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Abstract - As the global population continues to expand and the effects of climate change become increasingly evident, the demand
for sustainable agricultural practices has grown more urgent. A persistent challenge in crop cultivation lies in the intense competition
between crops and weeds for essential resources such as water, nutrients, and sunlight—often leading to substantial yield losses.
Conventional approaches that rely heavily on herbicides and pesticides, while effective in the short term, can degrade soil health and
harm the surrounding ecosystem. Hence, developing environmentally friendly and efficient weed management strategies has become
a priority in precision agriculture. In this study, we introduce UNET-SA, an improved semantic segmentation framework that integrates a
spatial attention mechanism into the traditional UNet architecture. The addition of spatial attention enables the model to better identify
small or scattered weeds by concentrating computational focus on key regions within the image—areas that standard segmentation
networks often overlook. The proposed model was trained and evaluated using a dataset of 1,727 annotated images collected from
pigeon pea fields in the Vidarbha region of India. To correct manual annotation inconsistencies, HSV color space transformation was
applied during preprocessing. Experimental findings demonstrate that UNET-SA delivers notable performance gains over the baseline
UNet, achieving a mean Intersection over Union (loU) of 94.44% and an overall accuracy of 98.64%, reflecting improvements of +1.74%
and +1.04%, respectively. Additional testing on the larger CropAndWeed dataset further validated the model’s generalization capability,
where UNET-SA achieved 98.81% accuracy and a 55.79% mean loU, outperforming the baseline UNet (98.49% accuracy, 51.81% mean
loU). The disparity between high accuracy and moderate loU highlights the impact of class imbalance—large background regions can
inflate accuracy without reflecting true segmentation precision. Consequently, mean loU serves as a more reliable indicator of model
effectiveness. Overall, UNET-SA surpasses leading architectures such as DeepLabv3+, SegFormer, PSPNet, and LinkNet, demonstrating
strong potential for practical, long-term deployment in crop-weed segmentation tasks under real agricultural conditions.
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1. INTRODUCTION arable land, water is becoming scarcer, and climate
change is hurting crop yields and soil health. To make

By 2050, the world's population is expected to reach  gyre that there is enough food for everyone and to
nine billion, which means that food production will  protect the environment, it is important to sustainably
need to increase by about 70% to meet human needs  increase agricultural productivity in the face of rising
[1]. But this growth is in danger because there is less  global demand. Precision agriculture is a promising so-
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lution that uses advanced sensing, automation, and ar-
tificial intelligence (Al) technologies to make better use
of resources and manage crops more efficiently [1-3].

Weeds are still one of the biggest problems that keep
us from being more productive. Weeds compete with
crops forimportant resources like nutrients, water, sun-
light, and space, which lowers both the yield and the
quality [4, 5]. Preventive, cultural, mechanical, biologi-
cal, and chemical weed control methods [6] are often
expensive, time-consuming, and bad for the environ-
ment. Overuse of herbicides, especially, harms the soil,
makes weeds resistant to chemicals, and puts people
and animals at risk [6, 7].

The need for weed management that is both sustain-
able and accurate has led to a lot of interest in systems
that can automatically find and kill weeds. These kinds
of systems use computer vision and machine learning
to find, sort, and pinpoint weeds at the plant level. These
technologies cut down on the use of herbicides and labor
costs while also protecting the environment by allowing
for selective spraying or mechanical removal [8, 9]. How-
ever, it is still hard to tell the difference between crops
and weeds in natural field conditions because of things
like changes in light, blockage, and the fact that crops and
weeds look very similar in color, texture, and shape.

Deep learning-based semantic segmentation accu-
rately identifies plants, allowing for targeted actions
in weed control and crop management. Fully Convo-
lutional Networks (FCNs), UNet, DeepLab, and Seg-
Former are examples of architectures that have shown
promise in segmenting agricultural images. But new
ways to add data or transfer learning methods can help
reduce the need for large, well-annotated datasets in
agricultural image segmentation. For example, there is
no public dataset for pigeon pea (Cajanus cajan), which
is a major legume crop in India and other tropical areas.
To fill this gap, this study provides a high-resolution
UAV-based pigeon pea dataset with three annotated
semantic classes: crop, weed, and background. The
data was collected in real field conditions. The dataset
was obtained from three separate pigeon pea fields uti-
lizing both UAV and handheld camera systems over a
span of six consecutive days to guarantee variability in
lighting, soil background, and stages of plant growth.

Another big problem is manual annotation, which
takes a long time and is easy to make mistakes, which
makes it harder for the model to generalize. To fix this,
we use HSV (Hue-Saturation-Value) color space trans-
formation to help make the annotations more accurate.
This preprocessing method makes the color contrast
between areas of vegetation and soil stronger, which
lowers the chance of boundary errors and makes the
labels more consistent.

This study presents the UNET-SA model to enhance
segmentation accuracy by utilizing a spatial attention
mechanism that emphasizes crucial spatial areas and
sharpens segmentation boundaries within the UNet ar-

chitecture. The original UNet does a good job of captur-
ing multiscale contextual features, but it doesn't always
do a good job of highlighting spatially important areas
in complicated field scenes. With spatial attention, the
network can focus on important spatial features, like
the fine lines that separate crop and weed areas, while
ignoring background noise. This results in enhanced
feature representation and segmentation accuracy, es-
pecially in diverse agricultural settings. Additionally,
performing comparative experiments on various agri-
cultural datasets or integrating user feedback for model
enhancement can further substantiate the efficacy of
the UNET-SA model. Performance is evaluated based
on accuracy, precision, recall, F1-score, and Intersection
over Union (loU), demonstrating the effectiveness of the
spatial attention mechanism in enhancing discrimina-
tive ability and minimizing false classifications. In sum-
mary, the major contributions of this work are as follows:

. Development of a high-resolution UAV-based pi-
geon pea dataset with three annotated classes—
crop, weed, and background—captured under re-
alistic field conditions.

- Enhancement of annotation quality using HSV col-
or space transformation to minimize manual label-
ing errors and improve dataset consistency.

«  Proposal of the UNET-SA model, an enhanced UNet
architecture that integrates a spatial attention
mechanism to focus on relevant spatial regions
and suppress irrelevant background information.

«  Comprehensive comparative analysis of the pro-
posed model against baseline UNet and other
state-of-the-art deep segmentation networks to
validate performance improvements.

The remainder of this paper is structured as follows.
Section 2 reviews related work in the field of crop-
weed detection and attention-based segmentation
models. Section 3 presents the dataset, preprocessing
strategies, and proposed methodology. Section 4 dis-
cusses the experimental setup and performance analy-
sis. Finally, Section 5 concludes the study and outlines
directions for future research.

2. LITERATURE REVIEW

There are a few publicly available datasets for crop-
weed segmentation, like the Sugar Beet dataset from
Bonn University [10], the Crop and Weed Field Image Da-
taset (CWFID) [11], and the UAV-based CWFID dataset [12].
However, most of them are only concerned with crops
like sugar beet, spinach, maize, and beans. These datas-
ets are useful, but they don't have a lot of different crops,
growth stages, or geographic contexts. Pigeon pea (Caja-
nus cajan) is a major legume crop grown a lot in tropical
and subtropical areas, but it is still not well represented in
open-access collections, even though it is very important
for farming, especially in India and sub-Saharan Africa. Its
diverse canopy structure, intercropping arrangements,
and fluctuating weed density pose unique obstacles for
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semantic segmentation and model generalization. To fill
this gap in research, we created a high-resolution UAV-
based pigeon pea dataset with 1,727 annotated images
taken in natural light from different fields in the Vidarbha
region of India. Each image has pixel-level labels for three
groups: crop, weed, and background. This makes them a
useful standard for testing deep learning models in real-
world farming situations. This dataset is meant to help re-
searchers study how to tell the difference between crops
and weeds, how to use transfer learning, and how to au-
tomate precision weeding, especially for legume species
that don't get a lot of attention. For strong segmentation
models in UAV imagery, high-quality annotation is a must
because changes in lighting, soil background, and veg-
etation that is very close together make labels less certain.
Color-space preprocessing, especially HSV transforma-
tion, is often used to make it easier to separate vegeta-
tion and soil and to create consistent initial masks before
manual refinement. When combined with morphological
filtering and annotator verification, HSV-based pipelines
lower the amount of variation between annotators and
speed up the process of curating large orthomosaics [13,
14]. Recent studies have integrated color indices (such
as ExG and NDVI, where multispectral sensors are acces-
sible) with superpixel and clustering methodologies (for
instance, LAB-ab K-means) to generate dependable pseu-
do-masks that annotators subsequently refine, enhanc-
ing overall annotation quality and facilitating improved
model generalization. [15, 17].

The U-Net family remains the preeminent framework
for pixel-wise segmentation in agricultural applica-
tions, owing to its encoder-decoder architecture and
skip connections that maintain intricate spatial details
[18], [19]. But baseline U-Net can have trouble with
long-range context and fine boundary delineation
when crops and weeds have similar spectral signatures
or when there are small weeds. Two distinct trends
have manifested in research from 2023 to 2025:

(1) Adding attention and multi-scale context mod-
ules (SE, ECA, CBAM, ASPP, MGA) to U-Net variants has
always improved mean loU and boundary F1. Some
examples are Coordinate Attention UNet, U-MGA, MSF-
CA-Net, and Dilated Multi-Scale Attention UNet [20-23].

(2) Hybrid and transformer-based encoder designs,
like Visual Mamba UNet, SSMR-Net, and Dual-Task En-
hanced UNet, get the big picture while keeping the
small details, which makes them work better on hard
UAV datasets [24-27].

Additionally, lightweight U-Net variants and ortho-
mosaic-aware pipelines have been suggested to pre-
serve real-time inference capabilities on embedded
hardware like NVIDIA Jetson and Xavier platforms,
guaranteeing their appropriateness for precision agri-
culture applications [19, 25].

Spatial attention, which explicitly models the "where"
to look, has been very useful for UAV agricultural imag-
ery, where standard convolutions often get confused
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by background noise and changes in lighting. Recent
agricultural segmentation studies [25, 26, 28-31] have
shown that spatial attention modules (either on their
own or as part of hybrid attention like CBAM) make
it easier to find small objects and separate classes in
dense canopies. Based on these ideas, the proposed
UNET-SA adds an efficient spatial attention (SA) block
to the U-Net decoder to selectively boost crop/weed
discriminative regions while lowering irrelevant back-
ground activations. This design uses HSV-assisted an-
notation for cleaner supervision and keeps the model
small for practical UAV/edge deployment.

Finally, strict benchmarking is necessary to show real
progress. Modern comparative studies usually use mloU,
mPA (mean pixel accuracy), boundary F1, inference
speed (FPS or ms/image), and parameter/FLOP budgets
to compare models on UAV and field datasets. To vali-
date UNET-SA, we employ the same methodology and
conduct comparisons against baseline U-Net, UNet++,
Deeplabv3+, SegFormer, Swin-UNet, and specific light-
weight U-Net variants on the new pigeon pea dataset
and on standard public datasets where relevant. This
comparative evaluation measures the benefits of spatial
attention and high-quality HSV-enhanced annotations,
situating UNET-SA within the latest developments in
attention-driven crop-weed segmentation.

3. MATERIALS AND METHODS

3.1. DATASET DESCRIPTION

The Pigeon Pea dataset utilized in this research com-
prises 1,727 RGB images of crops and weeds, gathered
from three separate agricultural fields in the Vidarbha
region of India, encompassing areas of 1.62 ha, 1.24 ha,
and 1.46 ha, respectively. We surveyed each field on
two consecutive days to make sure that the light, weed
density, and crop growth stages were all different. The
dataset includes pigeon pea plants at different stages
of their life cycle, which gives it a lot of variety in terms
of appearance and canopy coverage.

We took pictures with both a smartphone camera
(1,634 pictures) and a DJI Mavic Air 2S drone (93 pic-
tures). The drone took pictures from 20 cmto 1 m above
the ground, and the handheld pictures were taken
from 10 to 30 cm above the ground. GPS coordinates
were used to mark the edges of the fields, and there
was always at least a 2 m gap between each frame to
make sure that no one plant instance was recorded
more than once. This gets rid of redundancy and makes
sure that each session has its own sample.

To keep data from leaking, the dataset was split up
by field. Seventy percent of the images were used for
training, ten percent for validation, and twenty percent
for testing. This made sure that each subset was fairly
represented. This strategy makes sure that images that
are close in time or space don't show up in more than
one subset, which makes the generalization test fair.
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We used polygonal masks to manually label each im-
age into three groups: crop, weed, and background.
The average class distribution was 8.68% background,
7.39% crop, and 83.93% weed. This is what you would
expect to see in a real field with a moderate imbalance.
The dataset has enough variation to test how well the
proposed segmentation models work in different natu-
ral situations. Table 1 shows a summary of the day-by-
day image collection details, and Fig. 1 shows some
sample images of crops and weeds.

Fig. 1. Crop and Weed Images

Table 1. Dataset Description

Date Capturing Device Resolution
16t July 2023 Mobile Camera 2016x4480 and 4480x2016
17t July 2023 Mobile Camera 2016x4480 and 4480%x2016
18t July 2023 Mobile Camera 2016x4480 and 4480x2016
19t July 2023 Drone 5472x3648
20" July 2023 Mobile Camera 2016x4480 and 4480x2016
22" July 2023 Mobile Camera 2016x4480 and 4480x2016

Total

3.2. DATASET PREPROCESSING

The raw images have different resolutions, such as
2016x4480, 4480x2016, and 5472x3648. Noise in imag-
es is when pixel values change randomly, which makes
the image look worse. It can happen when an image
is taken or sent. Noise in pictures can make edges,
textures, and object boundaries look different, which
makes it harder to find useful patterns. Deep learning
models can get more useful information from clean
images. When using deep learning to analyze images,
steps like noise reduction, normalization, and resizing
are very important for getting reliable and consistent
results. Below are the steps taken to prepare the sam-
ples that were collected.

- Noise removal: An important way to process im-
ages that can be used alone or with other meth-
ods. There are many ways to get rid of noise in an
image. One way to get rid of noise is to find it with
other information and then use the best filtering
algorithms that don't hurt the picture quality and
make it smoother for analysis. This work used a
Gaussian filter to get rid of noise.

- Image normalization: Image normalization chang-
es the range of pixel intensities, which speeds up
execution. There is one channel and 0-255 pix-
els of intensity in grayscale images. Normaliza-
tion changes intensity from 0 to 1. Normalization
makes the intensity go from 0 to 1. There are three
channels in an RGB image, and the pixel intensi-
ties range from 0 to 255. This changes the range of
pixel intensities for all three channels from 0 to 1.

«  Changing the size of an image: A mobile camera
and a drone took pictures at 2016 x 4480, 4480 x
2016, and 5472 x 3648 pixels. Before this stage, all
of the pictures are made smaller to 640 by 640.

Number of Images Training Validation Testing

137 96 14 27
422 295 43 84
440 308 44 88

93 65 9 19
256 179 26 51
379 265 28 76

1727 1208 174 345

3.3. DATASET ANNOTATION AND MASK
GENERATION

Deep learning architecture uses supervised learn-
ing for training, where a labeled dataset is needed to
learn the probability distribution. The images after
preprocessing are required to be labeled at the pixel
level, where each pixel will be classified into one of the
three categories (background, crops, and weeds). For
the task of annotation, we have used Roboflow. The da-
taset is uploaded to a server, and images are annotated
using the smart polygon tool. After annotation, the im-
age annotation file is downloaded in YOLOv8 format
for further use.

As the Roboflow online platform provides many tools
for annotation, it is selected for the annotation. Among

different tools of annotation, the polygon tool is
selected due to the shape of size of the weed. Each
image is annotated and contains three classes, i.e.,
Background, Crop, and Weed. After the completion
of annotation of all the images, the annotation file is
downloaded in JSON format. But semantic segmenta-
tion models require mask images for training. The JSON
file is read, and different mask images are generated.
The steps followed for the generation of mask files are
given in Algorithm 1.

Algorithm 1. Generation of Mask images from
JSON Annotations file

Input: JSON annotation file, Image dimensions
Output: Mask images corresponding to annotated
images

1. Load the JSON annotation file.

2. For each annotated image in the JSON file:

2.1. Extract the image filename and dimensions.
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2.2. Create a blank mask image with all pixel
values set to 0 (background).

2.3. Foreach annotated object in the image:
Extract polygon coordinates and class label.

Assign a unique integer value to the class
(e.g., 0: Background, 1: Crop, 2: Weed).
c. Draw the polygon on the mask using the
assigned class value.
2.4. Save the generated mask image with the
same filename as the original image.

3.4. MASKIMPROVEMENT USING HSV
COLORSPACE TRANSFORMATION

Algorithm 2 offers a methodical strategy for enhanc-
ing manually annotated segmentation masks through
the utilization of the Hue-Saturation-Value (HSV) color
space. The main purpose of this algorithm is to make
the annotated masks more accurate by highlighting a
range of green color components. These usually stand
for plants like crops and green weeds in pictures of
farms. During manual annotation, small weeds or areas
that are only slightly green are often incorrectly labeled
as background. This automated refinement process is
needed to fix this.

The algorithm starts by reading the RGB image and
the mask that was manually marked up. The OpenCV
function cv2.cvtColor then changes the RGB image
into the HSV color space. The HSV representation is bet-
ter because it separates color information (hue) from
brightness (value), which makes it more stable when
the lighting changes or when there are shadows, which
is common in field conditions.

Then, using the predefined green color range with
lower bounds (30, 40, 40) and upper bounds (90, 255,
255), the HSV image is thresholded to make a binary
mask. The Mgreen mask separates the areas of vegeta-
tion that correspond to crops and weeds. It does a great
job of capturing the different shades of green that can
be found in natural agricultural scenes.

Then, a copy of the green mask is set up as the bet-
ter mask. Setting the pixel values of non-green ar-
eas that were wrongly marked as vegetation in the
manual mask to background (0) fixes the problem.
On the other hand, areas marked as green are kept
or improved based on the original annotated mask,
making sure that both crop and weed areas are still
shown correctly. This step also helps bring back small
or subtle weed patches that were previously thought
to be background.

Finally, the improved mask output saves the refined
mask, which makes it easier to tell where vegetation
ends and starts and cuts down on mistakes in the an-
notations. This improvement makes the training data
cleaner and more accurate, which makes the segmen-
tation model work better during training and evalu-
ation.
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Algorithm 2. Mask Improvement Using HSV Color
Space Transformation

Input: RGB image |_rgb, manually annotated mask
M_annotated, green color thresholds: lower green
(30, 40, 40), upper green (90, 255, 255)

Output: Improved mask M_improved
1. Read the input RGB image I_rgb and manually
annotated mask M_annotated.

2. Transform the RGB image to HSV color space:
cv2.cvtColor(l_rgb, cv2.COLOR_BGR2HSV)

3. Create a binary mask for the green region:
cv2.inRange
(I_hsv, lower_green, upper_green)

4. Initialize M_improved as a copy of M_green.

5. Modify the background in M_improved:
M_improved[(M_green == 0) &
(M_annotated !=0)] =0

6. Preserve non-background regions from
M_annotated in M_improved:
M_improved[(M_green !=0)] =
M_annotated[(M_green !=0)]

7. Save the improved mask.

3.3. UNET ARCHITECTURE

Deep learning architecture especially intended for se-
mantic segmentation problems is the U-NET model, par-
ticularly in biomedical image segmentation, but it has
proven effective in many domains, including agricultural
applications like crop and weed detection. For seman-
tic segmentation, the UNET model is trained to distin-
guish between different classes in images, such as crops,
weeds, and background. The architecture consists of
two primary parts: the encoder and the decoder. The en-
coder takes the input image, stores its context, and then
uses that information to extract features by progres-
sively reducing the spatial dimensions, which helps the
model learn higher-level representations. In contrast, the
decoder restores the spatial resolution by up-sampling
the feature maps, ultimately generating pixel-wise class
predictions for the input image. The UNET architecture
features skip connections that link corresponding lay-
ers between the encoder and decoder components. The
implementation of skip connections allows the model
to preserve detailed spatial information from preceding
layers, which is essential for accurately segmenting ob-
jects at a pixel level. For crop-weed semantic segmen-
tation, this means the model can precisely differentiate
between crops, weeds, and the background, even when
these objects are nearby or share similar textures. The ar-
chitecture of basic UNET is provided in Fig. 2.

3.3 SPATIAL ATTENTION MECHANISM

The Spatial Attention (SA) module focuses on the
most important spatial regions in the feature maps. It
generates an attention map that highlights important
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spatial regions by suppressing irrelevant or background
information. This is accomplished by applying both av-
erage pooling and Max Pooling along the channel axis.
Both the pooling operations reduce the size of input
feature maps into two 2-D maps, which detect comple-
mentary contextual information. Max pooling detects
the most important regions, and average pooling fo-
cuses on the overall distribution of feature maps across
the channels. The output of two pooling operations is
concatenated. Then the concatenated map is given in-
put to a convolutional layer having a kernel size of 7x7
to combine pooled information and find spatial depen-

dencies. Next, the output of the convolution is passed
through the sigmoid function, which produces values in
the range of 0 to 1, which is the spatial attention mask.
The value 1 represents more important regions, and the
value 0 corresponds to less important regions.

Lastly, the spatial attention mask is multiplied by
input feature maps, which helps to highlight more im-
portant spatial regions and to reduce the effect of less
important spatial regions. In this way, spatial attention
improves the feature representation and increases the
model’s accuracy of predictions. The SA module is rep-
resented in Fig. 3.

= Conv 3x3, RelLU
& Max Pooling (2x2)
4 Up Sampling (2x2)
) Skip Connections
= Conv 1x1

Fig. 2. Basic UNET Architecture

HxWxC

HxWx1 HxWx2 HxWx1
HxWxC
Average
- Pooling
iy -l
/' 7x7
Max
Pooling
Input
Feature =~ —— o
Map

@ Concatenation SigmoidFunction (5) Elementwise Multiplication

Fig. 3. Architecture of Spatial Attention Module

3.4. PROPOSED METHODOLOGY

In this section, we discuss the proposed methodol-
ogy named UNET with Spatial Attention (UNET-SA).
The UNET-SA is an enhanced version of the traditional
UNET architecture, incorporating spatial attention

mechanisms to improve semantic segmentation per-
formance. The steps in the proposed methodology
is given the Fig. 4. The images are acquired from the
fields using a drone and a smartphone camera. Then
the images are annotated using the polygon tool of the
Roboflow platform. Then the JSON annotations are ex-
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tracted. As UNET requires mask images, they are gener-
ated using the JSON annotations. For mask generation,
algorithm 1 is used.

The generated mask has human annotation errors.
To refine the mask further, the image is converted to
HSV colorspace. Then the green part(usual crop and

weed) is extracted from the image using a range of
green color(lower green (30, 40, 40), upper green (90,
255, 255) in HSV color space. Using the earlier-gener-
ated mask and image with only the green part, a new
refined mask is generated. The detailed steps are pro-
vided in Algorithm Il

Image Acquisition ( Annotate )

Extract Generate
using Droneand ——> > JSON i
Smartphone Camera using Annotations mask
s ~ Generate
image from Green Part
> —_— —
RGB to HSV from the ‘ Refined ‘
Colorspace image Mask
_ Jl
Traini 5
— Image ‘ Tanmng Trained PIredlded
Dataset Preprocessing > UNET-SA Model —_— odel ‘ mage

/ 7a\

Image Image
Resizing

Normalization

) [(= H

A

RGB
Image

Fig. 4. Proposed methodology

{ Noise

Removal

In Fig. 5, it can be observed that the annotation of
images is improved after the HSV color transformation.
The first image is the sample input image, the second
image is a mask generated using Algorithm I, and the
third image is a mask generated using Algorithm II. It
can be observed that Fig. 5(c) is more refined and ac-
curate than Fig. 5(b) in terms of object detection and
segmentation.

()

Fig. 5. Mask improvement, (a) Input Image, (b)

Mask generated using JSON file after applying

Algorithm-I, (c) Improved mask generated after
applying Algorithm-Il

He UNET model follows the encoder-decoder struc-
ture with skip connections, making it well-suited for
multi-class segmentation. It has an encoder contain-
ing four convolutional blocks, each followed by a max-
pooling layer to progressively reduce spatial dimen-
sions while increasing feature richness. The spatial at-
tention modules are applied after each encoder block,
helping the network focus on discriminative regions in
the image, which is particularly useful for complex seg-
mentation tasks such as distinguishing between crops
and weeds in dense field environments. The bridge
layer at the bottleneck stage also incorporates a spatial

Volume 17, Number 4, 2026

attention module, ensuring that the most critical high-
level features are retained before upsampling begins.
The decoder progressively reconstructs the spatial res-
olution using transposed convolutions, with skip con-
nections reintroducing fine-grained details from the
encoder. Since the encoder's feature maps are already
enhanced through spatial attention, the skip connec-
tions further improve boundary precision and segmen-
tation accuracy.

A. UNET-SA model

The SA module helps the model focus on relevant
regions, making it particularly effective in agricultural
segmentation tasks where objects may be overlapping,
occluded, or highly similar in appearance. This results
in better object delineation, improved segmentation
accuracy, and robustness to background noise. By in-
tegrating spatial attention within the UNET framework,
UNET-SA achieves superior performance in tasks like
automated weed detection and crop segmentation,
enhancing precision agriculture applications.

4. RESULTS AND DISCUSSION

For all the experiments performed the hyperparam-
eters used are learning rate is 0.001, epochs are 100,
optimizer adam, loss function is cross entropy, batch
size is 2, and image height and width is 640.

4.1. PERFORMANCE EVALUATION METRICS

To evaluate the performance of the proposed model,
testing is required. Various metrics are used to evalu-
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ate the model. The selection of evaluation metrics is
dependent on the specific criteria. If the dataset has a
uniform distribution of samples among all the classes,
then accuracy is used for evaluation. For a non-uniform
distribution of samples among all the classes, recall,
precision, and F1-score are useful. Precision and recall
are used to detect the false positive rate and false neg-

ative rate, respectively. To balance both the rates, the
harmonic mean is calculated, and it is known as the F1-
score. Intersection over union (loU) and mean loU are
used in the case of segmentation tasks. loU measures
how much the prediction matches the ground truth
mask. It is calculated per-class. Mean loU is nothing but
the mean of loU of all the classes.

Output
Segmented
Image

1024

512
B 256

o “‘l
1024 o B
: £8

> >

1024

= Conv 3x3, ReLU
[l Spatial Attention
¥ Max Pooling (2x2)
4 Up Sampling (2x2)
> Skip Connections
= Conv 1x1

Fig. 6. UNET architecture with Spatial Attention module integrated into the encoder and bridge layer

4.2. EXPERIMENTAL RESULTS OF SOTA
MODELS WITHOUT MASK ENHANCEMENT

Theimages collected using adrone and mobile camera
are annotated using Robolflow. Additionally, the dataset
is used to select and train various SOTA models used for
semantic segmentation. In terms of accuracy, precision,
recall, F1-score, and mean loU, the UNET model outper-
forms other state-of-the-art models, demonstrating its
effectiveness in semantic segmentation tasks. It attains
an accuracy of 88.26%, a precision of 88.29%, a recall of
88.26%, an F1-score of 88.23%, and a mean loU of 76.35.
It can be observed from Table 4 that UNET performs bet-
ter for all the performance metrics.

The per-class performance of all the SOTA models is
analyzed, which is given in Table 5. It can be observed
that UNET results are much better than those of other
models. The highest F1-score, loU, is 89.09 %, 82.46 %
respectively, for the crop class, which is attained by the
UNET. For the weed class, the highest F1-score and loU
are attained by the UNet++ model, which are 81.56%

and 71.28%, respectively. For other performance met-
rics, the values attained by the UNET model are much
closer to the highest value. The UNet++ is the variant
of UNET. After going through all the results, it can be
inferred that the UNET and its variant UNET perform
better for most of the performance metrics.

Table 2. Overall Performance of SOTA models
without mask enhancement

I;I::;I Accuracy Precision Recall F1 Score N::;“
Unet 0.8826 0.8829 0.8826 0.8823 0.7635
Unet++ 0.8804 0.8809 0.8804 0.8804 0.7603
MAnet 0.8793 0.8794 0.8793 0.8792 0.7582
Linknet 0.8765 0.8781 0.8765 0.8767 0.7466
FPN 0.8760 0.8788 0.8760 0.8763 0.7556
PSPNet 0.8754 0.8777 0.8754 0.8757 0.7460
PAN 0.8185 0.8249 0.8185 0.8156 0.6088

DeepLabV3 0.8736 0.8760 0.8736 0.8738 0.7455
DeeplLabV3+  0.8798 0.8802 0.8798 0.8799 0.7613
UPerNet 0.8745 0.8775 0.8745 0.8749 0.7488
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Table 3. Per-class Performance of SOTA models
without mask enhancement

m‘::eel Class Accuracy Precision Recall S:;;e loU

- Background 0.8871 0.8510 0.8871 0.8597 0.7690
é Crop 0.8909 0.9045 0.8909 0.8909 0.8246
Weed 0.7692 0.8619 0.7692 0.8027 0.6967

+ Background 0.8408 0.8761 0.8408 0.8481 0.7539
% Crop 0.8928 0.8844 0.8928 0.8825 0.8142
= Weed 0.8202 0.8286 0.8202 0.8156 0.7128
= Background 0.8761 0.8539 0.8761 0.8548 0.7623
Z Crop 0.8622 0.9171 0.8622 0.8786 0.8079
= Weed 0.7996 0.8390 0.7996 0.8097 0.7044
40-5 Background 0.8296 0.8829 0.8296 0.8454 0.7492
% Crop 0.8729 0.8762 0.8729 0.8635 0.7842
- Weed 0.8361 0.8017 0.8361 0.8110 0.7064
Background 0.8206 0.8898 0.8206 0.8443 0.7469

é Crop 0.8864 0.8872 0.8864 0.8783 0.8098
Weed 0.8499 0.7957 0.8499 0.8133 0.7101

o Background 0.8134 0.8880 0.8134 0.8354 0.7376
é Crop 0.8567 0.9130 0.8567 0.8753 0.8015
o Weed 0.8239 0.8058 0.8239 0.8047 0.6989
Background 0.8992 0.7956 0.8992 0.8314 0.7297

% Crop 0.7997 0.6746 0.7997 0.6825 0.5624
Weed 0.5975 0.8270 0.5975 0.6659 0.5342

% Background ~ 0.8113 0.8758 08113 0.8324 0.7342
7‘: Crop 0.8852 0.8682 0.8852 0.8687 0.7942
§ Weed 0.8485 0.7953 0.8485 0.8127 0.7080
i Background 0.8458 0.8734 0.8458 0.8496 0.7547
-_ni Crop 0.8869 0.8979 0.8869 0.8865 0.8213
§ Weed 0.8255 0.8162 0.8255 0.8120 0.7079
ko] Background 0.8191 0.8882 0.8191 0.8419 0.7441
?t, Crop 0.8551 0.9044 0.8551 0.8660 0.7980
= Weed 0.8476 0.7915 0.8476  0.8097 0.7044

4.3. EXPERIMENTAL RESULTS ON SOTA
MODELS AFTER MASK ENHANCEMENT

The images collected using a drone and mobile cam-
era are annotated using Robolflow. After annotation,
HSV color transformation is used to remove the manual
annotation errors. Also, different SOTA models for se-
mantic segmentation are selected and trained on the
newly generated dataset. Among all the SOTA models,
UNet performs better. It attains an accuracy of 97.51%,
a precision of 97.53%, a recall of 97.51%, an F1-score of
97.51%, and a mean loU of 92.87%. It can be observed
from Table 6 that UNET performs better for all the per-
formance metrics.

The per-class performance of all the SOTA models is
analysed, which is given in Table 7. It can be observed
that UNET results are much better than those of oth-
er models. The highest accuracy of 95.25%, recall of
95.25%, F1-score of 94.77%, and loU of 91.07% for the
crop class are attained by the UNET.

The highest Accuracy of 95.72 %, Recall of 95.72%,
F1-score of 94.88%, and loU of 90.51 % for the weed
class, which is attained by the UNET. For other perfor-
mance metrics, values attained by the UNET model are
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much closer to the highest value. After going through
all the results, it can be inferred that the UNET performs
better for all the performance metrics except precision.

Table 4. Overall Performance of SOTA models after
mask enhancement

I;I:;I‘eel Accuracy Precision Recall F1 Score N::;"
Unet 0.9751 0.9753 0.9751 0.9752 0.9287
Unet++ 0.9740 0.9740 0.9740 0.9740 0.9268
MAnet 0.9728 0.9727 0.9728 0.9727 0.9195
Linknet 0.9722 0.9723 0.9722 0.9723 0.9228
FPN 0.9474 0.9474 0.9474 0.9474 0.8811
PSPNet 0.9299 0.9303 0.9299 0.9301 0.8501
PAN 0.9092 0.9092 0.9092 0.9081 0.7793
DeepLabV3 0.9295 0.9292 0.9295 0.9292 0.8469
DeeplabV3+  0.9502 0.9502 0.9502 0.9502 0.8855
UPerNet 0.9520 0.9525 0.9520 0.9522 0.8914

Table 5. Per-class performance of SOTA models
after mask enhancement

I\I\I‘l:'c:‘eel Class Accuracy Precision Recall S:;;e loU
- Background 0.9809 0.9889 0.9809 0.9849 0.9703
é Crop 0.9525 0.9450 0.9525 0.9477 0.9107

Weed 0.9572 0.9410 0.9572 0.9488 0.9051

+ Background 0.9847 0.9825 0.9847 0.9835 0.9677
‘é Crop 0.9369 0.9598 0.9369 0.9472 0.9090
= Weed 0.9466 0.9503 0.9466 0.9483 0.9036
= Background 0.9859 0.9818 0.9859 0.9838 0.9683
Z Crop 0.9338 0.9462 0.9338 0.9381 0.8943
= Weed 0.9347 0.9538 0.9347 0.9435 0.8959
45 Background 0.9796 0.9855 09796 0.9825 0.9658
% Crop 0.9489 0.9444  0.9489 0.9456 0.9065
- Weed 0.9519 0.9362 09519 0.9436 0.8961
Background 0.9595 0.9606 0.9595 0.9600 0.9234

E Crop 0.9435 0.9398 0.9435 0.9408 0.8983
Weed 0.8978 0.9013 0.8978 0.8992 0.8215

- Background 0.9362 0.9510 0.9362 0.9434 0.8936
é Crop 0.9351 0.9267 0.9351 0.9297 0.8784
e Weed 0.8751 0.8703 0.8751 0.8721 0.7784
Background 0.9591 0.9212 0.9591 0.9393 0.8864

é Crop 0.8782 0.8206 0.8782 0.8264 0.7384
Weed 0.7823 0.8823 0.7823 0.8276 0.7132

% Background ~ 0.9479 0.9397 09479 09434 0.8936
7‘: Crop 0.9502 0.9160 0.9502 0.9317 0.8814
g Weed 0.8332 0.9012 0.8332 0.8628 0.7658
5 Background 0.9629 0.9619 09629 0.9623 0.9277
-_'i Crop 0.9498 0.9375 0.9498 0.9427 0.9014
§ Weed 0.8928 0.9138 0.8928 0.9026 0.8273
k] Background 0.8191 0.8882 0.8191 0.8419 0.7441
E Crop 0.8551 0.9044 0.8551 0.8660 0.7980
= Weed 0.8476 0.7915 0.8476  0.8097 0.7044

4.4. PERFORMANCE IMPROVEMENT AFTER
MASK ENHANCEMENT

The HSV color transformations are used to remove
the manual annotation errors. Both crops and weeds
mostly possess a green color. Also, the variance of
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the size of weeds is very high. Due to this, annotating
weeds is a very challenging task. HSV transformation
addresses this issue effectively.

This is how the two datasets, Dataset-1 and Data-
set-2, are made. Images and mask images made with
Algorithm-I are in Dataset-1. Dataset-2 has images and
mask images that were made with Algorithm-Il.

The performance comparison in Table 6 shows that
the mask enhancement technique made a big dif-
ference in the performance of many state-of-the-art
(SOTA) semantic segmentation models. Among the
architectures tested, PAN had the best overall per-
formance, with an accuracy of 11.08%, a precision of
10.22%, a recall of 11.08%, an F1 score of 11.33%, and a
mean loU of 28.01%. This shows that it is better at using
refined boundary information from enhanced masks.
The LinkNet and U-Net++ models also showed big
improvements, with mean loU values of 23.60% and
21.90%, respectively. This shows that encoder-decoder
architectures with efficient skip connections benefit a
lot from better mask delineation.
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Fig. 7. Percentage improvement in performance of
SOTA models after using mask images generated
using Algorithm-II

The improvements seen in all models show that mask
enhancement helps with better feature localization
and boundary refinement, especially when the origi-
nal segmentation masks had rough or noisy annota-
tions. Traditional models like U-Net and MAnet showed
steady but moderate improvements in performance.
This suggests that these architectures do a good job
of capturing contextual information, but their decod-
ers may not be able to take full advantage of improved
edge precision because they are not very deep. On the
other hand, models like DeepLabV3 and PSPNet, which
use dilated convolutions and pyramid pooling to com-
bine context, saw smaller improvements.

This may be because they rely on large receptive
fields instead of fine-grained spatial accuracy, which
makes them less sensitive to mask-level changes.

In general, the results show that mask enhancement
techniques can greatly improve segmentation qual-
ity, especially for architectures that rely on multi-scale
spatial correspondence between the encoder and de-
coder stages. This finding emphasizes the significance
of high-quality annotation refinement as an adjunct
to model optimization, which can directly impact the
learning of object boundaries and improve the dis-
criminative ability of deep segmentation networks in
intricate agricultural imagery.

Table 6 Performance improvement of SOTA models
after Mask Enhancement

m::‘eel Accuracy Precision Recall F1 Score N::;n
Unet 10.4790 104633 10.4790 10.5247 21.6467
Unet++ 10.6373 10.5689 10.6373  10.6255 21.9041
MAnet 10.6330 10.6087 10.6330 10.6350 21.2740
Linknet 10.9201 10.7346  10.9201 10.8957 23.6009
FPN 8.1502 7.8027 8.1502 8.1175 16.6078
PSPNet 6.2280 5.9926 6.2280 6.2060 13.9532
PAN 11.0813 10.2198 11.0813  11.3373 28.0104
DeepLabV3 6.4047 6.0793 6.4047 6.3428 13.6096
DeeplLabV3+ 8.0101 7.9415 8.0101 7.9887 16.3103
UPerNet 8.8652 8.5419 8.8652 8.8315 19.0327

4.5. PERFORMANCE COMPARISON OF UNET
AND UNET-SA MODEL ON PIGEON PEA
DATASET

The spatial attention module improves the perfor-
mance of UNET. It can be observed from Table 7 that
the performance of the UNET-SA model is superior
to the UNET model for all the performance metrics.
The SA module focuses on the most important part,
which helps in improving performance. As per Table
7, the UNET-SA model attains an accuracy of 98.53%,
a precision of 98.54%, a recall of 98.53%, an F1-score of
98.53, and a mean loU of 94.49%. The performance of
the UNET-SA model is improved for all the metrics. The
accuracy, precision, recall, F1-score, and mean loU are
increased by 1.04%, 1.04%, 1.04%, 1.04%, and 1.74%,
respectively.

Table 7. Performance comparison of UNET and
UNET-SA models on Pigeon pea Dataset

Model Accuracy Precision Recall F1Score Mean
Name loU
Unet 0.9751 0.9753 0.9751 0.9752 0.9287

UNET-SA 0.9864 0.9854 0.9853 0.9853 0.9449

The confusion matrix and training and validation loss
curves are given in Figs. 8 and 9. The training and vali-
dation accuracy are above 95% and the training and
validation loU are above 90%. Also, all the losses are
below 0.1.
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Fig. 8. Confusion Matrix of the UNet-SA
model(proposed)
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Fig. 9. Training and Validation curves for the UNet-
SA model(proposed). (a) Training vs Validation
Accuracy, (b) Training vs Validation loss, (c) Mean
Training loU vs Mean Validation loU, 9(d)Training vs
Validation loU Loss

4.6. PERFORMANCE COMPARISON OF UNET
AND UNET-SA MODEL ON THE
CROPANDWEED DATASET [32]

The CropAndWeed dataset [32] has 111,953 images in
all. There are 74 classes in all. 16 of them are for the types
of crops, like sugar beets, soybeans, sunflowers, pota-
toes, peas, beans, pumpkins, maize, and so on. The other
58 classes are types of weeds like grasses, knotweed,
goosefoot, thistle, and others. The dataset includes a
wide range of soil types, plant types, weed types, and
more because it was collected from many different plac-
es. This benchmark dataset is used to compare the origi-
nal UNet and the proposed model in terms of MeanloU,
accuracy, precision, and other metrics.

Table 8. Performance comparison of UNET and
UNET-SA models on the CropAndWeed Dataset

L Accuracy Precision Recall F1 Score Mean
Name loU
Unet 98.49 98.40 98.49 98.41 51.81

UNET-SA 98.81 98.79 98.81 98.80 55.79

The CropAndWeed dataset has a class imbalance and
a pixel distribution that makes the mean loU low but the
accuracy high. The model can get a high accuracy by
correctly classifying these big areas because most of the
pixels are in the background or the main crop areas. But
mean loU treats all classes the same and is more likely to
make mistakes in smaller or less common weed classes.
loU also punishes mistakes on the boundaries and par-
tial mis-segmentations, which are common in fine plant
structures. So, even though the model's pixel-level accu-
racy is very high, its segmentation consistency across all
classes is still lower than it could be.

4.7. DISCUSSION

The Pigeon Pea dataset is used in this work. The datas-
et is collected from three different fields, which have dif-
ferent growth stages of the crop of Pigeon pea, soil con-
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ditions, and types of weeds. Also, the dataset is collected
on six different days. The lighting conditions during data
collection were different. These factors add variability to
the dataset. The model training is carried out on a high-
end workstation. Various SOTA models used for seman-
tic segmentation are employed. These SOTA models are
efficient and resource-intensive, and are selected due to
their advantages for attaining the set objectives.

The images captured through a smartphone and a
drone are annotated using Roboflow. The annotations
have errors. To reduce these errors, RGB images are
converted to the HSV color space for efficient detection
of crops and weeds, which are green in color. The two
datasets are created, one without and one with HSV
color transformation, named Dataset-1 and Dataset-2.
The SOTA models are trained on both datasets. The
performance on the dataset with HSV transformation is
improved. Also, on both datasets, UNET has better per-
formance compared to all the SOTA models.

On Dataset-1, UNET achieves better performance
compared to all the SOTA models. It attains an accuracy
of 88.26%, a precision of 88.29%, a recall of 88.26%, an
F1-score of 88.23%, and a mean loU of 76.35%. On Da-
taset-2, it attains an accuracy of 97.51%, a precision of
97.53%, a recall of 97.51%, an F1-score of 97.52%, and a
mean loU of 92.87. It can be concluded that due to HSV
color transformation, the masks' images are improved,
and annotation errors are reduced. With reduced er-
rors, models get trained better and perform better.

As UNET is performing better than all the SOTA mod-
els, it is selected for further improvement. To enhance its
performance, the spatial attention mechanism is inte-
grated, which helps in focusing on the most important
part of the image. The spatial attention mechanism is in-
tegrated in the encoder part. After each down-sampling
operation, the image is passed through the spatial at-
tention. Also, it is particularly effective in segmentation
tasks where objects may be overlapping, occluded, or
highly similar in appearance. The UNET-SA model attains
an accuracy of 98.64%, a precision of 98.54%, a recall of
98.53%, an F1-score of 98.53, and a mean loU of 94.49%.
The performance of the UNET-SA model is improved for
all the metrics. The accuracy, precision, recall, F1-score,
and Mean loU are increased by 1.04%, 1.04%, 1.04%,
1.04%, and 1.74%, respectively.

Table 9 shows how different U-Net architectures with
different attention mechanisms compare in terms of
performance. The evaluation metrics—accuracy, preci-
sion, recall, F1 score, and mean Intersection over Union
(mloU)—show how well each model can accurately sep-
arate crop and weed areas in field images.

U-Net-SA (U-Net with Spatial Attention) is the best of
all the variants. It has an accuracy of 98.64%, a precision
of 98.54%, a recall of 98.53%, an F1 score of 98.53%,
and a mean loU of 94.49%. These numbers are higher
than those of other U-Net models that use attention,
like U-Net-DA (Dual Attention) and U-Net-AT (Attention

Gate), which have Mean loUs of 92.68% and 89%91, re-
spectively.

The Spatial Attention (SA) mechanism, which focuses
on finding the most important spatial regions in the
feature maps by highlighting areas with a lot of texture
and spatial changes, is what makes U-Net-SA work so
well. This is especially helpful for separating crops from
weeds, since changes in the background soil, shad-
ows, and lighting can make it hard to see the edges of
plants. U-Net-SA effectively reduces irrelevant back-
ground noise and improves fine-grained boundary de-
tails by learning how to highlight discriminative spatial
locations. This leads to more accurate mask generation.

Table 9. Performance comparison of the proposed
model with other UNET models with attention

modules

Ll Accuracy Precision Recall F1Score Mean

Name loU

UNET-

CBAM 0.9417 0.9399 0.9417 0.9405 0.7848
UNET-DA 0.9802 0.9803 0.9802 0.9802 0.9268
UNET-ST 0.9642 0.9645 0.9642 0.9643 0.8558
UNET-RA  0.9666 0.9668 0.9666 0.9667 0.8599
UNET-AT 0.9751 0.9752 0.9751 0.9752 0.8991
UNET-SE 0.9592 0.9595 0.9592 0.9593 0.8348

UNET-

SCSE 0.8954 0.9039 0.8954 0.8881 0.6571
UNET-SA 0.9864 0.9854 0.9853 0.9853 0.9449

Other attention mechanisms, like SE (Squeeze-and-
Excitation) and CBAM (Convolutional Block Attention
Module), on the other hand, focus mostly on channel-
wise dependencies. This means they might miss small
spatial cues that are needed to tell the difference be-
tween crops and weeds that are overlapping or close
together. The same goes for U-Net-SCSE, which com-
bines spatial and channel attention by concatenating
them. It doesn't work as well (mean loU = 65.71%) be-
cause it might have too many parameters and doesn't
do a good job of feature fusion.

Even though U-Net-DA and U-Net-AT also work well,
they use more complicated attention aggregation,
which can make it harder to accurately locate small ob-
jects in space. The U-Net-SA variant, on the other hand,
strikes the perfect balance between model complexity
and feature enhancement. It focuses on vegetation pix-
els without slowing down the computer.

We also tested the UNET-SA model on the large Cro-
pAndWeed dataset, which has 111,953 images of 74
different types of crops and weeds. This was done to
see how well it could generalize. The proposed model
got 98.81% accuracy and a mean loU of 55.79% on this
benchmark, which was better than the baseline UNET
(accuracy =98.49%, Mean loU = 51.81%).The difference
between high accuracy and a lower mean loU is mostly
due to class imbalance, where large background ar-
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eas have more pixels than smaller weed classes, which
makes accuracy higher and loU lower. Still, the fact that
both metrics keep getting better shows that spatial at-
tention helps the model generalize better to different
types of fields, soils, and vegetation structures.

The results show that adding the Spatial Attention
mechanism to the UNET architecture greatly improves
the quality of semantic segmentation by making spa-
tial feature representation and boundary precision
stronger. The model is efficient and flexible, which
makes it a good choice for real-time crop-weed identi-
fication on portable loT devices like the Raspberry Pi or
Jetson Nano. But spatial attention also adds more pa-
rameters, which can make it easier to overfit on smaller
datasets and slightly increase the amount of compu-
tation needed during inference. Future research may
investigate Vision Transformer (ViT)-based encoders to
capture more intricate spatial dependencies and mul-
timodal data fusion (RGB + NIR) to improve the differ-
entiation between crops and weeds. Also, making fake
samples with generative adversarial networks (GANs)
could help with the lack of data and make the model
even better at generalizing.

4.8. LIMITATIONS AND SCALABILITY
CONSIDERATIONS

The proposed U-Net-SA model performs exception-
ally well on the Pigeon Pea dataset; however, its scal-
ability to various agricultural domains and unfamiliar
environments poses significant challenges. The da-
taset, despite being gathered from three separate
domains with differing growth stages, soil types, and
lighting conditions, may not comprehensively repre-
sent the diversity of actual agricultural ecosystems. As
a result, the model may not work as well in areas with
very different canopy structures, weed densities, or
background textures. Changes in the color of the soil,
the shape of the weeds, and the maturity of the crops
can affect the spectral properties of plants. This can
make it harder to segment them correctly when tested
outside of the current domain. The HSV color space
transformation does help with annotation consistency
and segmentation performance, but it only works well
for crops and weeds that are in the green color range.
This method might not work as well when there are a
lot of non-green crops, dead leaves, or dry weeds in
the field. This makes the model less flexible in other
agricultural situations. Another issue is that U-Net-SA's
computational scalability is limited because adding
spatial attention parameters makes training longer
and inference latency higher. This makes it hard to use
U-Net-SA on low-power loT devices for large-scale or
real-time deployments.

Synthetic data augmentation can help get around
these problems. Using Generative Adversarial Net-
works (GANSs) or diffusion-based models to create real-
istic images of crops and weeds can add a lot of differ-
ent field textures, lighting conditions, and plant shapes
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to the dataset. This would make the model more robust
to changes across fields and help prevent overfitting.
Also, domain adaptation methods and transfer learn-
ing can make scalability even better by making small
changes to the trained model for new areas or crop
types with little effort to annotate. Consequently,
forthcoming research ought to concentrate on utiliz-
ing synthetic augmentation and domain adaptation to
enhance the applicability of the U-Net-SA model for ex-
tensive precision agriculture in diverse field conditions.

5. CONCLUSION

A novel approach for detecting crops and weeds in Pi-
geon Pea fields by integrating a spatial attention mod-
ule into the UNET model is proposed in this work. The
proposed model attains an accuracy of 98.64%, preci-
sion of 98.54%, recall of 98.53%, F1-score of 98.53%,
and mean loU of 94.49%. The annotation errors are
minimized using the HSV color space. The performance
of SOTA models is improved on the dataset in which
annotations are transformed using the HSV colorspace.
The performance of all the SOTA models is improved
after HSV color transformation in all the performance
metrics. As UNET is performing better, it is selected,
and all the attention mechanisms are integrated into it.
After performance analysis, it is found that UNET with a
spatial attention mechanism is performing better.

The proposed UNET-SA model is also tested on the
large CropAndWeed dataset [32], which has 74 different
types of crops and weeds, to make sure it is even more
reliable. The model does better than the baseline UNET
(accuracy 98.49%, mean loU 51.81%) with an accuracy
of 98.81% and a mean loU of 55.79%. The high accuracy
and low mean loU show that there is class imbalance.
This is because dominant background pixels raise overall
accuracy, while the mean loU shows how well the seg-
mentation works across all classes. This shows that the
proposed model works well with a wide range of agricul-
tural datasets that are both diverse and complex.

We used images from three fields and six days to diver-
sify the dataset and reduce overfitting to demonstrate
that the algorithm can handle new data. The model
scored well on all assessment criteria on a test set not
used during training. While the UNET-SA model offers
advantages, it also presents certain limitations that need
to be addressed. These drawbacks impact the model's
generalizability and computational efficiency. Although
spatial attention enhances predictions, it introduces
characteristics that can exacerbate overfitting on da-
tasets with limited samples. This aspect of the model's
behavior needs to be carefully addressed to ensure ro-
bust performance. This increase in processing overhead
and inference latency due to spatial attention can affect
the model's real-time performance and computational
efficiency, necessitating optimization strategies for de-
ployment. The integration of vision transformers could
enhance the model's capacity to capture intricate de-
tails of different crops and weeds, potentially improving
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segmentation accuracy and feature representation in
agricultural imagery. Future research endeavors could
involve testing the proposed model with RGB+NIR data
to explore the synergistic benefits of combining visible
and near-infrared spectral information for improved
crop and weed segmentation accuracy. Also, we can add
synthetic data to the dataset using a generative adver-
sarial network (GAN) to alleviate data scarcity.
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