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Abstract – As the global population continues to expand and the effects of climate change become increasingly evident, the demand 
for sustainable agricultural practices has grown more urgent. A persistent challenge in crop cultivation lies in the intense competition 
between crops and weeds for essential resources such as water, nutrients, and sunlight—often leading to substantial yield losses. 
Conventional approaches that rely heavily on herbicides and pesticides, while effective in the short term, can degrade soil health and 
harm the surrounding ecosystem. Hence, developing environmentally friendly and efficient weed management strategies has become 
a priority in precision agriculture. In this study, we introduce UNET-SA, an improved semantic segmentation framework that integrates a 
spatial attention mechanism into the traditional UNet architecture. The addition of spatial attention enables the model to better identify 
small or scattered weeds by concentrating computational focus on key regions within the image—areas that standard segmentation 
networks often overlook. The proposed model was trained and evaluated using a dataset of 1,727 annotated images collected from 
pigeon pea fields in the Vidarbha region of India. To correct manual annotation inconsistencies, HSV color space transformation was 
applied during preprocessing. Experimental findings demonstrate that UNET-SA delivers notable performance gains over the baseline 
UNet, achieving a mean Intersection over Union (IoU) of 94.44% and an overall accuracy of 98.64%, reflecting improvements of +1.74% 
and +1.04%, respectively. Additional testing on the larger CropAndWeed dataset further validated the model’s generalization capability, 
where UNET-SA achieved 98.81% accuracy and a 55.79% mean IoU, outperforming the baseline UNet (98.49% accuracy, 51.81% mean 
IoU). The disparity between high accuracy and moderate IoU highlights the impact of class imbalance—large background regions can 
inflate accuracy without reflecting true segmentation precision. Consequently, mean IoU serves as a more reliable indicator of model 
effectiveness. Overall, UNET-SA surpasses leading architectures such as DeepLabv3+, SegFormer, PSPNet, and LinkNet, demonstrating 
strong potential for practical, long-term deployment in crop–weed segmentation tasks under real agricultural conditions.
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1.	 	INTRODUCTION

By 2050, the world's population is expected to reach 
nine billion, which means that food production will 
need to increase by about 70% to meet human needs 
[1]. But this growth is in danger because there is less 

arable land, water is becoming scarcer, and climate 
change is hurting crop yields and soil health. To make 
sure that there is enough food for everyone and to 
protect the environment, it is important to sustainably 
increase agricultural productivity in the face of rising 
global demand. Precision agriculture is a promising so-
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lution that uses advanced sensing, automation, and ar-
tificial intelligence (AI) technologies to make better use 
of resources and manage crops more efficiently [1-3].

Weeds are still one of the biggest problems that keep 
us from being more productive. Weeds compete with 
crops for important resources like nutrients, water, sun-
light, and space, which lowers both the yield and the 
quality [4, 5]. Preventive, cultural, mechanical, biologi-
cal, and chemical weed control methods [6] are often 
expensive, time-consuming, and bad for the environ-
ment. Overuse of herbicides, especially, harms the soil, 
makes weeds resistant to chemicals, and puts people 
and animals at risk [6, 7].

The need for weed management that is both sustain-
able and accurate has led to a lot of interest in systems 
that can automatically find and kill weeds. These kinds 
of systems use computer vision and machine learning 
to find, sort, and pinpoint weeds at the plant level. These 
technologies cut down on the use of herbicides and labor 
costs while also protecting the environment by allowing 
for selective spraying or mechanical removal [8, 9]. How-
ever, it is still hard to tell the difference between crops 
and weeds in natural field conditions because of things 
like changes in light, blockage, and the fact that crops and 
weeds look very similar in color, texture, and shape.

Deep learning-based semantic segmentation accu-
rately identifies plants, allowing for targeted actions 
in weed control and crop management. Fully Convo-
lutional Networks (FCNs), UNet, DeepLab, and Seg-
Former are examples of architectures that have shown 
promise in segmenting agricultural images. But new 
ways to add data or transfer learning methods can help 
reduce the need for large, well-annotated datasets in 
agricultural image segmentation. For example, there is 
no public dataset for pigeon pea (Cajanus cajan), which 
is a major legume crop in India and other tropical areas. 
To fill this gap, this study provides a high-resolution 
UAV-based pigeon pea dataset with three annotated 
semantic classes: crop, weed, and background. The 
data was collected in real field conditions. The dataset 
was obtained from three separate pigeon pea fields uti-
lizing both UAV and handheld camera systems over a 
span of six consecutive days to guarantee variability in 
lighting, soil background, and stages of plant growth.

Another big problem is manual annotation, which 
takes a long time and is easy to make mistakes, which 
makes it harder for the model to generalize. To fix this, 
we use HSV (Hue–Saturation–Value) color space trans-
formation to help make the annotations more accurate. 
This preprocessing method makes the color contrast 
between areas of vegetation and soil stronger, which 
lowers the chance of boundary errors and makes the 
labels more consistent.

This study presents the UNET-SA model to enhance 
segmentation accuracy by utilizing a spatial attention 
mechanism that emphasizes crucial spatial areas and 
sharpens segmentation boundaries within the UNet ar-

chitecture. The original UNet does a good job of captur-
ing multiscale contextual features, but it doesn't always 
do a good job of highlighting spatially important areas 
in complicated field scenes. With spatial attention, the 
network can focus on important spatial features, like 
the fine lines that separate crop and weed areas, while 
ignoring background noise. This results in enhanced 
feature representation and segmentation accuracy, es-
pecially in diverse agricultural settings. Additionally, 
performing comparative experiments on various agri-
cultural datasets or integrating user feedback for model 
enhancement can further substantiate the efficacy of 
the UNET-SA model. Performance is evaluated based 
on accuracy, precision, recall, F1-score, and Intersection 
over Union (IoU), demonstrating the effectiveness of the 
spatial attention mechanism in enhancing discrimina-
tive ability and minimizing false classifications. In sum-
mary, the major contributions of this work are as follows:

•	 Development of a high-resolution UAV-based pi-
geon pea dataset with three annotated classes—
crop, weed, and background—captured under re-
alistic field conditions.

•	 Enhancement of annotation quality using HSV col-
or space transformation to minimize manual label-
ing errors and improve dataset consistency.

•	 Proposal of the UNET-SA model, an enhanced UNet 
architecture that integrates a spatial attention 
mechanism to focus on relevant spatial regions 
and suppress irrelevant background information.

•	 Comprehensive comparative analysis of the pro-
posed model against baseline UNet and other 
state-of-the-art deep segmentation networks to 
validate performance improvements.

The remainder of this paper is structured as follows. 
Section 2 reviews related work in the field of crop–
weed detection and attention-based segmentation 
models. Section 3 presents the dataset, preprocessing 
strategies, and proposed methodology. Section 4 dis-
cusses the experimental setup and performance analy-
sis. Finally, Section 5 concludes the study and outlines 
directions for future research.

2.	 LITERATURE REVIEW

There are a few publicly available datasets for crop–
weed segmentation, like the Sugar Beet dataset from 
Bonn University [10], the Crop and Weed Field Image Da-
taset (CWFID) [11], and the UAV-based CWFID dataset [12]. 
However, most of them are only concerned with crops 
like sugar beet, spinach, maize, and beans. These datas-
ets are useful, but they don't have a lot of different crops, 
growth stages, or geographic contexts. Pigeon pea (Caja-
nus cajan) is a major legume crop grown a lot in tropical 
and subtropical areas, but it is still not well represented in 
open-access collections, even though it is very important 
for farming, especially in India and sub-Saharan Africa. Its 
diverse canopy structure, intercropping arrangements, 
and fluctuating weed density pose unique obstacles for 
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semantic segmentation and model generalization. To fill 
this gap in research, we created a high-resolution UAV-
based pigeon pea dataset with 1,727 annotated images 
taken in natural light from different fields in the Vidarbha 
region of India. Each image has pixel-level labels for three 
groups: crop, weed, and background. This makes them a 
useful standard for testing deep learning models in real-
world farming situations. This dataset is meant to help re-
searchers study how to tell the difference between crops 
and weeds, how to use transfer learning, and how to au-
tomate precision weeding, especially for legume species 
that don't get a lot of attention. For strong segmentation 
models in UAV imagery, high-quality annotation is a must 
because changes in lighting, soil background, and veg-
etation that is very close together make labels less certain. 
Color-space preprocessing, especially HSV transforma-
tion, is often used to make it easier to separate vegeta-
tion and soil and to create consistent initial masks before 
manual refinement. When combined with morphological 
filtering and annotator verification, HSV-based pipelines 
lower the amount of variation between annotators and 
speed up the process of curating large orthomosaics [13, 
14]. Recent studies have integrated color indices (such 
as ExG and NDVI, where multispectral sensors are acces-
sible) with superpixel and clustering methodologies (for 
instance, LAB-ab K-means) to generate dependable pseu-
do-masks that annotators subsequently refine, enhanc-
ing overall annotation quality and facilitating improved 
model generalization. [15, 17].

The U-Net family remains the preeminent framework 
for pixel-wise segmentation in agricultural applica-
tions, owing to its encoder-decoder architecture and 
skip connections that maintain intricate spatial details 
[18], [19]. But baseline U-Net can have trouble with 
long-range context and fine boundary delineation 
when crops and weeds have similar spectral signatures 
or when there are small weeds. Two distinct trends 
have manifested in research from 2023 to 2025:

(1) Adding attention and multi-scale context mod-
ules (SE, ECA, CBAM, ASPP, MGA) to U-Net variants has 
always improved mean IoU and boundary F1. Some 
examples are Coordinate Attention UNet, U-MGA, MSF-
CA-Net, and Dilated Multi-Scale Attention UNet [20-23].

(2) Hybrid and transformer-based encoder designs, 
like Visual Mamba UNet, SSMR-Net, and Dual-Task En-
hanced UNet, get the big picture while keeping the 
small details, which makes them work better on hard 
UAV datasets [24-27].

Additionally, lightweight U-Net variants and ortho-
mosaic-aware pipelines have been suggested to pre-
serve real-time inference capabilities on embedded 
hardware like NVIDIA Jetson and Xavier platforms, 
guaranteeing their appropriateness for precision agri-
culture applications [19, 25].

Spatial attention, which explicitly models the "where" 
to look, has been very useful for UAV agricultural imag-
ery, where standard convolutions often get confused 

by background noise and changes in lighting. Recent 
agricultural segmentation studies [25, 26, 28-31] have 
shown that spatial attention modules (either on their 
own or as part of hybrid attention like CBAM) make 
it easier to find small objects and separate classes in 
dense canopies. Based on these ideas, the proposed 
UNET-SA adds an efficient spatial attention (SA) block 
to the U-Net decoder to selectively boost crop/weed 
discriminative regions while lowering irrelevant back-
ground activations. This design uses HSV-assisted an-
notation for cleaner supervision and keeps the model 
small for practical UAV/edge deployment.

Finally, strict benchmarking is necessary to show real 
progress. Modern comparative studies usually use mIoU, 
mPA (mean pixel accuracy), boundary F1, inference 
speed (FPS or ms/image), and parameter/FLOP budgets 
to compare models on UAV and field datasets. To vali-
date UNET-SA, we employ the same methodology and 
conduct comparisons against baseline U-Net, UNet++, 
DeepLabv3+, SegFormer, Swin-UNet, and specific light-
weight U-Net variants on the new pigeon pea dataset 
and on standard public datasets where relevant. This 
comparative evaluation measures the benefits of spatial 
attention and high-quality HSV-enhanced annotations, 
situating UNET-SA within the latest developments in 
attention-driven crop–weed segmentation.

3.	 MATERIALS AND METHODS

3.1. Dataset Description

The Pigeon Pea dataset utilized in this research com-
prises 1,727 RGB images of crops and weeds, gathered 
from three separate agricultural fields in the Vidarbha 
region of India, encompassing areas of 1.62 ha, 1.24 ha, 
and 1.46 ha, respectively. We surveyed each field on 
two consecutive days to make sure that the light, weed 
density, and crop growth stages were all different. The 
dataset includes pigeon pea plants at different stages 
of their life cycle, which gives it a lot of variety in terms 
of appearance and canopy coverage.

We took pictures with both a smartphone camera 
(1,634 pictures) and a DJI Mavic Air 2S drone (93 pic-
tures). The drone took pictures from 20 cm to 1 m above 
the ground, and the handheld pictures were taken 
from 10 to 30 cm above the ground. GPS coordinates 
were used to mark the edges of the fields, and there 
was always at least a 2 m gap between each frame to 
make sure that no one plant instance was recorded 
more than once. This gets rid of redundancy and makes 
sure that each session has its own sample.

To keep data from leaking, the dataset was split up 
by field. Seventy percent of the images were used for 
training, ten percent for validation, and twenty percent 
for testing. This made sure that each subset was fairly 
represented. This strategy makes sure that images that 
are close in time or space don't show up in more than 
one subset, which makes the generalization test fair.
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We used polygonal masks to manually label each im-
age into three groups: crop, weed, and background. 
The average class distribution was 8.68% background, 
7.39% crop, and 83.93% weed. This is what you would 
expect to see in a real field with a moderate imbalance. 
The dataset has enough variation to test how well the 
proposed segmentation models work in different natu-
ral situations. Table 1 shows a summary of the day-by-
day image collection details, and Fig. 1 shows some 
sample images of crops and weeds. Fig. 1. Crop and Weed Images

Table 1. Dataset Description

Date Capturing Device Resolution Number of Images Training Validation Testing
16th July 2023 Mobile Camera 2016×4480 and 4480×2016 137 96 14 27

17th July 2023 Mobile Camera 2016×4480 and 4480×2016 422 295 43 84

18th July 2023 Mobile Camera 2016×4480 and 4480×2016 440 308 44 88

19th July 2023 Drone 5472×3648 93 65 9 19

20th July 2023 Mobile Camera 2016×4480 and 4480×2016 256 179 26 51

22nd July 2023 Mobile Camera 2016×4480 and 4480×2016 379 265 28 76

Total 1727 1208 174 345

3.2.	 Dataset Preprocessing

The raw images have different resolutions, such as 
2016x4480, 4480x2016, and 5472x3648. Noise in imag-
es is when pixel values change randomly, which makes 
the image look worse. It can happen when an image 
is taken or sent. Noise in pictures can make edges, 
textures, and object boundaries look different, which 
makes it harder to find useful patterns. Deep learning 
models can get more useful information from clean 
images. When using deep learning to analyze images, 
steps like noise reduction, normalization, and resizing 
are very important for getting reliable and consistent 
results. Below are the steps taken to prepare the sam-
ples that were collected.

•	 Noise removal: An important way to process im-
ages that can be used alone or with other meth-
ods. There are many ways to get rid of noise in an 
image. One way to get rid of noise is to find it with 
other information and then use the best filtering 
algorithms that don't hurt the picture quality and 
make it smoother for analysis. This work used a 
Gaussian filter to get rid of noise.

•	 Image normalization: Image normalization chang-
es the range of pixel intensities, which speeds up 
execution. There is one channel and 0–255 pix-
els of intensity in grayscale images. Normaliza-
tion changes intensity from 0 to 1.  Normalization 
makes the intensity go from 0 to 1. There are three 
channels in an RGB image, and the pixel intensi-
ties range from 0 to 255. This changes the range of 
pixel intensities for all three channels from 0 to 1.

•	 Changing the size of an image: A mobile camera 
and a drone took pictures at 2016 x 4480, 4480 x 
2016, and 5472 x 3648 pixels. Before this stage, all 
of the pictures are made smaller to 640 by 640.

3.3.	 Dataset Annotation and Mask 
	Generation

Deep learning architecture uses supervised learn-
ing for training, where a labeled dataset is needed to 
learn the probability distribution. The images after 
preprocessing are required to be labeled at the pixel 
level, where each pixel will be classified into one of the 
three categories (background, crops, and weeds). For 
the task of annotation, we have used Roboflow. The da-
taset is uploaded to a server, and images are annotated 
using the smart polygon tool. After annotation, the im-
age annotation file is downloaded in YOLOv8 format 
for further use.

As the Roboflow online platform provides many tools 
for annotation, it is selected for the annotation. Among 

different tools of annotation, the polygon tool is 
selected due to the shape of size of the weed. Each 
image is annotated and contains three classes, i.e., 
Background, Crop, and Weed. After the completion 
of annotation of all the images, the annotation file is 
downloaded in JSON format. But semantic segmenta-
tion models require mask images for training. The JSON 
file is read, and different mask images are generated. 
The steps followed for the generation of mask files are 
given in Algorithm 1. 

Algorithm 1. Generation of Mask images from 
JSON Annotations file

Input: JSON annotation file, Image dimensions

Output: Mask images corresponding to annotated 
images

1.	 Load the JSON annotation file.

2.	 For each annotated image in the JSON file:

2.1.	 Extract the image filename and dimensions.
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2.2.	 Create a blank mask image with all pixel  
	 values set to 0 (background).
2.3.	 For each annotated object in the image:

a.	 Extract polygon coordinates and class label.
b.	 Assign a unique integer value to the class  
	 (e.g., 0: Background, 1: Crop, 2: Weed).
c.	 Draw the polygon on the mask using the  
	 assigned class value.

2.4.	 Save the generated mask image with the 
same filename as the original image.

3.4.	  Mask improvement using HSV  
	colorspace  transformation

Algorithm 2 offers a methodical strategy for enhanc-
ing manually annotated segmentation masks through 
the utilization of the Hue–Saturation–Value (HSV) color 
space. The main purpose of this algorithm is to make 
the annotated masks more accurate by highlighting a 
range of green color components. These usually stand 
for plants like crops and green weeds in pictures of 
farms. During manual annotation, small weeds or areas 
that are only slightly green are often incorrectly labeled 
as background. This automated refinement process is 
needed to fix this.

The algorithm starts by reading the RGB image and 
the mask that was manually marked up. The OpenCV 
function cv2.cvtColor then changes the RGB image 
into the HSV color space. The HSV representation is bet-
ter because it separates color information (hue) from 
brightness (value), which makes it more stable when 
the lighting changes or when there are shadows, which 
is common in field conditions.

Then, using the predefined green color range with 
lower bounds (30, 40, 40) and upper bounds (90, 255, 
255), the HSV image is thresholded to make a binary 
mask. The Mgreen mask separates the areas of vegeta-
tion that correspond to crops and weeds. It does a great 
job of capturing the different shades of green that can 
be found in natural agricultural scenes.

Then, a copy of the green mask is set up as the bet-
ter mask. Setting the pixel values of non-green ar-
eas that were wrongly marked as vegetation in the 
manual mask to background (0) fixes the problem. 
On the other hand, areas marked as green are kept 
or improved based on the original annotated mask, 
making sure that both crop and weed areas are still 
shown correctly. This step also helps bring back small 
or subtle weed patches that were previously thought 
to be background.

Finally, the improved mask output saves the refined 
mask, which makes it easier to tell where vegetation 
ends and starts and cuts down on mistakes in the an-
notations. This improvement makes the training data 
cleaner and more accurate, which makes the segmen-
tation model work better during training and evalu-
ation.

Algorithm 2. Mask Improvement Using HSV Color 
Space Transformation
Input: RGB image I_rgb, manually annotated mask 
M_annotated, green color thresholds: lower green 
(30, 40, 40), upper green (90, 255, 255)
Output: Improved mask M_improved

1.	 Read the input RGB image I_rgb and manually 
annotated mask M_annotated.
2.	 Transform the RGB image to HSV color space: 	
	 cv2.cvtColor(I_rgb, cv2.COLOR_BGR2HSV)
3.	 Create a binary mask for the green region: 
	 cv2.inRange 
	 (I_hsv, lower_green, upper_green)
4.	 Initialize M_improved as a copy of M_green.
5.	 Modify the background in M_improved:
	 M_improved[(M_green == 0) &  
	 (M_annotated != 0)] = 0
6.	 Preserve non-background regions from 
	 M_annotated in M_improved: 
	 M_improved[(M_green != 0)] =  
	 M_annotated[(M_green != 0)]
7.	 Save the improved mask.

3.3. UNet Architecture

Deep learning architecture especially intended for se-
mantic segmentation problems is the U-NET model, par-
ticularly in biomedical image segmentation, but it has 
proven effective in many domains, including agricultural 
applications like crop and weed detection. For seman-
tic segmentation, the UNET model is trained to distin-
guish between different classes in images, such as crops, 
weeds, and background. The architecture consists of 
two primary parts: the encoder and the decoder. The en-
coder takes the input image, stores its context, and then 
uses that information to extract features by progres-
sively reducing the spatial dimensions, which helps the 
model learn higher-level representations. In contrast, the 
decoder restores the spatial resolution by up-sampling 
the feature maps, ultimately generating pixel-wise class 
predictions for the input image. The UNET architecture 
features skip connections that link corresponding lay-
ers between the encoder and decoder components. The 
implementation of skip connections allows the model 
to preserve detailed spatial information from preceding 
layers, which is essential for accurately segmenting ob-
jects at a pixel level. For crop-weed semantic segmen-
tation, this means the model can precisely differentiate 
between crops, weeds, and the background, even when 
these objects are nearby or share similar textures. The ar-
chitecture of basic UNET is provided in Fig. 2.

3.3 Spatial Attention Mechanism

The Spatial Attention (SA) module focuses on the 
most important spatial regions in the feature maps. It 
generates an attention map that highlights important 
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spatial regions by suppressing irrelevant or background 
information. This is accomplished by applying both av-
erage pooling and Max Pooling along the channel axis. 
Both the pooling operations reduce the size of input 
feature maps into two 2-D maps, which detect comple-
mentary contextual information.  Max pooling detects 
the most important regions, and average pooling fo-
cuses on the overall distribution of feature maps across 
the channels. The output of two pooling operations is 
concatenated. Then the concatenated map is given in-
put to a convolutional layer having a kernel size of 7x7 
to combine pooled information and find spatial depen-

dencies. Next, the output of the convolution is passed 
through the sigmoid function, which produces values in 
the range of 0 to 1, which is the spatial attention mask. 
The value 1 represents more important regions, and the 
value 0 corresponds to less important regions.

Lastly, the spatial attention mask is multiplied by 
input feature maps, which helps to highlight more im-
portant spatial regions and to reduce the effect of less 
important spatial regions. In this way, spatial attention 
improves the feature representation and increases the 
model’s accuracy of predictions. The SA module is rep-
resented in Fig. 3. 

Fig. 2. Basic UNET Architecture

Fig. 3. Architecture of Spatial Attention Module

3.4.	 Proposed Methodology

In this section, we discuss the proposed methodol-
ogy named UNET with Spatial Attention (UNET-SA). 
The UNET-SA is an enhanced version of the traditional 
UNET architecture, incorporating spatial attention 

mechanisms to improve semantic segmentation per-
formance. The steps in the proposed methodology 
is given the Fig. 4. The images are acquired from the 
fields using a drone and a smartphone camera. Then 
the images are annotated using the polygon tool of the 
Roboflow platform. Then the JSON annotations are ex-
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tracted. As UNET requires mask images, they are gener-
ated using the JSON annotations. For mask generation, 
algorithm 1 is used. 

The generated mask has human annotation errors. 
To refine the mask further, the image is converted to 
HSV colorspace. Then the green part(usual crop and 

weed) is extracted from the image using a range of 
green color(lower green (30, 40, 40), upper green (90, 
255, 255)  in HSV color space. Using the earlier-gener-
ated mask and image with only the green part, a new 
refined mask is generated. The detailed steps are pro-
vided in Algorithm II. 

Fig. 4. Proposed methodology

In Fig. 5, it can be observed that the annotation of 
images is improved after the HSV color transformation. 
The first image is the sample input image, the second 
image is a mask generated using Algorithm I, and the 
third image is a mask generated using Algorithm II. It 
can be observed that Fig. 5(c) is more refined and ac-
curate than Fig. 5(b) in terms of object detection and 
segmentation.

(a) (b) (c)

Fig. 5. Mask improvement, (a) Input Image, (b) 
Mask generated using JSON file after applying 

Algorithm-I, (c) Improved mask generated after 
applying Algorithm-II

He UNET model follows the encoder-decoder struc-
ture with skip connections, making it well-suited for 
multi-class segmentation. It has an encoder contain-
ing four convolutional blocks, each followed by a max-
pooling layer to progressively reduce spatial dimen-
sions while increasing feature richness. The spatial at-
tention modules are applied after each encoder block, 
helping the network focus on discriminative regions in 
the image, which is particularly useful for complex seg-
mentation tasks such as distinguishing between crops 
and weeds in dense field environments. The bridge 
layer at the bottleneck stage also incorporates a spatial 

attention module, ensuring that the most critical high-
level features are retained before upsampling begins. 
The decoder progressively reconstructs the spatial res-
olution using transposed convolutions, with skip con-
nections reintroducing fine-grained details from the 
encoder. Since the encoder's feature maps are already 
enhanced through spatial attention, the skip connec-
tions further improve boundary precision and segmen-
tation accuracy. 

A. UNET-SA model

The SA module helps the model focus on relevant 
regions, making it particularly effective in agricultural 
segmentation tasks where objects may be overlapping, 
occluded, or highly similar in appearance. This results 
in better object delineation, improved segmentation 
accuracy, and robustness to background noise. By in-
tegrating spatial attention within the UNET framework, 
UNET-SA achieves superior performance in tasks like 
automated weed detection and crop segmentation, 
enhancing precision agriculture applications.

4.	 RESULTS AND DISCUSSION

For all the experiments performed the hyperparam-
eters used are learning rate is 0.001, epochs are 100, 
optimizer adam, loss function is cross entropy, batch 
size is 2, and image height and width is 640.

4.1.	 Performance Evaluation Metrics

To evaluate the performance of the proposed model, 
testing is required. Various metrics are used to evalu-
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ate the model. The selection of evaluation metrics is 
dependent on the specific criteria. If the dataset has a 
uniform distribution of samples among all the classes, 
then accuracy is used for evaluation. For a non-uniform 
distribution of samples among all the classes, recall, 
precision, and F1-score are useful. Precision and recall 
are used to detect the false positive rate and false neg-

ative rate, respectively. To balance both the rates, the 
harmonic mean is calculated, and it is known as the F1-
score. Intersection over union (IoU) and mean IoU are 
used in the case of segmentation tasks.  IoU measures 
how much the prediction matches the ground truth 
mask. It is calculated per-class. Mean IoU is nothing but 
the mean of IoU of all the classes. 

Fig. 6. UNET architecture with Spatial Attention module integrated into the encoder and bridge layer

4.2.	 Experimental Results of SOTA 
	 Models Without Mask Enhancement

The images collected using a drone and mobile camera 
are annotated using Robolflow. Additionally, the dataset 
is used to select and train various SOTA models used for 
semantic segmentation. In terms of accuracy, precision, 
recall, F1-score, and mean IoU, the UNET model outper-
forms other state-of-the-art models, demonstrating its 
effectiveness in semantic segmentation tasks. It attains 
an accuracy of 88.26%, a precision of 88.29%, a recall of 
88.26%, an F1-score of 88.23%, and a mean IoU of 76.35. 
It can be observed from Table 4 that UNET performs bet-
ter for all the performance metrics.

The per-class performance of all the SOTA models is 
analyzed, which is given in Table 5. It can be observed 
that UNET results are much better than those of other 
models. The highest F1-score, IoU, is 89.09 %, 82.46 % 
respectively, for the crop class, which is attained by the 
UNET. For the weed class, the highest F1-score and IoU 
are attained by the UNet++ model, which are 81.56% 

and 71.28%, respectively. For other performance met-
rics, the values attained by the UNET model are much 
closer to the highest value. The UNet++ is the variant 
of UNET. After going through all the results, it can be 
inferred that the UNET and its variant UNET perform 
better for most of the performance metrics.

Table 2. Overall Performance of SOTA models 
without mask enhancement

Model 
Name Accuracy Precision Recall F1 Score Mean 

IoU
Unet 0.8826 0.8829 0.8826 0.8823 0.7635

Unet++ 0.8804 0.8809 0.8804 0.8804 0.7603

MAnet 0.8793 0.8794 0.8793 0.8792 0.7582

Linknet 0.8765 0.8781 0.8765 0.8767 0.7466

FPN 0.8760 0.8788 0.8760 0.8763 0.7556

PSPNet 0.8754 0.8777 0.8754 0.8757 0.7460

PAN 0.8185 0.8249 0.8185 0.8156 0.6088

DeepLabV3 0.8736 0.8760 0.8736 0.8738 0.7455

DeepLabV3+ 0.8798 0.8802 0.8798 0.8799 0.7613

UPerNet 0.8745 0.8775 0.8745 0.8749 0.7488
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Table 3. Per-class Performance of SOTA models 
without mask enhancement

Model 
Name Class Accuracy Precision Recall F1-

Score IoU

U
ne

t Background 0.8871 0.8510 0.8871 0.8597 0.7690

Crop 0.8909 0.9045 0.8909 0.8909 0.8246

Weed 0.7692 0.8619 0.7692 0.8027 0.6967

U
ne

t+
+ Background 0.8408 0.8761 0.8408 0.8481 0.7539

Crop 0.8928 0.8844 0.8928 0.8825 0.8142

Weed 0.8202 0.8286 0.8202 0.8156 0.7128

M
A

ne
t Background 0.8761 0.8539 0.8761 0.8548 0.7623

Crop 0.8622 0.9171 0.8622 0.8786 0.8079

Weed 0.7996 0.8390 0.7996 0.8097 0.7044

Li
nk

ne
t Background 0.8296 0.8829 0.8296 0.8454 0.7492

Crop 0.8729 0.8762 0.8729 0.8635 0.7842

Weed 0.8361 0.8017 0.8361 0.8110 0.7064

FP
N

Background 0.8206 0.8898 0.8206 0.8443 0.7469

Crop 0.8864 0.8872 0.8864 0.8783 0.8098

Weed 0.8499 0.7957 0.8499 0.8133 0.7101

PS
PN

et Background 0.8134 0.8880 0.8134 0.8354 0.7376

Crop 0.8567 0.9130 0.8567 0.8753 0.8015

Weed 0.8239 0.8058 0.8239 0.8047 0.6989

PA
N

 Background 0.8992 0.7956 0.8992 0.8314 0.7297

Crop 0.7997 0.6746 0.7997 0.6825 0.5624

Weed 0.5975 0.8270 0.5975 0.6659 0.5342

D
ee

pL
ab

V3 Background 0.8113 0.8758 0.8113 0.8324 0.7342

Crop 0.8852 0.8682 0.8852 0.8687 0.7942

Weed 0.8485 0.7953 0.8485 0.8127 0.7080

D
ee

pL
ab

V3
+ Background 0.8458 0.8734 0.8458 0.8496 0.7547

Crop 0.8869 0.8979 0.8869 0.8865 0.8213

Weed 0.8255 0.8162 0.8255 0.8120 0.7079

U
Pe

rN
et Background 0.8191 0.8882 0.8191 0.8419 0.7441

Crop 0.8551 0.9044 0.8551 0.8660 0.7980

Weed 0.8476 0.7915 0.8476 0.8097 0.7044

4.3.	 Experimental Results on SOTA 
	 Models after Mask Enhancement

The images collected using a drone and mobile cam-
era are annotated using Robolflow. After annotation, 
HSV color transformation is used to remove the manual 
annotation errors. Also, different SOTA models for se-
mantic segmentation are selected and trained on the 
newly generated dataset. Among all the SOTA models, 
UNet performs better. It attains an accuracy of 97.51%, 
a precision of 97.53%, a recall of 97.51%, an F1-score of 
97.51%, and a mean IoU of 92.87%. It can be observed 
from Table 6 that UNET performs better for all the per-
formance metrics.

The per-class performance of all the SOTA models is 
analysed, which is given in Table 7. It can be observed 
that UNET results are much better than those of oth-
er models. The highest accuracy of 95.25%, recall of 
95.25%, F1-score of 94.77%, and IoU of 91.07% for the 
crop class are attained by the UNET.

The highest Accuracy of 95.72 %, Recall of 95.72%, 
F1-score of 94.88%, and IoU of 90.51 % for the weed 
class, which is attained by the UNET. For other perfor-
mance metrics, values attained by the UNET model are 

much closer to the highest value. After going through 
all the results, it can be inferred that the UNET performs 
better for all the performance metrics except precision.

Table 4. Overall Performance of SOTA models after 
mask enhancement

Model 
Name Accuracy Precision Recall F1 Score Mean 

IoU
Unet 0.9751 0.9753 0.9751 0.9752 0.9287

Unet++ 0.9740 0.9740 0.9740 0.9740 0.9268

MAnet 0.9728 0.9727 0.9728 0.9727 0.9195

Linknet 0.9722 0.9723 0.9722 0.9723 0.9228

FPN 0.9474 0.9474 0.9474 0.9474 0.8811

PSPNet 0.9299 0.9303 0.9299 0.9301 0.8501

PAN 0.9092 0.9092 0.9092 0.9081 0.7793

DeepLabV3 0.9295 0.9292 0.9295 0.9292 0.8469

DeepLabV3+ 0.9502 0.9502 0.9502 0.9502 0.8855

UPerNet 0.9520 0.9525 0.9520 0.9522 0.8914

Table 5. Per-class performance of SOTA models 
after mask enhancement

Model 
Name Class Accuracy Precision Recall F1-

Score IoU

U
ne

t Background 0.9809 0.9889 0.9809 0.9849 0.9703

Crop 0.9525 0.9450 0.9525 0.9477 0.9107

Weed 0.9572 0.9410 0.9572 0.9488 0.9051

U
ne

t+
+ Background 0.9847 0.9825 0.9847 0.9835 0.9677

Crop 0.9369 0.9598 0.9369 0.9472 0.9090

Weed 0.9466 0.9503 0.9466 0.9483 0.9036

M
A

ne
t Background 0.9859 0.9818 0.9859 0.9838 0.9683

Crop 0.9338 0.9462 0.9338 0.9381 0.8943

Weed 0.9347 0.9538 0.9347 0.9435 0.8959

Li
nk

ne
t Background 0.9796 0.9855 0.9796 0.9825 0.9658

Crop 0.9489 0.9444 0.9489 0.9456 0.9065

Weed 0.9519 0.9362 0.9519 0.9436 0.8961

FP
N

Background 0.9595 0.9606 0.9595 0.9600 0.9234

Crop 0.9435 0.9398 0.9435 0.9408 0.8983

Weed 0.8978 0.9013 0.8978 0.8992 0.8215

PS
PN

et Background 0.9362 0.9510 0.9362 0.9434 0.8936

Crop 0.9351 0.9267 0.9351 0.9297 0.8784

Weed 0.8751 0.8703 0.8751 0.8721 0.7784

PA
N

 Background 0.9591 0.9212 0.9591 0.9393 0.8864

Crop 0.8782 0.8206 0.8782 0.8264 0.7384

Weed 0.7823 0.8823 0.7823 0.8276 0.7132

D
ee

pL
ab

V3 Background 0.9479 0.9397 0.9479 0.9434 0.8936

Crop 0.9502 0.9160 0.9502 0.9317 0.8814

Weed 0.8332 0.9012 0.8332 0.8628 0.7658

D
ee

pL
ab

V3
+ Background 0.9629 0.9619 0.9629 0.9623 0.9277

Crop 0.9498 0.9375 0.9498 0.9427 0.9014

Weed 0.8928 0.9138 0.8928 0.9026 0.8273

U
Pe

rN
et Background 0.8191 0.8882 0.8191 0.8419 0.7441

Crop 0.8551 0.9044 0.8551 0.8660 0.7980

Weed 0.8476 0.7915 0.8476 0.8097 0.7044

4.4. Performance improvement after 
	 Mask Enhancement

The HSV color transformations are used to remove 
the manual annotation errors. Both crops and weeds 
mostly possess a green color. Also, the variance of 
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the size of weeds is very high. Due to this, annotating 
weeds is a very challenging task. HSV transformation 
addresses this issue effectively. 

This is how the two datasets, Dataset-1 and Data-
set-2, are made. Images and mask images made with 
Algorithm-I are in Dataset-1. Dataset-2 has images and 
mask images that were made with Algorithm-II.

The performance comparison in Table 6 shows that 
the mask enhancement technique made a big dif-
ference in the performance of many state-of-the-art 
(SOTA) semantic segmentation models. Among the 
architectures tested, PAN had the best overall per-
formance, with an accuracy of 11.08%, a precision of 
10.22%, a recall of 11.08%, an F1 score of 11.33%, and a 
mean IoU of 28.01%. This shows that it is better at using 
refined boundary information from enhanced masks. 
The LinkNet and U-Net++ models also showed big 
improvements, with mean IoU values of 23.60% and 
21.90%, respectively. This shows that encoder-decoder 
architectures with efficient skip connections benefit a 
lot from better mask delineation.

Fig. 7. Percentage improvement in performance of 
SOTA models after using mask images generated 

using Algorithm-II

Table 6 Performance improvement of SOTA models 
after Mask Enhancement

The improvements seen in all models show that mask 
enhancement helps with better feature localization 
and boundary refinement, especially when the origi-
nal segmentation masks had rough or noisy annota-
tions. Traditional models like U-Net and MAnet showed 
steady but moderate improvements in performance. 
This suggests that these architectures do a good job 
of capturing contextual information, but their decod-
ers may not be able to take full advantage of improved 
edge precision because they are not very deep. On the 
other hand, models like DeepLabV3 and PSPNet, which 
use dilated convolutions and pyramid pooling to com-
bine context, saw smaller improvements. 

This may be because they rely on large receptive 
fields instead of fine-grained spatial accuracy, which 
makes them less sensitive to mask-level changes.

In general, the results show that mask enhancement 
techniques can greatly improve segmentation qual-
ity, especially for architectures that rely on multi-scale 
spatial correspondence between the encoder and de-
coder stages. This finding emphasizes the significance 
of high-quality annotation refinement as an adjunct 
to model optimization, which can directly impact the 
learning of object boundaries and improve the dis-
criminative ability of deep segmentation networks in 
intricate agricultural imagery.

Model 
Name Accuracy Precision Recall F1 Score Mean 

IoU
Unet 10.4790 10.4633 10.4790 10.5247 21.6467

Unet++ 10.6373 10.5689 10.6373 10.6255 21.9041

MAnet 10.6330 10.6087 10.6330 10.6350 21.2740

Linknet 10.9201 10.7346 10.9201 10.8957 23.6009

FPN 8.1502 7.8027 8.1502 8.1175 16.6078

PSPNet 6.2280 5.9926 6.2280 6.2060 13.9532

PAN 11.0813 10.2198 11.0813 11.3373 28.0104

DeepLabV3 6.4047 6.0793 6.4047 6.3428 13.6096

DeepLabV3+ 8.0101 7.9415 8.0101 7.9887 16.3103

UPerNet 8.8652 8.5419 8.8652 8.8315 19.0327

4.5.	 Performance comparison of UNET  
	and  UNET-SA model on Pigeon Pea  
	 Dataset

The spatial attention module improves the perfor-
mance of UNET. It can be observed from Table 7 that 
the performance of the UNET-SA model is superior 
to the UNET model for all the performance metrics. 
The SA module focuses on the most important part, 
which helps in improving performance. As per Table 
7, the UNET-SA model attains an accuracy of 98.53%, 
a precision of 98.54%, a recall of 98.53%, an F1-score of 
98.53, and a mean IoU of 94.49%. The performance of 
the UNET-SA model is improved for all the metrics. The 
accuracy, precision, recall, F1-score, and mean IoU are 
increased by 1.04%, 1.04%, 1.04%, 1.04%, and 1.74%, 
respectively.

Table 7. Performance comparison of UNET and 
UNET-SA models on Pigeon pea Dataset

Model 
Name Accuracy Precision Recall F1 Score Mean 

IoU
Unet 0.9751 0.9753 0.9751 0.9752 0.9287

UNET-SA 0.9864 0.9854 0.9853 0.9853 0.9449

The confusion matrix and training and validation loss 
curves are given in Figs. 8 and 9. The training and vali-
dation accuracy are above 95% and the training and 
validation IoU are above 90%.   Also, all the losses are 
below 0.1.
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Fig. 8. Confusion Matrix of the UNet-SA 
model(proposed)

(a)

(b)

(c)

(d)

Fig. 9. Training and Validation curves for the UNet-
SA model(proposed). (a) Training vs Validation 

Accuracy, (b) Training vs Validation loss, (c) Mean 
Training IoU vs Mean Validation IoU, 9(d)Training vs 

Validation IoU Loss

4.6. Performance comparison of UNET 
	and  UNET-SA model on the 
	 CropAndWeed Dataset [32]

The CropAndWeed dataset [32] has 111,953 images in 
all. There are 74 classes in all. 16 of them are for the types 
of crops, like sugar beets, soybeans, sunflowers, pota-
toes, peas, beans, pumpkins, maize, and so on. The other 
58 classes are types of weeds like grasses, knotweed, 
goosefoot, thistle, and others. The dataset includes a 
wide range of soil types, plant types, weed types, and 
more because it was collected from many different plac-
es.  This benchmark dataset is used to compare the origi-
nal UNet and the proposed model in terms of MeanIoU, 
accuracy, precision, and other metrics.

Table 8. Performance comparison of UNET and 
UNET-SA models on the CropAndWeed Dataset

Model 
Name Accuracy Precision Recall F1 Score Mean 

IoU
Unet 98.49 98.40 98.49 98.41 51.81

UNET-SA 98.81 98.79 98.81 98.80 55.79

The CropAndWeed dataset has a class imbalance and 
a pixel distribution that makes the mean IoU low but the 
accuracy high. The model can get a high accuracy by 
correctly classifying these big areas because most of the 
pixels are in the background or the main crop areas. But 
mean IoU treats all classes the same and is more likely to 
make mistakes in smaller or less common weed classes. 
IoU also punishes mistakes on the boundaries and par-
tial mis-segmentations, which are common in fine plant 
structures. So, even though the model's pixel-level accu-
racy is very high, its segmentation consistency across all 
classes is still lower than it could be.

4.7.	 Discussion

The Pigeon Pea dataset is used in this work. The datas-
et is collected from three different fields, which have dif-
ferent growth stages of the crop of Pigeon pea, soil con-
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ditions, and types of weeds. Also, the dataset is collected 
on six different days.  The lighting conditions during data 
collection were different.  These factors add variability to 
the dataset. The model training is carried out on a high-
end workstation. Various SOTA models used for seman-
tic segmentation are employed. These SOTA models are 
efficient and resource-intensive, and are selected due to 
their advantages for attaining the set objectives.

The images captured through a smartphone and a 
drone are annotated using Roboflow. The annotations 
have errors. To reduce these errors, RGB images are 
converted to the HSV color space for efficient detection 
of crops and weeds, which are green in color. The two 
datasets are created, one without and one with HSV 
color transformation, named Dataset-1 and Dataset-2. 
The SOTA models are trained on both datasets. The 
performance on the dataset with HSV transformation is 
improved. Also, on both datasets, UNET has better per-
formance compared to all the SOTA models. 

On Dataset-1, UNET achieves better performance 
compared to all the SOTA models. It attains an accuracy 
of 88.26%, a precision of 88.29%, a recall of 88.26%, an 
F1-score of 88.23%, and a mean IoU of 76.35%. On Da-
taset-2, it attains an accuracy of 97.51%, a precision of 
97.53%, a recall of 97.51%, an F1-score of 97.52%, and a 
mean IoU of 92.87. It can be concluded that due to HSV 
color transformation, the masks' images are improved, 
and annotation errors are reduced. With reduced er-
rors, models get trained better and perform better.

As UNET is performing better than all the SOTA mod-
els, it is selected for further improvement. To enhance its 
performance, the spatial attention mechanism is inte-
grated, which helps in focusing on the most important 
part of the image. The spatial attention mechanism is in-
tegrated in the encoder part. After each down-sampling 
operation, the image is passed through the spatial at-
tention. Also, it is particularly effective in segmentation 
tasks where objects may be overlapping, occluded, or 
highly similar in appearance. The UNET-SA model attains 
an accuracy of 98.64%, a precision of 98.54%, a recall of 
98.53%, an F1-score of 98.53, and a mean IoU of 94.49%. 
The performance of the UNET-SA model is improved for 
all the metrics. The accuracy, precision, recall, F1-score, 
and Mean IoU are increased by 1.04%, 1.04%, 1.04%, 
1.04%, and 1.74%, respectively. 

Table 9 shows how different U-Net architectures with 
different attention mechanisms compare in terms of 
performance. The evaluation metrics—accuracy, preci-
sion, recall, F1 score, and mean Intersection over Union 
(mIoU)—show how well each model can accurately sep-
arate crop and weed areas in field images.

U-Net-SA (U-Net with Spatial Attention) is the best of 
all the variants. It has an accuracy of 98.64%, a precision 
of 98.54%, a recall of 98.53%, an F1 score of 98.53%, 
and a mean IoU of 94.49%. These numbers are higher 
than those of other U-Net models that use attention, 
like U-Net-DA (Dual Attention) and U-Net-AT (Attention 

Gate), which have Mean IoUs of 92.68% and 89%91, re-
spectively.

The Spatial Attention (SA) mechanism, which focuses 
on finding the most important spatial regions in the 
feature maps by highlighting areas with a lot of texture 
and spatial changes, is what makes U-Net-SA work so 
well. This is especially helpful for separating crops from 
weeds, since changes in the background soil, shad-
ows, and lighting can make it hard to see the edges of 
plants. U-Net-SA effectively reduces irrelevant back-
ground noise and improves fine-grained boundary de-
tails by learning how to highlight discriminative spatial 
locations. This leads to more accurate mask generation.

Table 9. Performance comparison of the proposed 
model with other UNET models with attention 

modules

Model 
Name Accuracy Precision Recall F1 Score Mean 

IoU

UNET-
CBAM 0.9417 0.9399 0.9417 0.9405 0.7848

UNET-DA 0.9802 0.9803 0.9802 0.9802 0.9268

UNET-ST 0.9642 0.9645 0.9642 0.9643 0.8558

UNET-RA 0.9666 0.9668 0.9666 0.9667 0.8599

UNET-AT 0.9751 0.9752 0.9751 0.9752 0.8991

UNET-SE 0.9592 0.9595 0.9592 0.9593 0.8348

UNET-
SCSE 0.8954 0.9039 0.8954 0.8881 0.6571

UNET-SA 0.9864 0.9854 0.9853 0.9853 0.9449

Other attention mechanisms, like SE (Squeeze-and-
Excitation) and CBAM (Convolutional Block Attention 
Module), on the other hand, focus mostly on channel-
wise dependencies. This means they might miss small 
spatial cues that are needed to tell the difference be-
tween crops and weeds that are overlapping or close 
together. The same goes for U-Net-SCSE, which com-
bines spatial and channel attention by concatenating 
them. It doesn't work as well (mean IoU = 65.71%) be-
cause it might have too many parameters and doesn't 
do a good job of feature fusion.

Even though U-Net-DA and U-Net-AT also work well, 
they use more complicated attention aggregation, 
which can make it harder to accurately locate small ob-
jects in space. The U-Net-SA variant, on the other hand, 
strikes the perfect balance between model complexity 
and feature enhancement. It focuses on vegetation pix-
els without slowing down the computer.

We also tested the UNET-SA model on the large Cro-
pAndWeed dataset, which has 111,953 images of 74 
different types of crops and weeds. This was done to 
see how well it could generalize. The proposed model 
got 98.81% accuracy and a mean IoU of 55.79% on this 
benchmark, which was better than the baseline UNET 
(accuracy = 98.49%, Mean IoU = 51.81%). The difference 
between high accuracy and a lower mean IoU is mostly 
due to class imbalance, where large background ar-



93Volume 17, Number 4, 2026

eas have more pixels than smaller weed classes, which 
makes accuracy higher and IoU lower. Still, the fact that 
both metrics keep getting better shows that spatial at-
tention helps the model generalize better to different 
types of fields, soils, and vegetation structures.

The results show that adding the Spatial Attention 
mechanism to the UNET architecture greatly improves 
the quality of semantic segmentation by making spa-
tial feature representation and boundary precision 
stronger. The model is efficient and flexible, which 
makes it a good choice for real-time crop-weed identi-
fication on portable IoT devices like the Raspberry Pi or 
Jetson Nano. But spatial attention also adds more pa-
rameters, which can make it easier to overfit on smaller 
datasets and slightly increase the amount of compu-
tation needed during inference. Future research may 
investigate Vision Transformer (ViT)–based encoders to 
capture more intricate spatial dependencies and mul-
timodal data fusion (RGB + NIR) to improve the differ-
entiation between crops and weeds. Also, making fake 
samples with generative adversarial networks (GANs) 
could help with the lack of data and make the model 
even better at generalizing.

4.8. Limitations and Scalability 
	 Considerations

The proposed U-Net-SA model performs exception-
ally well on the Pigeon Pea dataset; however, its scal-
ability to various agricultural domains and unfamiliar 
environments poses significant challenges. The da-
taset, despite being gathered from three separate 
domains with differing growth stages, soil types, and 
lighting conditions, may not comprehensively repre-
sent the diversity of actual agricultural ecosystems. As 
a result, the model may not work as well in areas with 
very different canopy structures, weed densities, or 
background textures. Changes in the color of the soil, 
the shape of the weeds, and the maturity of the crops 
can affect the spectral properties of plants. This can 
make it harder to segment them correctly when tested 
outside of the current domain. The HSV color space 
transformation does help with annotation consistency 
and segmentation performance, but it only works well 
for crops and weeds that are in the green color range. 
This method might not work as well when there are a 
lot of non-green crops, dead leaves, or dry weeds in 
the field. This makes the model less flexible in other 
agricultural situations. Another issue is that U-Net-SA's 
computational scalability is limited because adding 
spatial attention parameters makes training longer 
and inference latency higher. This makes it hard to use 
U-Net-SA on low-power IoT devices for large-scale or 
real-time deployments.

Synthetic data augmentation can help get around 
these problems. Using Generative Adversarial Net-
works (GANs) or diffusion-based models to create real-
istic images of crops and weeds can add a lot of differ-
ent field textures, lighting conditions, and plant shapes 

to the dataset. This would make the model more robust 
to changes across fields and help prevent overfitting. 
Also, domain adaptation methods and transfer learn-
ing can make scalability even better by making small 
changes to the trained model for new areas or crop 
types with little effort to annotate. Consequently, 
forthcoming research ought to concentrate on utiliz-
ing synthetic augmentation and domain adaptation to 
enhance the applicability of the U-Net-SA model for ex-
tensive precision agriculture in diverse field conditions.

5.	 CONCLUSION

A novel approach for detecting crops and weeds in Pi-
geon Pea fields by integrating a spatial attention mod-
ule into the UNET model is proposed in this work. The 
proposed model attains an accuracy of 98.64%, preci-
sion of 98.54%, recall of 98.53%, F1-score of 98.53%, 
and mean IoU of 94.49%. The annotation errors are 
minimized using the HSV color space. The performance 
of SOTA models is improved on the dataset in which 
annotations are transformed using the HSV colorspace. 
The performance of all the SOTA models is improved 
after HSV color transformation in all the performance 
metrics. As UNET is performing better, it is selected, 
and all the attention mechanisms are integrated into it. 
After performance analysis, it is found that UNET with a 
spatial attention mechanism is performing better.

The proposed UNET-SA model is also tested on the 
large CropAndWeed dataset [32], which has 74 different 
types of crops and weeds, to make sure it is even more 
reliable. The model does better than the baseline UNET 
(accuracy 98.49%, mean IoU 51.81%) with an accuracy 
of 98.81% and a mean IoU of 55.79%. The high accuracy 
and low mean IoU show that there is class imbalance. 
This is because dominant background pixels raise overall 
accuracy, while the mean IoU shows how well the seg-
mentation works across all classes. This shows that the 
proposed model works well with a wide range of agricul-
tural datasets that are both diverse and complex.

We used images from three fields and six days to diver-
sify the dataset and reduce overfitting to demonstrate 
that the algorithm can handle new data. The model 
scored well on all assessment criteria on a test set not 
used during training. While the UNET-SA model offers 
advantages, it also presents certain limitations that need 
to be addressed. These drawbacks impact the model's 
generalizability and computational efficiency. Although 
spatial attention enhances predictions, it introduces 
characteristics that can exacerbate overfitting on da-
tasets with limited samples. This aspect of the model's 
behavior needs to be carefully addressed to ensure ro-
bust performance. This increase in processing overhead 
and inference latency due to spatial attention can affect 
the model's real-time performance and computational 
efficiency, necessitating optimization strategies for de-
ployment. The integration of vision transformers could 
enhance the model's capacity to capture intricate de-
tails of different crops and weeds, potentially improving 
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segmentation accuracy and feature representation in 
agricultural imagery. Future research endeavors could 
involve testing the proposed model with RGB+NIR data 
to explore the synergistic benefits of combining visible 
and near-infrared spectral information for improved 
crop and weed segmentation accuracy. Also, we can add 
synthetic data to the dataset using a generative adver-
sarial network (GAN) to alleviate data scarcity.
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