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Abstract – The most recent research is showing the importance and suitability of neural networks for medical image processing tasks. 
Nonetheless, their efficiency in segmentation tasks is greatly dependent on the amount of available training data. To overcome issues 
of using small datasets, various data augmentation techniques have been developed.  In this paper, an approach for the whole heart 
segmentation based on the convolutional neural network, specifically on the 3D U-Net architecture, is presented. Also, we propose 
the incorporation of the principal component analysis as an additional data augmentation technique. The network is trained end-to-
end, i.e., no pre-trained network is required. Evaluation of the proposed approach is performed on CT images from MICCAI 2017 Multi-
Modality Whole Heart Segmentation Challenge dataset, delivering in a three-fold cross-validation an average dice coefficient overlap of 
88.2% for the whole heart, i.e. all heart substructures. Final segmentation results show a high accuracy with the ground truth, indicating 
that the proposed approach is competitive to the state-of-the-art. Additionally, experiments on the influence of different learning rates 
are provided as well, showing the optimal learning rate of 0.005 to give the best segmentation results.

Keywords – CT, data augmentation, medical image segmentation, neural networks, volumetric segmentation, whole heart 
segmentation 

1. INTRODUCTION

One of the biggest causes of health problems are car-
diovascular diseases (CVDs). Most recent research provid-
ed by European Heart Network presents a high mortality 
rate of 45% for patients with CVDs, while simultaneously 
giving a shocking percentage of 11.2 for the population 
living with disorders in the cardiovascular system [1]. 
The severity of the problem prompted numerous joint 
researches between clinical and technical experts. Ac-
celerated detection of CVDs permits physicians to line 
the proper treatment arrangement, which considerably 
improves and saves the patients’ life. The advancements 
in commonly used acquisition techniques like computed 
tomography (CT) and magnetic resonance imaging (MRI) 
enable quick and less invasive body scans. The raw scans 
from imaging devices often include plenty of unneces-
sary information. The segmentation process allows the 

examination of particular organs, such as the heart, from 
previously mentioned scans. This can be done either 
manually by a clinical expert or by using specialized medi-
cal software. Such software includes various image pro-
cessing algorithms that provide easy three-dimensional 
visual inspections of the heart and serve as a treatment 
planning and diagnosis setting tool. The high variability 
and complexity of anatomical heart structure make the 
development of such medical software a very challeng-
ing task.

The paper has the following structure. State of the art 
methods and challenges of heart segmentation are the 
main subjects of Section 2. Our proposed approach is 
explained in Section 3. Data description and implementa-
tion details are provided in Section 4. The segmentation 
results, as well as analysis of conducted experiments, are 
presented in Section 5. Finally, the conclusion and future 
work are given in Section 6.
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2.  RELATED WORK 

Manual delineation of the heart is an intensive and 
time-consuming process. More importantly, it is sub-
jective and prone to variations in observers’ expertise 
and knowledge. To overcome this issue, the various 
semi-automatic [2] and automatic approaches [3] for 
cardiac segmentation using different image process-
ing and machine learning techniques are develop-
ing rapidly. In the beginnings of cardiac research, the 
methods based on partial differential equations, where 
internal or external evolving curves are differentiating 
heart region from other non-interest parts, are majorly 
investigated [4]-[8]. However, the formulation of the 
segmentation process as a process from a previous 
model to the unseen objects promoted specific regis-
tration and atlas-based approaches [9]-[14]. Although 
they are highly accurate, due to heavy computations 
on the algorithms of registration, they lack in perfor-
mance. Commonly known, K-means and Fuzzy cluster-
ing [15]-[17] algorithms are showing average accuracy 
for heart segmentation tasks, as well as classification 
using random forest [18]. 

Nowadays, neural networks and deep learning-based 
approaches are cutting-edge technologies that replace 
conventional methods in the field of cardiac segmenta-
tion. The multi-planar deep learning [19] has been used 
to segment pulmonary veins (PV) and left atrium (LA) 
from MRI. Similarly, a recurrent, fully convolutional neu-
ral network (RCNN) is proposed for left ventricle (LV) 
segmentation in [20]. Furthermore, diverse combina-
tions of encoder-decoder architectures acknowledged 
and induced the importance of skip connections. The 
combination of the highly granular feature maps from 
the decoder with finer granular feature maps from 
the encoder allows the creation of the segmentation 
masks while preserving details on noisy background. 
The U-Net [21] architecture links up-sampled features 
and adds convolutions between each sampling stage. 
Skip connections are essential in their ability to restore 
spatial resolution at the performance of the network. 
By adding dense and nested skip links, Zhou et al. [22] 
further improved the segmentation accuracy. This de-
sign reduces the discrepancies between maps of en-
coder features and decoder feature maps, simplifying 
the problem of optimization.

It is crucial to determine a few main challenges of car-
diac image structure and its processing. First, the heart 
has great geometric complexity as it contains multiple 
chambers and great vessels where some substructures 
are overlapping, making it hard to find real boundaries 
between them. Secondly, its shape significantly varies 
through different cardiac conditions. In other words, 
cardiac images of a healthy patient can be very differ-
ent in shape from pathological cases. Therefore, the dif-
ferences in shape are representing the major challenge 
for automating the whole heart segmentation process. 
To overcome this problem of huge anatomical variabil-
ity and distinctive boundaries in cardiac images, ap-

proaches incorporating prior knowledge and artificial 
neural networks are obtaining the highest accuracy 
scores for segmentation purposes [23].

The main focus of this paper is on the whole heart 
segmentation using 3D U-net architecture [24]. Our 
research primarily contributes to the data augmenta-
tion process. We add the principal component analysis 
(PCA) to the initially proposed on-the-fly elastic defor-
mations and smooth, dense field deformation.

3.  THE PROPOSED METHOD

This section explains the proposed network architec-
ture and the process of data augmentation - mainly the 
effects of principal component analysis (PCA) on the 
input and output of the network. The PCA-based data 
augmentation represents the main scientific contribu-
tion of this paper.

3.1. NETWork ArCHITECTurE 

The proposed method uses the 3D U-Net neural net-
work architecture that comprises of two main paths; 
analysis and synthesis path as shown in Fig. 1. The first 
path is a contracting encoder with the main task of 
providing the analysis of the whole image. The second 
path is the consecutive expanding decoder that pro-
duces a full-resolution segmentation. 

In the analysis path, each layer consists of two 3×3×3 
convolutions followed by a rectified linear unit (ReLu). 
Further comes the 2×2×2 max-pooling layer with 
strides of two in each dimension. Similarly, in the syn-
thesis path there are two 2×2×2  up-convolutions, fol-
lowed by two 3×3×3 convolutions where ReLU follows 
each convolution. The last, 1×1×1, convolution layer 
reduces the output channels to match the number of 
labels, which is in our case 7. Additionally, avoiding 
bottlenecks in both paths is enabled using doubled 
values of the channels before each max-pooling [25].

Furthermore, the network uses batch normalization 
before every ReLu for faster convergence. The learning 
process involves the generation of the dense volumet-
ric segmentation while only requiring two-dimensional 
annotated slices for training. That is possible because of 
the weighted softmax loss function, which sets weights 
of the unlabeled voxels to zero, consequently allowing 
learning from only labeled ones.

3.2. DATA AuGMENTATIoN WITH PCA

Artificial neural networks require vast amounts of an-
notated data for providing efficient learning. The data 
augmentation is commonly adopted for improving train-
ing performance where there is a limited size of the train-
ing data. Essentially, the data augmentation process in-
creases the size of the training dataset through a series of 
image transformations. The data augmentation process 
initially proposed by 3D U-Net architecture includes scal-
ing, rotation, and smooth, dense deformation field tech-
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niques. In this paper, we propose an implementation of 
3D U-Net architecture with a modification to the initially 
proposed data augmentation process by incorporating 
an additional PCA-based image transformation.

The data augmentation transformation can be simply 
represented as a sequence of operations on the training 
dataset. Let G denotes the set of all training samples, 
where each data sample consists of  two 3D volumes 
with same dimensions: the input CT volume I with voxel 
gray values in range [0,4095] and the corresponding la-
beled CT volume L with voxel gray values in range [0,7], 
i.e. labels. Furthermore, let θ be the set of three trans-
formation; scaling, rotation and smooth dense deforma-
tion. The transformations are iteratively applied to both 
an input I volume and the labeled L volume as follows: 

Fig.1. The 3D U-Net architecture

(1)

where transformation parameters for each h ∈ θ are 
chosen randomly. 

Thus, the entire process of data augmentation itself 
can be described with the following mapping:

(2)

Where G represents original training dataset and AG 
represents the augmented, i.e. transformed dataset of G. 
The new, i.e. inflated training dataset is thus defined as:

(3)

This means that the newly obtained dataset contains 
both; images from the original training dataset and im-
ages obtained after applying all the respective transfor-
mations defined with. Therefore, this whole dataset is 
used for network training. To further enable inflation of 

the training dataset, the transformation set is extended 
with an additional transformation that performs prin-
cipal component analysis using the singular value de-
composition. Let v ∈ Z3 denote the voxel position in 
an input image. Let Pv denote a set of grayscale values 
representing the vector of principal components after 
performing the singular value decomposition of an in-
put image X at position v. Our proposed transforma-
tion hpca is defined with the following mapping:

(4)

where X’ denotes the resulting image after transforma-
tion. The proposed transformation modifies the gray-
scale values of every voxel v in the input image in a fol-
lowing manner:

(5)

where α1 denotes a random variable drawn from a 
Gaussian with mean = 0 and σ = 0.1, λ1 denotes the it 
h eigenvalue corresponding to the eigenvector P and 
sp denotes the scaling parameter initialized to 5 ∙ 106.

4. IMPLEMENTATION DETAILS 

This section includes all the necessary information 
about the implementation of our work. The dataset de-
scription used in our research is presented as well as 
the framework of our proposed method that includes 
input pre-processing and convolutional neural net-
works for localization and segmentation.

4.1. DATASET DESCrIPTIoN 

The medical images contain private patient informa-
tion, and they are strictly confidential properties. In the 
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last few years, different algorithm development chal-
lenges were conducted that are using advanced data 
anonymization methods, which allowed the public 
sharing of medical datasets. 

We used a dataset provided by the MICCAI 2017 
Multi-Modality Whole Heart Segmentation Challenge. 
It comprises 120 multi-modality CT and MRI volumetric 
cardiac images, acquired from the real clinical environ-
ment. The dataset is divided into 60 CT, and 60 MRI im-
ages, where for each modality, 20 volumes have their 
corresponding ground truth (labels), and 40 for testing 
purposes within the challenge. We used only 20 CT vol-
umes since the testing phase is closed at the moment 
of writing this paper. The provided ground truths con-
tain all heart substructures from the upper abdomen 
to the aortic arch including the left ventricle (LV), the 
myocardium of the left ventricle (Myo), the right ven-
tricle (RV), the right atrium (RA), the left atrium (LA), the 
ascending aorta (AA) and the pulmonary artery (PA).

  Furthermore, the images were collected with dif-
ferent scanner types, using cardiac CT angiography, 
and were stored as NIfTI file format. The slices were ac-
quired in the axial view with the pixel resolution of 512 
×512. The average slice thickness is 1.60 mm and the 
average in-plane resolution is about 0.78 ×0.7, leading 
to volumetric data consisting of 350 to 500 two-dimen-
sional slices.

4.2. DATA PrEProCESSING

To overcome differences in resolutions and voxel 
sizes all volumes used for training were pre-processed.  
We use the intensity normalization by applying a fol-
lowing linear transformation:

(6)

where inp represents all input pixel values, outp de-
notes output pixel values, while outmin and outmax are 
user defined parameters having values 0 and 20000,  
respectively. The intensity normalization is applied on 
each CT volume, individually. Hence, the input to net-
work are resampled three-dimensional volumes of the 
voxel size144 × 144 × 144, concurrently returning the 
same size voxels at the final layer in x, y and z direc-
tions. This simple pre-processing step significantly re-
duces the computational time as well as simplifies the 
network training. 

4.3. LoCALIzATIoN AND 
 SEGMENTATIoN NETWorkS

The developed framework, presented in Fig. 2., com-
prises of two 3D U-Net architectures. The first one lo-
calizes the whole heart from the raw CT data, giving 
the finer region of interest and input for the second 
network. The second network is used for whole heart 
segmentation, and it provides only the necessary in-

formation for the spatial regions of the interest from 
the whole volume. Furthermore, it is essential to men-
tion that used ground-truth bounding boxes represent 
the whole heart rather than its specific substructures 
such as the left atrium or the pulmonary artery that are 
strongly connected.

Fig. 2. The flowchart of the proposed method

5. EXPERIMENTS AND RESULTS

The approach explained in previous sections is devel-
oped using Python, Keras and Tensorflow. The training 
of huge 3D networks is computationally expensive, so 
we also include cuDNN to increase memory efficiency. 
Data augmentation is done on-the- fly, which results in 
as many different artificial training images as the train-
ing iterations. We ran in total 120000 training iterations, 
simultaneously on two NVidia Geforce Titan V GPUs, 
which took approximately 25 hours. Furthermore, the 
segmentation of the new dataset took on average only 
7.4 seconds on the same hardware.

5.1. rESuLTS

To evaluate our approach, we perform a three-fold 
cross validation on the training images of the MICCAI 
2017 Multi-Modality Whole Heart Segmentation chal-
lenge for CT imaging modality, such that each image is 
tested exactly once.  

The quantitatively model performance during train-
ing is measured with the dice similarity coefficient. 
The similarity of the predicted segmentation and the 
ground-truth label is described with the following for-
mula:

(7)

where Y is the segmentation result and Z is the corre-
sponding ground truth label, while | | is utilized to in-
dicate the number of foreground voxels in the ground 
truth and segmentation images. In this manner, we ob-
tained an overall average score for the whole heart seg-
mentation of 88.2%. The table-like representation of all 
obtained results for the original 3D U-Net architecture 
is shown in Table 1. In contrast, the results of our pro-
posed approach with improvements in data augmen-
tation technique is presented in Table 2. 
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Cardiac structure obtained DSC [%]

LV 89.8

rV 86.4

LA 88.2

rA 85.5

PA 83.2

Myo 82.4

Aorta 89.2

WH 87.3

Table 1. An obtained Dice Coefficient of the original 
3D U-Net architecture

Table 2. An obtained dice coefficient of the 
3D U-Net architecture with an improved data 

augmentation

Cardiac structure obtained DSC [%]

LV 91.2

rV 87.2

LA 86.5

rA 82.6

PA 83.7

Myo 83.9

Aorta 90.2

WH 88.20

An example of resulting best-segmented dataset, is 
shown in Fig. 3. 

Fig. 3. An example of successful segmentation. 
From the upper left to the right: original 2D 

slice; slice of the ground truth; 2D slice of the 
segmentation result; 3D visualization of the ground 

truth; 3D visualization of the predicted heart

For additional evaluation of overall accuracy, we 
compared obtained results with similar whole heart 
segmentation approaches that are based on convo-
lutional neural-networks architectures. The method 
proposed by Payer et al. [26] is exploring the idea of 

individual landmark localization with regressing heat-
maps and introducing a novel SpatialConfiguration-
Net architecture that is combining local appearance re-
sponses with spatial landmark configurations for mod-
elling anatomical variability. Furthermore, Xu, Wu, and 
Feng in their research [27] show that Faster R-CNN, in 
combination with the U-Net network, has a significant 
influence on speed increase.  A little different approach 
is conducted by Wang et al. [28]. They developed a 
framework that includes the 2.5D segmentation with 
orthogonal 2D U-nets, shape context estimation, and 
refining segmentation with U-net and shape context. 

  The mentioned three approaches, as well as ours, 
use the same validation dataset and evaluation meth-
ods. Therefore, a comparison of the obtained results 
is highly reliable. The results presented in Table 3. are 
indicating the competitiveness of our approach to the 
state-of-the-art.

Table 3. The comparison of obtained DSC with the 
state-of-the-art methods.

Method Authors used approach DSC [%]

1 Payer et al. [26] SpatialConfiguration-
Net architecture 88.9

2 Xu, Wu and 
Feng [27] Orthogonal 2D U-Net 85.9 

3 Wang et al. [28] Faster R-CNN + U-Net 86.6 

4 Our method
Localization and 
segmentation 3D 

U-Net
88.20

Furthermore, for experimental purposes, we per-
formed training with different initial learning rates and 
found the optimal learning rate of 0.005 to give best 
segmentation results as shown in Table 4.

Table 4. The different initial learning rates (µ) 
and obtained dice coefficient for the heart 

segmentation results.

Cardiac 
structure

obtained 
DSC [%] for 

µ=0.0001 

obtained 
DSC [%] for 

µ=0.001

obtained 
DSC [%] for 

µ=0.005

LV 87.2 90.4 91.2

RV 84.1 86.6 87.2

LA 85.2 87.8 86.5

RA 82.3 84.6 82.6

PA 81.5 85.7 83.7

Myo 80.3 85.9 83.9

Aorta 88.7 89.8 90.2

WH 85.7 86.9 88.20
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6. CONCLUSION 

In this paper, an approach for automatic whole heart 
localization and segmentation from CT images is pre-
sented. The developed framework combines two 3D 
U-Net neural network architectures, first used for local-
ization of the bounding box around the heart and sec-
ond used for the segmentation. The results were evalu-
ated on the five CT volumes from the MICCAI 2017 
Multi-Modality Whole Heart Segmentation challenge. 
With additional improvements to the data augmenta-
tion process, we achieve an average dice score for the 
whole heart segmentation of 88.2%. 

The results of our proposed approach show that CNN 
neural network architectures are a suitable approach 
for cardiac segmentation tasks. The increase of train-
ing data would certainly ensure better results, as well 
as more sophisticated pre-processing and localization 
methods. For future work, we will investigate tech-
niques that will allow uniform multi-modality pre-pro-
cessing, which will enable more accessible inputs for 
network training.    

7. ACKNOWLEDGEMENTS

The current archival periodical article is based on the 
conference presentation [29].

This work has been supported in part by Croatian Sci-
ence Foundation under the project UIP-2017-05-4968.

8. REFERENCES: 

[1] The European Heart Network, HeartNet Connec-

tion, European Cardiovascular Disease Statistics 

2017, http://www.ehnheart.org/cvd-statistics.

html (accessed: 2019)

[2] H. Leventić et al., “Left atrial appendage segmen-

tation from 3D CCTA images for occlude place-

ment procedure”, Computers in Biology and Medi-

cine, Vol. 104, 2018, pp. 163-174. 

[3] M. Habijan, H. Leventić, I. Galić, D. Babin, “Estima-

tion of the Left Ventricle Volume Using Semantic 

Segmentation”, Proceedings of the 61st Interna-

tional Symposium ELMAR, Zadar, Croatia, 23-25 

September 2019, pp. 39-44.

[4]   M. Kass, A. Witkin, D. Terzopoulos, “Snakes: active 

contour models”, International Journal of Com-

puter Vision, Vol. 1, No. 4, 1988, pp. 321-331. 

[5]  M. Kass, A. Witkin, D. Terzopoulos, “Active contour 

models”, International Journal of Computer Vision, 

Vol. 1, No. 4, 1987, pp. 321-331.

[6]  V. Caselles, R. Kimmel, G. Sapiro. “Geodesic active 

contours”, International Journal of Computer Vi-

sion, Vol. 22, No. 1, 1997, pp. 61-79.

[7] S. Kichenassamy A. Kumar, P. Olver, A. Tannenbaum, 

A. Yezzi, “Gradient flows and geometric active con-

tour models”, Proceedings of the IEEE Internation-

al Conference on Computer Vision, Cambrige, MA, 

USA, 20-23 June 1995, pp. 810-815.

[8]  A. Yezzi S. Kichenassamy, A. Kumar, P. Olver, A. Tan-

nenbaum, “A geometric snake model for segmen-

tation of medical imagery”, IEEE Transactions on 

Medical Imaging, Vol. 16, No. 2, 1997, pp. 199–209. 

[9]  X. Zhuang and J. Shen, “Multi-scale patch and 

multi-modality atlases for whole heart segmenta-

tion of MRI”, Medical Image Analysis, Vol. 31, 2016, 

pp. 77-87.

[10]  X. Zhuang K. S. Rhode, R. S. Razavi, D. J. Hawkes, 

S. Ourselin, “A Registration-Based Propagation 

Framework for Automatic Whole Heart Segmen-

tation of Cardiac MRI”, IEEE Transactions on Medi-

cal Imaging, Vol. 29, No. 9, 2010, pp. 1612-1625.

[11]  X. Zhuang et al., “An Atlas-Based Segmentation 

Propagation Framework Using Locally Affine Reg-

istration – Application to Automatic Whole Heart 

Segmentation”, Proceedings of the International 

Conference Medical Image Computing and Com-

puter-Assisted Intervention, New York, NY, USA, 

6-10 September 2008, pp. 425-433.

[12] X. Zhuang, S. Ourselin, R. Razavi, D. L. G. Hill, D. J. 

Hawkes, “Automatic Whole Heart Segmentation 

Based on Atlas Propagation with A Priori Ana-

tomical Information”, Proceedings of the Medical 

Image Understanding and Analysis Conference, 

Dundee, Scotland, UK, 2008, pp. 29-33

[13] X. Zhuang et al., “Multiatlas whole heart segmen-

tation of CT data using conditional entropy for at-

las ranking and selection”, Medical Physics, Vol. 42, 

2015, pp. 3822-3833.

[14] E. Rikxoort et al., “Adaptive Local Multi-Atlas Seg-

mentation: Application to the Heart and the Cau-

date Nucleus”, Medical image analysis, Vol. 14, No. 

1, 2009, pp. 39-49. 

[15] Y. Chen, X. Xiao-ming, C. Ken, O. Shan-xin, ”CT 

Image Segmentation based on Clustering and 



31Volume 11, Number 1, 2020

Graph-Cuts”, Procedia Engineering, Vol. 15, 2011, 
pp. 5179-5184.

[16] H. W. Jo, H. Y. Lee, ”Automatic left ventricle seg-
mentation with K-means clustering and graph 
searching on cardiac magnetic resonance image”, 
International Workshop on Image Analysis for 
Multimedia Interactive Services, 2011

[17] L. Wang, Y. Ma, K. Zhan, Y. Ma, ”Automatic Left Ven-
tricle Segmentation in Cardiac MRI via Level Set 
and Fuzzy C-Means”, Proceedings of the 2nd Inter-
national Conference on Recent Advances in Engi-
neering & Computational Sciences, Chandigarh, 
India, 21-22 December 2015, pp. 1-6.

[18] J. Margeta et al., “Decision Forests for Segmen-
tation of the Left Atrium from 3D MRI”, Proceed-
ings of the International Workshop on Statistical 
Atlases and Computational Models of the Heart, 
Nagoya, Japan, 26th September 2013, pp. 49-56.

[19] A. Mortazi, R. Karim, K. Rhode, J. Burt, U Bagci, “Car-
diacNET: Segmentation of Left Atrium and Proxi-
mal Pulmonary Veins from MRI Using Multi-View 
CNN”, Proceedings of the International Confer-
ence on Medical Image Computing and Comput-
er-Assisted Intervention, Quebec City, QC, Cana-
da, 10-14 September 2017, pp. 377-385. 

[20] R. P. K. Poudel, P. Lamata, G. Montana, “Recurrent fully 
convolutional neural net-works for multi-slice MRI 
cardiac segmentation”, arXiv, No. 1608.03974, 2016

[21] O. Ronneberger, P. Fischer,and T. Brox, ”U-Net: 
Convolutional Networks for Biomedical Image 
Segmentation”, Proceedings of the International 
Conference on Medical Image Computing and 
Computer-Assisted Intervention, Munich, Germa-
ny, 5-9 October 2015, pp. 234-241.

[22]  Z. Zhou, Md M. R. Siddiquee, N. Tajbakhsh, J. Liang, 
”UNet++: A nested U-Net architecture for medical 
image segmentation”, Proceedings of the Inter-
national Workshop on Deep Learning in Medical 
Image Analysis, Granada, Spain, 20th September 
2018, pp. 3-11.

[23] O. Oktay et al., ”Anatomically constrained Neural 

Networks (ACNNs): Application to cardiac image 

enhancement and segmentation”, IEEE Transac-

tions on Medical Imaging, Vol. 37, No. 2, 2018, pp. 

384-395.

[24] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, O. 

Ronneberger, “3D U-Net: Learning Dense Volu-

metric Segmentation from Sparse Annotation”, 

Proceedings of the International Conference on 

Medical Image Computing and Computer-Assist-

ed Intervention, Athens, Greece, 17-21 October 

2016, pp. 424-432.

[25] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. 

Wojna, ’’Rethinking the inception architecture for 

computer vision”, Proceedings of the 2016 IEEE 

Conference on Computer Vision and Pattern Rec-

ognition, Las Vegas, NV, USA, 27-30 June 2016, pp. 

2818-2826.

[26] C. Payer, D. Stem, H. Bischof, M. Urschler, ’’Multi-

label whole heart segmentation using CNNs and 

anatomical label configurations”, Proceedings of 

the International Workshop on Statistical Atlases 

and Computational Models of the Heart, Quebec 

City, QC, Canada, 10-14 September 2017, pp. 190-

198.

[27] Z. Xu, Z. Wu, J. Feng, ”CFUN: Combining Faster R-

CNN and U-net Network for Efficient Whole Heart 

Segmentation”, arXiv, No. 1812.04914, 2018.

[28] C. Wang, O. Smedby, ’’Automatic whole heart seg-

mentation using deep learning and shape con-

text”, Proceedings of the International Workshop 

on Statistical Atlases and Computational Models 

of the Heart, Quebec City, QC, Canada, 10-14 Sep-

tember 2017, pp. 242-249.

[29] M. Habijan, H. Leventic, I. Galic, D. Babin, “Whole 

Heart Segmentation from CT images Using 3D 

U-Net architecture”, Proceedings of the 2019 In-

ternational Conference on Systems, Signals and 

Image Processing, Osijek, Croatia, 5-7 June 2019, 

pp. 121-126. 


