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Abstract – Crowd scene analysis has received a lot of attention recently due to a wide variety of applications, e.g., forensic science, urban 
planning, surveillance and security. In this context, a challenging task is known as crowd counting [1–6], whose main purpose is to estimate 
the number of people present in a single image. A multi-stream convolutional neural network is developed and evaluated in this paper, 
which receives an image as input and produces a density map that represents the spatial distribution of people in an end-to-end fashion. In 
order to address complex crowd counting issues, such as extremely unconstrained scale and perspective changes, the network architecture 
utilizes receptive fields with different size filters for each stream. In addition, we investigate the influence of the two most common fashions 
on the generation of ground truths and propose a hybrid method based on tiny face detection and scale interpolation. Experiments 
conducted on two challenging datasets, UCF-CC-50 and ShanghaiTech, demonstrate that the use of our ground truth generation methods 
achieves superior results.
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1. INTRODUCTION

The task of crowd counting is to estimate the number 
of people from a single RGB (red-green-blue) image. 
The problem has a significant impact on several appli-
cations, for instance, urban planning, forensic science, 
surveillance and security [2, 7–10]. The main challenge 
in this task is aggressive variation in the scale and per-
spective of people in the images. Therefore, it can be 
complicated to differentiate between the background 
and the people (Figure 1).

Initial approaches used more classical people de-
tection algorithms to directly count people in the im-
age. For instance, Idrees et al. [16] proposed to obtain 
a headcount by mixing several features. They used a 

combination of head detection based on a histogram 
of oriented gradient, handcrafted Fourier analysis and 
interest-point based counting, then processed the re-
sulting features with a multi-scale Markov random field. 
Similarly to other tasks in computer vision, handcrafted 
features often suffer from a decrease in accuracy when 
subjected to heavy variation in illumination, scale, se-
vere occlusion, perspective and distortion.

To overcome the limitations of handcrafted methods, 
the seminal work of Zhang et al. [17] proposed a multi-
ple stream neural network (MSNN) to estimate density 
maps. A density map represents the spatial distribution 
of people in an image, and it is more suitable for real-
life applications since it gives a notion of the people 
spatial distribution. The popularity of density maps has 
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grown in deep learning methods [3, 11–16], such that 
they have become the default option for the prediction 
of deep networks [3].

The main idea behind the MSNN is to specialize each 
stream at a specific person’s scale. Thus, each stream 
follows similar architecture, yet with different filter 
sizes. Therefore, the active field of each stream differs 
according to the scale it focuses on. Following the work 
developed by Zhang et al. [17], many other MSNN vari-
ations have been proposed [2, 7–10]. Moreover, various 
types of ground truth generation from density maps 
have been proposed, leading to a lack of consensus on 
which method is best. These generation methods can 
be categorized into fixed and variable kernel methods, 
as explained in Section 2.1.

Onoro et al. [8] proposed a variation of the MSNN, 
named the hydra CNN (HCNN). This network makes 
each stream more powerful by stacking more convo-
lutional layers than in the MSNN. The HCNN is based 
on the three-stream counting CNN (CCNN). The HCNN 
learns a mapping between image patches to their cor-
responding density maps, which differs from the MSNN 
since this is fully convolutional, such that it can handle 
random size images. The authors of the HCNN de-

signed the network to be scale-aware. Thus, the HCNN 
is fed with a pyramid of patches extracted at multiple 
scales, where each level of the pyramid is processed 
by a stream. Then, fully connected layers are used to 
join information of all streams. Finally, the prediction is 
a density map for the patch on top of the pyramid. To 
define the ground truth, they followed a fixed kernel 
fashion.

Another way to tackle the scale problem is to im-
prove the network to use various active fields. Thus, 
Boominathan et al. [7] proposed a deep learning frame-
work with two streams, one with deep architecture and 
the other with shallow architecture. The idea behind 
is that a deep stream and a shallow stream were used 
to capture both high-level semantic (face and body 
detectors) information and low-level fractures (blob 
detectors), respectively. Finally, they join the streams 
with a 1x1 convolution and upsample the images using 
bilinear interpolation, such that the output of the net-
work has the same size as the input. Furthermore, they 
proposed a multi-scale data augmentation technique 
to increase the training size. Their framework follows 
the ground truth with a fixed kernel fashion. It is worth 
mentioning that the number of streams decreased 
compared to other works [8, 17].

Fig. 1. Illustration of the scaling problem in crowd counting. The upper patch is a zoom of the background, 
whereas the lower patch is a zoom of the people. A challenging task is to differentiate the background from 

the people due to overlap and scale of the people.
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Onoro et al. [8] proposed a variation of the MSNN, 
named the hydra CNN (HCNN). This network makes each 
stream more powerful by stacking more convolutional 
layers than in the MSNN. The HCNN is based on the 
three-stream counting CNN (CCNN). The HCNN learns a 
mapping between image patches to their correspond-
ing density maps, which differs from the MSNN since 
this is fully convolutional, such that it can handle ran-
dom size images. The authors of the HCNN designed the 
network to be scale-aware. Thus, the HCNN is fed with a 
pyramid of patches extracted at multiple scales, where 
each level of the pyramid is processed by a stream. Then, 
fully connected layers are used to join information of all 
streams. Finally, the prediction is a density map for the 
patch on top of the pyramid. To define the ground truth, 
they followed a fixed kernel fashion.

Another way to tackle the scale problem is to im-
prove the network to use various active fields. Thus, 
Boominathan et al. [7] proposed a deep learning frame-
work with two streams, one with deep architecture and 
the other with shallow architecture. The idea behind 
is that a deep stream and a shallow stream were used 
to capture both high-level semantic (face and body 
detectors) information and low-level fractures (blob 
detectors), respectively. Finally, they join the streams 
with a 1x1 convolution and upsample the images using 
bilinear interpolation, such that the output of the net-
work has the same size as the input. Furthermore, they 
proposed a multi-scale data augmentation technique 

to increase the training size. Their framework follows 
the ground truth with a fixed kernel fashion. It is worth 
mentioning that the number of streams decreased 
compared to other works [8, 17].

Sam et al. [9] proposed a three-stream network with 
a switching module to decide which stream is better 
for the input images, named the switching CNN. Simi-
larly to the HCNN, it uses patches from the image as in-
put. Then, a stream classifier chooses the best stream to 
process the patch. Each independent stream is a CNN 
regressor with different receptive fields and fields of 
view, such that it focuses on a specific scale. The granu-
larity of input patches is important since it is desirable 
that each patch has a uniform scale distribution. How-
ever, this method may create some more specialized 
streams than others due to unbalanced scale data. 

To the best of our knowledge, no previous work based 
on the MSNN has analyzed the effects of the number of 
streams. Moreover, it is not common practice to evalu-
ate various ground truth generation methods. In this 
paper, we aim to extend our previous work [2] by doing 
a comprehensive ablation study of the MSNN, specifi-
cally by studying the effects of the number of streams. 
We also evaluate three different methods for density 
map generation from ground truth, two of them being 
the most common methods used previously. In addi-
tion, we introduce a new method based on face detec-
tion and scale interpolation.

Fig. 2. Comparison of ground truth generation using three different methods.
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2. RESEARCH METHOD

In this paper, we evaluate (i) ground truth construc-
tion from people’s positions, and (ii) MSNN variations 
with different numbers of streams. These two stages 
are explained in the following sections. 

2.1. GRouND TRuTH DENSITy MAP 
 CoNSTRuCTIoN

Crowd counting datasets provide images and po-
sitions (usually located in the heads) of each person. 
Based on these labels, a density map is created since 
it has been demonstrated [8–10, 17, 18] that such rep-
resentation is simple, yet effective to predict the num-
ber of people present in the scenes when using deep 
networks. The purpose of density maps is to describe 
the density distribution of people in a given image 
(Figure 2). 

Following the work developed by Zhang et al. [17], 
we assume that P people are located in the image. Giv-
en that the i-th person is at the pixel coordinate x_i, for 
the sake of simplicity, we use x_i to express both row 
and column positions. The image composed of pixel 
coordinates x is labeled with P heads through the ac-
cumulation of many impulse functions, such as:

(1)

where the δ(.) function is defined as:

(2)

To convert such image to a continuous domain, we 
convolve it with a Gaussian kernel (with standard de-
viation σ) as:

(3)

Current literature uses two variations for the size of 
the Gaussian kernel σ: (i) a fixed value (for instance, 
σ=4), or (ii) a variable value for each person σi=βdi, 
where di is defined as the mean distance to the k clos-
est people and β is a regularization parameter.

Authors who employ variable σ [17] argue that 
ground truth created in this way simulates people’s 
scale better such that the network can learn a scale-
aware model. On the other hand, authors who employ 
fixed σ [2] argue that using k closest people introduces 
errors in poorly crowded regions with small people’s 
scale. Moreover, they have shown equal or better re-
sults in similar setups. We consider that both fashions 
have valid arguments. Thus, we propose a new ap-
proach that combines these two methods, i.e., σi will 
be a fixed value for very crowded regions of the image 
and a variable value otherwise. Let B={b1, b2,…, b|B|} be a 
list of bounding boxes of detected faces (we used an al-
gorithm for tiny face detection [19] to find them). Each 
bounding box bi is axis-aligned and defined by a cen-
troid, height, and width. It is expected that the face de-
tection method will not detect all people in the images. 
Thus, we use B to interpolate missing bounding boxes.

First, for each person i at pixel xi, we must determine 
if it is inside a crowded region. We initially define an 
overlap region ri, which is an axis-aligned rectangle 
centered at xi. To count the number of people around 
person i, due to scale changes, we use a weighted aver-
age using the bounding boxes B, defined as:

(4)

where wij
overlap is defined by the inverse of the l2 dis-

tance between person i and centroid cj of the bound-
ing box bj:

(5)

Fig. 3. Generalization of the multi-stream neural network for crowd counting. Each stream gathers information 
from different scales. Then, the fusion block merges the information to produce the estimated density map.
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It is worth mentioning that Equation 4 weighs the 
bounding boxes. We use this form to express that the 
equation is applied independently for heights and 
widths of ri and B.

Second, for every ri, we estimate how many other 
bounding boxes overlap. If this number is greater than 
a threshold Toverlaps, then chances are that person i is at a 
heavily crowded region. Therefore, we use a fixed pre-
defined size bounding box for it. Otherwise, xi is not at 
a heavily crowded region and we can interpolate the 
bounding boxes by the following weight definition:

(6)

The only difference between equations 5 and 6 is the 
power of 10. In the case of Equation 5, our aim is to have 
an accurate estimation of the density context for each 
person i. On the other hand, with Equation 6, we quickly 
decrease the importance of distant elements as they cre-
ate noise. Thus, bounding box di for person i is defined as:

(7)

Finally, we use height and width of di for the Gaussian 
kernels σi= di.

Table 1. Architecture details for the evaluated 
MSNN versions.
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2.2. MulTI-STREAM NEuRAl NETwoRkS

Since the seminal work of Zhang et al. [17], diverse 
variations of MSNN have been proposed [2, 7–10]. In 
this paper, we generalize the original MSNN and evalu-
ate the number of streams and their behavior with vari-
ous ground truth generation methods.

A generalization of MSNN architecture is shown in 
Figure 3. The image is fed to the multi-stream block 
that has various parallel sequential convolutional lay-
ers named streams. Each stream learns how to detect 
people on a certain scale. Then, the fusion block com-
bines feature maps of each stream to create the final 
estimation of the crowd.

We propose to evaluate MSNN using one, two, three 
and four streams. In order to create the MSNN with few-
er streams, we iteratively remove streams with larger 
convolutional kernels and change the fusion block ac-
cording to the new setup (details for each version are 
shown in Table 1). To train the network, we find optimal 
parameters θ* (for the network) that minimize the error 
between the estimated and the ground truth density:

(8)

where the loss function is:

(9)

where F is the function approximated by our network, θ 
is a set of learnable parameters in the multi-stream neu-
ral network, Xi is the i-th input image and Fi its ground 
truth density map (Equation 3), |T| is the number of train-
ing images, and ∥.∥2 is the Euclidean distance.

2.3. TRAINING AND DATA AuGMENTATIoN

The loss function (Equation 9) is optimized via back-
propagation and batch-based stochastic gradient de-
scent. In contrast to the work described by Zhang et al. 
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[17], we do not train each stream independently. Due to 
two pooling layers, the size of the output is a quarter of 
the original size. Then we resize the ground truth images 
to compare them with the output. Parameter configu-
ration for training in each crowd counting dataset, UCF-
CC-50 and ShanghaiTech, is reported in Table 2.

Table 2. Hyperparameters for training in each 
crowd counting dataset.

uCF-CC-50 SHANGHAITECH

OPTIMIZER Adam Adam

LEARNING RATE 0.00001 0.00001

BATCH SIZE 32 64

EPOCHS 1000 200

We perform extensive data augmentation of the 
training dataset by creating images with a sliding win-
dow of 256×256 pixels and displacement of 70 pixels 
in each iteration. Further, we add Gaussian and bright/
contrast noise. For the UCF-CC-50 dataset, the augmen-
tation process generates 10032, 10172, 9920, 9724 and 
10248 images for five folds, respectively. For the Shang-
haiTech dataset, the augmentation process generates 
65341 and 140801 for part A and B, respectively. Unlike 
our previous work [2], we kept training and tuning of 
hyperparameters simple, as we intended to avoid the 
effects of these factors on the results and have a fair 
comparison of different network and density map gen-
eration setups.

3. RESULTS AND DISCUSSION

To evaluate the quality of ground truth generation 
methods and the MSNN, we use two challenging data-
sets, summarized as follows.

(1) The ShanghaiTech dataset was introduced by Zhan 
et al. [17]. It was created to encourage research in crowd 
counting using deep learning approaches. The data-
set has 1198 annotated images with a total of 330,164 
people with their head positions annotated. It is made 
up of two parts. Part A is composed of 482 images ran-
domly taken from the Internet, which have different 
sizes and contain between 501 and 3139 people. There 
are 300 images for training and 182 for testing. Part B 
is composed of 716 images taken from a busy street of 
the metropolitan area of Shanghai, containing between 
123 and 578 people. There are 400 images for training 
and 316 for testing. Unlike other datasets [16], the crowd 
density varies significantly among the two subsets, mak-
ing accurate crowd estimation more challenging.

 (2) The UCF-CC-50 dataset was introduced by Idrees 
et al. [16]. It is a very challenging dataset due to its ex-
treme changes in scale and the number of people that 
varies from 94 to 4543. It contains 50 images extracted 
from the Internet with different aspect ratios and reso-
lutions. Following the original standard protocol, we 
report results using a 5-fold cross-validation. 

To evaluate the quantitative performance of the 
MSNN and ground truth methods, we compute mean 
absolute error (MAE) and root mean squared error 
(RMSE) metrics, defined as:

(10)

(11)

where N is the number of test samples, yi is the ground 
truth count, and yi

’ is the estimated count correspond-
ing to the i-th sample. 

Initially, we make a qualitative assessment of differ-
ent density map generation methods. Then, we show 
and analyze results for comparing four different MSNN 
setups and three ground truth methods.

3.1. DENSITy MAPS

We compare the quality of maps generated using the 
fixed kernel method, denoted as Fixed, the variable ker-
nel method, denoted as K-NN, and the proposed hybrid 
method, denoted as Face. Figure 2 shows generated 
maps for an image with large scale variations. 

Consider people located far away from the camera 
with a tiny scale. In this case, the Fixed method seems 
to have a good representation; however, it is possible 
to observe that the size of the Gaussian kernel has 
a significant effect. If a huge value is used, the back-
ground will be labeled as people. 

Analogously, consider the person on the lower left side 
of the image. It has a large scale, but the label generated 
by the Fixed method only considers its tiny part, then cre-
ating artifacts. The K-NN method introduces more artifacts 
for tiny scales due to the large Gaussian kernel size. This 
is because it is difficult to find proper hyperparameters β 
and k that are suitable for all crowd scenarios. 

It is also possible that people with a large scale are 
almost invisible in the K-NN density maps. This same 
effect appears in the Face method. This effect occurs 
because the Gaussians are normalized to sum one be-
fore added to the density map; therefore, larger kernel 
sizes generate small values. In addition to this effect, 
the Face method is able to have a better estimation of 
people with tiny and medium scale. 

To better understand the quality of the Face method, 
we analyze the interpolated face scales overlaid on the 
images (Figure 4). Our proposed ground truth methods 
are more general, so that decreases artifacts because 
we deal with dramatic changes in scales.
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Figure 4. Results of face scale interpolation using the proposed algorithm. The bounding boxes detected 
by the tiny face detection algorithm [19] are shown in cyan, whereas the interpolated bounding boxes are 

shown in pink.

3.2. CRowD CouNTING

Results for the UCF-CC-50 dataset are reported in 
Table 3. It is possible to notice that for the MSNN1 the 
best results for MAE were obtained with ground truth 
generated by the Face method and for RMSE the Fixed 
method achieved the best results with a difference of 
3.06 in comparison to the Face method. For MSNN2, the 
Face method achieved the best results for MAE and 
RMSE with a significant difference over the second-

Table 3. Results for the proposed multi-stream network (lower scores are better).

DATASET GRouND TRuTH METHoDS

uCF-CC-50 Fixed kNN Face Average

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

MSNN1 517.47 729.83 539.67 741.32 514.99 732.89 524.04 734.68

MSNN2 429.54 652.48 421.58 605.41 385.72 588.69 412.28 615.53

MSNN3 373.96 568.79 398.74 590.16 374.01 554.56 382.24 571.17

MSNN4 409.31 619.35 368.13 614.51 379.61 556.27 385.68 596.71

AVERAGE 432.57 642.61 432.03 637.85 413.58 608.10

DATASET GRouND TRuTH METHoDS

SHANGHAITech Fixed kNN Face Average

PART A MAE RMSE MAE RMSE MAE RMSE MAE RMSE

MSNN1 193.37 279.95 191.64 275.23 187.56 273.02 190.86 276.07

MSNN2 161.77 251.33 162.85 247.99 165.20 252.34 163.27 250.55

MSNN3 161.61 245.39 170.45 252.16 160.80 246.40 164.29 247.98

MSNN4 163.26 246.31 173.95 265.09 163.38 242.66 166.86 251.35

AVERAGE 170.00 255.74 174.72 260.12 169.23 253.60

DATASET GRouND TRuTH METHoDS

SHANGHAITech Fixed kNN Face Average

PART B MAE RMSE MAE RMSE MAE RMSE MAE RMSE

MSNN1 47.16 76.09 49.42 72.45 47.18 77.76 47.92 75.44

MSNN2 40.62 67.13 41.72 66.56 40.75 67.80 41.03 67.16

MSNN3 37.98 64.35 40.77 68.68 38.76 66.26 39.17 66.43

MSNN4 36.89 63.18 39.96 65.06 34.54 57.73 37.13 61.99

AVERAGE 40.66 67.69 42.97 68.19 40.31 67.39

best method (for instance, 35.86 for MAE and 16.72 
for RMSE). For MSNN3, the Fixed method generated 
the best results for MAE; however, the Face method 
was really close with a tiny difference of 0.05. On the 
other hand, the Face method yielded the best results 
for RMSE with a difference of 14.23 in comparison 
with the second-best score. Unexpectedly, the K-NN 
method created the best results for MSNN4 with MAE. 
However, the Face method obtained the best results 
for RMSE. To determine which ground truth method 
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was the best for UCF-CC-50, we averaged the results 
over the four MSNN setups. It is possible to observe 
that the Face method was superior in terms of MAE 
and RMSE values. 

From the relationship between the number of 
streams and result quality, the MAE and RMSE values 
decreased using up to three streams. However, using  
four streams, it decreased only for MAE and the K-NN 
method, whereas it grew in the remaining ones, even 
for the Fixed method, which increased by 35.35 and 
50.56 for MAE and RMSE, respectively.

Considering the average between the ground truth 
generation methods, the best results in MAE and RMSE 
were obtained with MSNN3. This may be related to the 
fact that all networks have the same simple fusion layer. 
For the MSNN with more streams, the fusion layer must 
learn more complex functions to map larger tensors to 
density maps. Overall, the best results for MAE were ob-
tained with MSNN4  and the K-NN method, whereas for 
RMSE, the best results were obtained with MSNN3 and 
the Face method.

Results for the ShanghaiTech Part A dataset are re-
ported in Table 3. For MSNN1, the best results were 
obtained with the Face method for MAE and the Fixed 
method for RMSE. For MSNN2, the best results for both 
MAE and RMSE were obtained with the Face method. 
In this case, compared with the second-best method, 
the difference was large, 35.86 and 16.72 for MAE and 
RMSE, respectively. For MSNN3, the best results for MAE 
were obtained with the Fixed method; however, the 
Face method achieved a small difference of 0.05 and 
the best results for RMSE. 

For MSNN4, the best results for MAE were obtained 
with the K-NN method; it achieved a difference of 11.48 
in relation to the second-best approach, that is, the 
Face method. Nonetheless, for RMSE, the Face method 
achieved the best results with a difference of 58.24 in 
comparison to the second best. Unlike the results for 
the UCF-CC-50 dataset, the best number of streams for 
MAE is two, but the difference with three streams is 0.99. 
However, for RMSE, the results followed the same be-
havior as on the UCF-CC-50 dataset: the results improved 
from one to three and were worse with four streams.

Considering the average, for the ShanghaiTech Part B 
dataset, the best results with one and two streams with 
MAE are obtained with the Fixed method; however, the 
Face method has a small difference of 0.02 and 013, re-
spectively. For RMSE, however, the KNN gives the best 
results. For three streams, the Fixed method has the 
best results for MAE and RMSE, followed by Face. Up 
to this point, it seems that the Face method does not 
replicate the results shown in the previous datasets; 
however, with four streams, Face is clearly better and, 
considering the average performance between all net-
work configurations, it is better but the Fixed method 
has similar results.

Considering the average between ground truth 
methods, we can see that the performance improves 
with the number of streams and overall the best results 
are obtained with four streams and the Face method.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we evaluated the influence of the num-
ber of streams in multi-stream networks for the crowd 
counting problem. Furthermore, we evaluated the two 
most common strategies for generating ground truth 
and proposed a new hybrid method based on tiny face 
detection and scale interpolation.

Extensive experiments demonstrated that using 
three streams is better on average; however, there are 
some scenarios where using four streams overcomes 
other setups. Moreover, experiments show that the use 
of the proposed hybrid ground truth generation meth-
od is, in fact, better than other widely used schemes. 

As directions for future work, we intend to evaluate 
the creation of synthetic data for the training purpose, 
the generation of higher definition density maps, and 
more accurate estimations.
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