter classification due to the complexity 
of the soil data. In contrast, the DEL's deep ensemble 
approach effectively address these challenges as 
evidenced by its outstanding performance across all 
evaluated  soil parameters. Furthermore, the results in-
dicate that DEL maintains consistent predictive across 
different crop fields, including paddy and sugarcane. 
This versatility suggests that the technique can be ap-
plied to a wide range of agricultural contexts, offering 
valuable insights into soil nutrient levels regardless of 
the specific crop being cultivated.

5.	 CONCLUSION 

In this research study, a novel DEL technique is de-
signed to classify soil parameters obtained from soil 
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sensors into six distinct categories: soil pH, moisture, 
nitrogen, phosphorus, potassium, and organic carbon. 
The DEL technique employs two advanced deep learn-
ing models: Bi-LSTM and GRU, to enhance prediction 
accuracy. To assess the effectiveness of the DEL meth-
od, a comprehensive simulation study is conducted us-
ing a standardised dataset. The results demonstrate the 
superior performance of the DEL technique compared 
to conventional DL methods. Especially, the accuracy 
values achieved for soil nutrient classification in sugar-
cane and paddy fields are remarkable, reaching 0.9765 
and 0.9365, respectively. The results signifies a substan-
tial improvement in soil parameter prediction. 

The demonstrated capabilities of the DEL technique 
have the potential to rimplication fro real-time agricul-
tureal operations. By leveraging automation this ap-
proach can streamline agricultural practices, optimis-
ing crop management and resource allocation. How-
ever, certain soil parameters like potassium, pH, and 
moisture, exhibited moderate accuracy that indicating 
areas for improvement. Future research can focus on 
refining feature selection and optimising DL architec-
tures and testing the scalability of the DEL technique 
on larger adn more diverse datasets. Overall, this study 
emhasizes the potential of DEL as a cutting edge so-
lution for precise soil parameter classification with 
strong applicability in modern precision agriculture. 
The outstanding accuracy achieved in our experiments 
underscores its relevance and promise for improving 
decision-making in crop management.
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