
BCSDN-IoT: Towards an IoT security architecture
based on SDN and Blockchain

155

Original Scientific Paper

Younes ABBASSI
Hassan 2 University,
Faculty of Sciences Ben Msik, Computer Sciences Department
Casablanca, Morocco
younes.abbassi@univh2c.ma

Habib Benlahmer
Hassan 2 University,
Faculty of Sciences Ben Msik, Computer Sciences Department
Casablanca, Morocco
h.benlahmer@gmail.com

Abstract – The Internet of Things (IoT) aims to create a digital world where any information system can expose, discover, understand
and consume data and services for analysis, diagnosis, decision support and task automation in various domains such as healthcare,
transportation, energy, industry, agriculture, etc. Faced with this diversity of applications and rapid evolution, infrastructures must be
able to achieve high levels of security and confidentiality while being open, sustainable, and agile to adapt to the multiple requirements
of applications.
To meet these needs, new paradigms are emerging. These include the Software Defined Networks (SDN) paradigm, which offers the
ability to dynamically program different applications and devices to provide end-to-end service chains. In parallel, the Blockchain
paradigm is increasingly used in the Internet of Things, making distributed transactions between connected objects such as financial
transactions or "smart contracts" possible.
Although the combination of these two paradigms (Blockchain/SDN) is a major issue for the success of the Internet of Things, paving the
way for new business models and management/control of communication networks, there is not yet a specified/formalized architecture
allowing the use of the "Blockchain" in SDN. In this research, a new architecture for a system combining blockchain and SDN for IoT
security is proposed.

Keywords: Internet of Things (IoT), Software-Defined Networking (SDN), OpenFlow, Blockchain, BCSDN-IoT Architecture

1. INTRODUCTION

In 2030, it is announced that there will be more than
500 billion devices connected to the Internet with a
variety of uses leading to security problems and an in-
crease in traffic on the networks that will be estimated
in Zeta (1021) bytes [1].

However, currently, the security architectures de-
ployed in networks are mainly based on experience and
work on wired networks. These architectures are mainly
based on centralized equipment, whose main role is to
control the information that is exchanged between the
company's network and the outside world. It is there-
fore not possible to control the information exchanged
between a terminal equipment that a user will connect
to his computer. On a corporate network, users can
connect their phone to their computer, via Bluetooth

Volume 13, Number 2, 2022

for example, and thus the computer becomes a new
entry point to the network. With the Internet of Things
(IoT), we have sensors, thermostats, webcams, watches
connected to our phones, themselves eventually con-
nected to the Internet or to our computers [1]. So how
can we control the information coming from this large
mass of heterogeneous devices?

With the increase in the number of these heteroge-
neous devices, the complexity in their administration is
growing. This requires a verification of the coherence of
the configurations of all the network devices of a com-
pany, for example the security rules and the user rights [2].

With the support of a great combination of modern
technologies such as IoT, SDN, and Blockchain, as the
number of connected things to the internet grows
these days, managing and controlling IoT has become
a very difficult task. SDN steps in to provide the IoT

156 International Journal of Electrical and Computer Engineering Systems

network's adaptability and programmability without
requiring existing implementations to change their
design. It may also assess how the network affects the
overall performance and efficiency of the network sys-
tem, which is very useful when dealing with real-time
transactions [4]. SDN is utilized in IoT applications to
reduce response time and security concerns. In SDN,
many controllers have recently been used instead of a
centralized controller. The fundamental purpose of us-
ing multiple controllers is to balance the load between
devices and controllers while minimizing packet loss.
When the user of the SDN-IoT network need resources,
they will be available immediately. In addition, utiliz-
ing an SDN controller, a network can be configured dy-
namically. One of the most common protocols used by
SDN is OpenFlow [4].

Some other advanced technology is blockchain, a
decentralized, emergent technology that can be com-
bined with SDN-based IoT applications. The hash value
is used to link various blocks together, and each block
of the transaction is saved forever [5]. Combining this
Blockchain technology will boost security and privacy.
Several academics have proposed numerous clarifica-
tions to increase the network's performance, but they
are unable to entirely cure the problem.

Although IoT, SDN, Blockchain technologies are
combined to provide a better solution for any smart
technology such as intelligent building, smart homes,
smart cities, and smart grids [5]. These technologies
can also provide reliable data transmission as well as
communication in the networks [3].

However, the potential use of this disruptive technol-
ogy spawn to each and every application that need to
evolve from a centralized authorization entity acting
as a trusted intermediary or sometimes a third-party
verifiable trust anchor, towards a purely distributed au-
thentication model.

Our goal in this paper is to give the reader particu-
larly interested in IoT security, a proposal for a new
security architecture combining SDN and Blockchain
technologies, with the aim of improving, and simplify-
ing the deployment of IoT security.

The remainder of the paper is laid out as follows: In
section 2, we go over some background information
before introducing IoT, SDN, and Blockchain, as well
as their designs. Then, in section 3, we describe our
proposed BCSDN-IoT architecture, its operation, and
analysis and alert generation. In section 4, we conduct
an implementation of the BCSDN-IoT solution in virtual
through the open source solution OpenDayLight, start-
ing with its installation, the realization of the BCSDN-
IoT architecture and the simulation of some attacks.
And finally in section 5 we conclude our article with
some perspectives.

2. BACKGROUND & RELATED WORKS

2.1 INTErNET of THINgS

The Internet of Things (IoT), as well as the Internet of
Everythings (IoE) in a larger sense, is a relatively new
concept. It is considered a major technological and
economic innovation in the industry of new informa-
tion technologies and communication.

The IoT does not have a unique definition but gener-
ally speaking, It is characterized as a broadening of the
current Internet to include all objects that can commu-
nicate directly or indirectly with electronic equipment
that is also linked to the Internet.

The International Telecommunication Union [7] de-
fines the Internet of Things as: "A global infrastructure
for the information society, which enables advanced
services by interconnecting objects (physical or virtual)
through existing or evolving interoperable information
and communication technologies".

IoT devices are typically sensor nodes, RFID (Radio Fre-
quency IDentification) tags and wireless communication
devices connected to the Internet in a smart environ-
ment [2]. These devices are very diverse (phone, watch,
refrigerator...) and are now widely used in everyday life.

With the exponential development of these con-
nected objects with heterogeneous characteristics, the
networks of the future must evolve towards new archi-
tectures to adapt to the increase in traffic and ensure
their security. Security is one of the issues of today's
Internet, as there are more and more intelligent secu-
rity attacks to deal with. In addition, security attacks
for IoT are more difficult to handle due to the minimal
energy storage, data and processing capacity that are
not suitable for existing network security mechanisms
based on firewall and IDS/IPS [21]. The concept of IoT is
relatively simple but there are many problems because
these connected devices do not have enough capacity
to handle the communications and processing associ-
ated with the applications.

Architecture: The most commonly used IoT archi-
tecture for SDN solutions, and as shown in Figure 1, is
made up of three layers: the perception layer, the net-
work layer and the application layer [8].

fig. 1. The architecture of IoT

157Volume 13, Number 2, 2022

Perception layer: it is at this level that the collection
of information takes place. Various devices and devices
help it in this, such as smart cards, readers and sensors,
RFID tags, etc.

It is personalized by a function that allows it to detect
the whole object in order to acquire information about
it at any time and place, through the RFID system. (EPC)
Electronic Product Code is a unique identifier that dis-
tinguishes each object in the IoT infrastructure, it gen-
erates a sequence of numbers giving an idea about the
producer of the object, its production date and the ex-
piry date.... [8].

Network layer: This layer allows the sending of the
required information from the previous layer to the
internet through machines, wired or wireless network
equipment. As a transport layer, digital data is trans-
ported reliably [8].

Application layer: or also known as the process lay-
er analyzes the information received and makes control
decisions to perform its intelligent processing function
by connecting, identifying and controlling objects and
devices. Intelligence assets use intelligent computing
technologies such as cloud computing and process
information for intelligent control, as well as the tasks
that must be completed and when they must be com-
pleted [8].

2.2 SofTwArE-DEfINED NETworkINg

SDN (software-defined networking) is a new net-
work architecture paradigm that describes a control
plane that is completely separate from the data plane.
According to the ONF (Open Network Foundation) [9]
SDN is an architecture that separates the control plane
from the data plane, and centralizes all network intel-
ligence [27] in a programmable entity called "Control-
ler", in order to manage several elements of the data
plane (e.g. switches or routers, etc.) via APIs (Applica-
tion Programming Interface).

More concretely, we can say that a network architec-
ture follows the SDN paradigm if, and only if, it verifies
the following points:

•	 The control plane is completely decoupled from
the data plane; this separation is materialized
through the definition of a programming inter-
face (Southbound API)

•	 All network intelligence is externalized in a logi-
cally centralized point called the SDN controller,
which offers a global view on the entire physical
infrastructure.

•	 The SDN controller is a programmable compo-
nent that exposes an API (NorthboundAPI) to
specify control applications.

Architecture: A traditional network is generally com-
posed of interconnection equipment such as switches
and routers. This equipment incorporates both the

transmission and control parts of the network. In this
architecture model, it is difficult to develop new servic-
es because of the strong coupling between the control
plane and the transmission plane.

In order to open the network equipment to innova-
tions, the SDN architecture was born. It allows decou-
pling the control part from the transmission part of the
interconnection equipment [29]. As depicted in Figure
2, the SDN is made up of three layers and communica-
tion interfaces.

fig. 2. The architecture of SDN

We describe in the following these layers, as well as
the communication interfaces:

•	 The transmission layer: also called "data plane",
it is composed of routing equipment such as
switches or routers, its main role is to transmit
data and collect statistics.

•	 The control layer: also called "control plane", it
is mainly composed of one or more SDN control-
lers, its role is to control and manage the infra-
structure equipment through an interface called
'south-bound API'.

•	 The application layer: represents the applica-
tions that enable the deployment of new net-
work functionalities, such as traffic engineering,
QoS, security, etc. These applications are built
through a programming interface called 'north-
bound API’.

Communications Interfaces

There are three main types of interfaces, which allow
controllers to communicate with their environment:
South, North and East/West interfaces

Southbound APIs: are the interfaces that allow the
SDN controller to communicate with infrastructure
layer devices like switches and routers.

The most widely used protocol, and the most de-
ployed as a Southbound interface is the OpenFlow
protocol, which has been standardized by the ONF, its
latest version is 1.5 [10], more details on this protocol
will be given in the next section. There are now other
southern interface alternatives, such as ForCes [11], or

158 International Journal of Electrical and Computer Engineering Systems

Open vSwitch Database (OVSDB) [12], but the Open-
Flow protocol is currently the de facto standard, which
is widely accepted and spread in SDN networks.

Nord interfaces: are used to program transmission
devices, exploiting the network abstraction provided
by the control plane. It is noted that unlike the South-
bound API which has been standardized, the North in-
terface still remains an open question.

While the need for such a standardized interface is
a considerable debate within the industry, the advan-
tage of an open Northbound API is also important, as
an open Northbound API allows for more innovation
and experimentation. Several implementations of this
interface exist, each of which offers very different func-
tionality. The RESTful [13] is considered the most wide-
spread North API in SDN.

East/west interfaces: are communication interfaces
that allow communication between controllers in a
multi-controller architecture to synchronize the net-
work state. These architectures are very new and no
inter-controller communication standard is currently
available.

2.3. BloCkCHAIN

Blockchain technology emerged in early 2009 with
the crypto-currency Bitcoin (BTC). Bitcoin users use
a variable public key (PK) [14] to generate transac-
tion information and broadcast it to the network for
transferring funds. Transaction information is stored
by all users in its own block. Once the block is full, a
network mining process is performed; the hash value
of the block is calculated, and the encrypted informa-
tion and blocks are added to the blockchain [15]. To
mine the cryptographic hash value of a block, certain
nodes in the network, known as miners, compete to
solve a proof of work called the cryptographic re-
source consumption puzzle (POW) [28]. The node that
solves the puzzle first and gets everyone's approval is
considered to have mined the block. This is because
blockchain technology maintains all transaction data
counts among all members, and all members update
the counts simultaneously to maintain completeness
when new transactions occur [16] [23]. The Internet
and encryption technologies are the underlying tech-
nologies that allow all members to verify the reliability
of each transaction to resolve a single point of failure
caused by a traditional third-party authorized transac-
tion. Because the blockchain is a peer-to-peer (P2P)
network [17], the transaction is free of unauthorized
third-party charges. As everyone keeps their transac-
tion information up to date, the hacking effect of single
point records is very limited, and it frequently fails. In
addition, users of a blockchain system can openly ac-
cess transaction records and reduce the costs of moni-
toring transactions. Since the hash value stored in each
block peer is affected by the block peer is affected by
the value of the previous block, forgery and modifica-

tion of data requires modification of the entire chain
[18] and the amount of computation at one point is far
behind the computation of the entire network. As a re-
sult, forgery is almost impossible.

fig. 3. The architecture of IoT with Blockchain

2.4 rElATED workS

Several researchers have recently addressed emerg-
ing leading technology such as IoT, SDN, Blockchain, and
other smart technologies in today's world [19, 20, 21,
and 22]. In this section, some literature reviews of recent
works have been mentioned which are given below:

research work
Used Summary

contributions and
featuresIoT SDN Block

chain

M. J. Islam, M.
Mahin, S. Roy, B.
C. Debnath, and
A. Khatun.[19]

✓ ✓ *

Presented a distributed
black net with SDN-IoT
architecture for smart

cities and addressed the
cluster head selection

scenario

M. A. Ferrag,
M. Derdour,

M. Mukherjee,
A. Derhab, L.

Maglaras, and H.
Janicke [20]

✓ * ✓

Provided several
overviews of the

Blockchains application
domain in IoT, e.g:

Vehicle Internet, Energy
Internet, Cloud Internet

P. K. Sharma, S.
Singh, Y.-S. Jeong,
and J. H. Park, [21]

✓ ✓ ✓

Proposed a literature
combination between

Blockchain and SDN
for IoT networks and
presented flow rule

table for validation of
blocks as well

C. Qiu, F. R. Yu, F.
Xu, H. Yao, and C.

Zhao [22]
✓ ✓ ✓

Proposed an imminent
permitted blockchain-

based consensus in
distributed SDIoT and
also efficiently used

a novel dueling deep
Q-learning approach.

Table 1. State of the art.

159Volume 13, Number 2, 2022

3. BCSDN- IoT PROPOSED ARCHITECTURE
COMBINING SDN AND BLOCKCHAIN FOR IoT
SECURITY

Based on the analysis in the previous section for the
rapidly growing IoT networks created by new com-
munication paradigms, we observed that the current
distributed network architecture, protocols, and tech-
niques are not designed to meet the design principles
required for future challenges and satisfy new service
requirements. Today, organizations need a unique dis-
tributed security architecture that includes powerful
network security devices that provide real-time proac-
tive protection and high performance to address the
design principles analyzed. In this section, we provide
the distributed secure SDN architecture,BCDSN-IoT ar-
chitecture, its workflow, and a mechanism for updating
high-performance availability flow rule tables play an
important role in a distributed blockchain network.

3.1. BCSDN-IoT APProACH

BCSDN-IoT adopts distributed secure network con-
trol in the IoT network using the concept of blockchain
technology to improve security, scalability, and flex-
ibility without the need for a central controller. Figure
5 shows the overall view of the proposed architecture.
In the proposed architecture, all controllers in the IoT
network are interconnected in a distributed blockchain
network fashion so that each IoT transmitting device
in the network can communicate easily and efficiently.
Each local network view includes an IDS/IPS (Intrusion
Detection System/Intrusion Prevention System) ser-
vice. By putting an IDS module on each controller, the
BCSDN-IoT architecture not only enables operational
flexibility, but also proactive and reactive incident pre-
vention based on the repeating threat environment,
which is fast evolving, dynamic and high performing.
It provides an agile, modular and secure network infra-
structure. Protections must dynamically adapt to the
threat landscape without requiring security adminis-
trators to manually process large numbers of notifica-
tions and approvals. These assurances must be well-
coordinated across the broader IoT environment, and
the architecture must adopt a protection posture that
uses both internal and external sources constructively.

Our solution is inspired by the security grid concept
and our intelligent firewall approach to improve secu-
rity in a conventional network and extend it to the IoT.

 In this approach, we propose a collaborative secu-
rity solution with a distributed controller architecture
coupled with IDS. We have opted for a distributed SDN
architecture distributed SDN architecture because a
centralized architecture with a single controller in-
creases the danger of network in the event of a denial
of service (DoS) attack, there will be a service outage.
For example, if the threat is only on one machine, it is
not critical and isolating the machine can be a solution,
but if the single controller is compromised, the whole

network is at risk. The use of multiple controllers there-
fore creates redundancy, ensures high availability and
reduces network latency.

fig. 4. Distributed Routing Cluster for SDN

fig. 5. The BCSDN-IoT architecture proposed

As shown in Figure 4, our solution consists of one or
more clusters. Each cluster is composed of one or more
network devices that are responsible for the intercon-
nection of devices including connected objects. Within
each cluster, an SDN controller manages the OpenFlow
network. Each SDN controller is coupled to an IDS. The
IDS is responsible for detecting intrusions into the net-
work perimeter of each cluster. In other words, a clus-
ter is an SDN domain in which we use an OpenFlow
network with an SDN controller and an IDS to manage
the security domain, which we call the zone of trust. To
form a trust zone, all the equipment and devices in this
zone must be fully secured. This security work is done
by the controller and IDS pair. The SDN controller acts
as an intelligent firewall for the trust zone and has se-
curity rules specific to the security needs of the cluster.
These rules are programmed by an administrator. They
can be distributed to other trust zones if the security
need is the same through the East-West API.

Our approach allows not only to manage security in
a totally decentralized way through a local manage-
ment of security by the SDN/IDS controller couple, but
also that the controllers exchange information on the
threats detected in their respective clusters.

160 International Journal of Electrical and Computer Engineering Systems

The SDN controller is the central element for security
management in each trust zone. It has a global view
of the network, manages traffic and distributes security
policies to the network devices in its own cluster.

Before the SDN controller can isolate the threat in
each cluster, it must be detected. That is why we use an
IDS to solve this problem. In practice, this can be done
by setting up an IDS like snort or other.

3.2 ANAlYSIS, DETECTIoN AND AlErT
 gENErATIoN

To achieve this, we used an IDS to listen to all net-
work traffic, analyze and detect malicious flows.

The IDS analyzes the network data and detects anom-
alies or attack patterns predefined by the blockchain
network administrators. This detection is mainly based
on the analysis of the network and transport layer pack-
et headers but also on the packet content. To detect a
malicious flow, the IDS mainly uses two analysis meth-
ods, namely the signature-based detection method
which allows to detect known patterns in the analyzed
data, or the behavioral detection method which detects
deviations of a behavior from a normal profile. In both
cases, the IDS compares the analyzed data to a reference
described either by a signature or by a normal profile.
Once the data is analyzed, the IDS can generate an alert
in the form of a log file in case of malicious flows.

4. IMPlEMENTATIoN of THE BCSDN-IoT
SolUTIoN

Our implementation model is entirely realized in a
virtual environment with open source tools.

4.1 INSTAllINg oPENDAYlIgHT

The OpenDaylight controller is an open source net-
work operating system software developed in Java
and managed by the Linux Foundation. It is based on
a modular architecture and exchanges with SDN appli-
cations using the Northbound API. OpenDaylight com-
municates with network devices using its Southbound
API. The most commonly used Southbound API in SDN
is OpenFlow.

To experiment with our solution, we created a virtual
machine with 2 CPUs and 16GB of RAM with an Ubuntu
16.04 operating system on the VMware platform. Then
we installed on this machine an OpenDaylight SDN
controller Beryllium- SR4 version.

Once OpenDaylight was installed, we added features
such as odl-l2switch-switch, odl-dlux-all and odl-rest-
conf to support Layer 2/3 switches, web interface and
communicate with applications via the REST API. It is
also important to enable OpenFlow version 1.3 by add-
ing the -of13 option on the launch script file, as Open-
Flow version 1.0 is implemented on the OpenDaylight
controller by default. OpenDaylight provides several
types of features to use as needed.

fig. 6. Installing OpenDaylight

Once OpenDaylight was installed, we added features
such as odl-l2switch-switch, odl-dlux-all and odl-rest-
conf to support Layer 2/3 switches, web interface and
communicate with applications via the REST API. It is
also important to enable OpenFlow version 1.3 by add-
ing the -of13 option on the launch script file, as Open-
Flow version 1.0 is implemented on the OpenDaylight
controller by default. OpenDaylight provides several
types of features to use as needed.

To make a Layer 2/3 OSI routing decision, the Open-
Daylight controller knows the network topology, as well
as the devices that are connected with their identifiers
(IP addresses and MAC addresses). Using OpenFlow 1.3,
the OpenDaylight controller configures an OVS switch
and manages and updates the OpenFlow network.

4.2 rEAlIzATIoN of THE ArCHITECTUrE

Most of the works in the literature use the mininet
network simulator to experiment the SDN network. We
have chosen to use virtual machines in a production en-
vironment on VMvare platform, to be in a real use case.

To realize our virtual network architecture, we cre-
ated a second virtual machine with an Ubuntu 16.04
operating system, 2 virtual CPU and 16GB of RAM on
a VMvare platform. On this machine, we installed an
OpenFlow 1.3 compatible virtual switch (OVS version
2.6.0) and Qemu (Quick Emulator), an open source vir-
tual machine emulator on x86 architecture.

The OVS is an open source software implementation
of an Ethernet switch with the particularity of being
multilayer and distributed. It is designed to work as an
OSI level 2/3 switch in virtual machine environments
supporting different protocols and standards, including
the OpenFlow protocol. In our work, it has allowed us to
make client virtual machines communicate with each
other. Qemu is used to emulate our client machines with
an Alpine Linux operating system, an ultra light distri-
bution of Linux with 48MB of RAM. We used the basic
qemu-img tool to create and manage disk images. The
qcow2 format is used in this work because it integrates
more features like compression and encryption.

Then, we wrote a bash script to launch several qemu
client virtual machines with the possibility to manage
them remotely. The same script allows to launch the
OVS to interconnect the Alpine Linux virtual machines

161Volume 13, Number 2, 2022

and to create the link between the OpenFlow switch
and the OpenDaylight controller, to allow the latter to
control the network via the OpenFlow 1 protocol.

A dynamic allocation of IPv4 addresses in DHCP of
the virtual machines clients of the network is made by
the same code. This is how we set up our OpenFlow
network with the possibility of scaling up just by vary-
ing the number of virtual machines and number of vir-
tual machines and OVS desired.

4.3 SECUrINg THE lINk BETwEEN
 THE oPENDAYlIgHT CoNTrollEr
 AND THE oVS

As discussed earlier, the communication channel be-
tween the OVS and the OpenDaylight controller is not
encrypted by default, which means that encryption of
OpenFlow exchange messages between these two ele-
ments of the SDN network does not run automatically. In
addition, some controllers do not even support TLS for
encrypting communications between the SDN switch
and the controller. A hacker can exploit this lack of se-
curity on the OpenFlow channel to attack the network
and conduct malicious actions. This is extremely dan-
gerous if the hacker gains access to the controller that
would give him control over the entire network. With a
grip on the controller, the hacker can remove OpenFlow
switches, modify OpenFlow rules in the switch, capture
sensitive traffic and monitor how the controller handles
OpenFlow packets. For this reason, SSL/TLS encryption
of OpenFlow message exchanges on the channel be-
tween the OVS and OpenDaylight is required.

The encryption of OpenFlow messages between the
OVS and OpenDaylight is done using an SSL/TLS connec-
tion, based on the Public Key Infrastructure (PKI) model.

fig. 7. Node Inventory on the OpenDaylight
Beryllium-SR4

Using the OpenSSL encryption toolkit, we generated
a keyStore, a file containing the controller's private and
public keys. Then, the key file is imported into a JKS for-
mat key file, adapted to be configured on the Open-
Flow configuration file of the OpenDaylight controller.

4. 4 SoME ExAMPlES of SIMUlATED
 ATTACkS

To simulate an attack and see if the IDS detects it or not,
we installed the Nmap tool on one of the client virtual ma-
chines. Then, we successively launched a denial of service
attack, a port scan and an IP address spoofing with the
specific Nmap command on a case by case basis.

•	 Denial of service
The objective here is to detect and block attempts to

saturate a target machine with DoS attacks using the
ICMP protocol. We proceeded to send ICMP requests
to the second machine of our network, in order to see
if the Snort IDS reacted by detecting the unwanted
flows. With this example, we found that after this ICMP
request, our Snort IDS detected and saved a log file on
the specific directory of the Snort server. This type of
attack attempt can make the controller or a machine
unavailable to its users. It interrupts or suspends net-
work services temporarily or indefinitely.

With the proposed solution, it is possible to block the
communication of malicious nodes in an automated way.

•	 Port scan
In this case, the goal is to detect port scan attempts

on TCP and UDP protocols and to block these requests
from the same source with the Nmap tool. Nmap is an
open source port scanning software designed to de-
tect open ports and, more generally, to obtain informa-
tion about the operating system of a remote computer.
To find out which ports are open on a machine, Nmap
sends a packet to all ports on the target machine and
analyzes the responses.

To simulate port scanning, we installed the Nmap
tool on one of the Linux host alpine machines on our
network. Then, we launched a port scan on one of the
machines of the network with the specific command
(nmap -p "*" Ip address target machine) and in the
same way, Snort detected this attack attempt and re-
corded the corresponding log.

•	 IP or MAC address spoofing
MAC address spoofing is when a malicious attacker

attempts to spoof a legitimate MAC or IP address in
order to send packets to the network, using a trusted
address. MAC/IP address replication forces systems to
believe that the source is trustworthy.

In the same way as port scanning, we experimented
with Nmap, and through the specific command (nmap
spoof-mac target machine MAC address or target ma-
chine IP address), IP and MAC address spoofing and
found that Snort detected the threat and logged the
associated log.

We noticed that Snort detected all the attacks and
saved the corresponding files in the log directory. This
procedure can be extended to other types of more
complex and intelligent threats.

5. CoNClUSIoN

In this paper, based on an analysis of the challenges
faced by large-scale IoT networks due to new com-
munication paradigms, BCSDN-IoT, a novel distributed
secure IoT network architecture composed of an SDN
backbone using blockchain technology, has been pro-
posed to address current and future challenges and

162 International Journal of Electrical and Computer Engineering Systems

satisfy new service requirements. BCSDN-IoT improves
the performance and capacity of a system. The primary
role of the BCSDN-IoT model is to generate and deploy
protections, including threat prevention, data protec-
tion, and access control, and mitigate network attacks
such as cache poisoning/ARP spoofing, DDoS/DoS at-
tacks, and detect security threats. The BCSDN-IoT ap-
proach also focuses on minimizing attack window
time by allowing IoT forwarding devices to check and
download the most recent flow rule table if necessary.
The performance evaluation is based on the scalability,
defense effects, accuracy rates and performance over-
head of the proposed model.

6. REFERENCES

[1] H. Hamed, D. Ali, M. Reza, A. Mohammed, K. Hadis,

“A Survey on Internet of Things Security: Require-

ments, Challenges, and Solutions”, Internet of

things, Vol. 14, 2021, 100129.

[2] H.W. Rolf, “Internet of Things – Need for a New Le-

gal Environment?”, Computer Law & Security Re-

view, Vol. 25, 2009, pp. 522–527.

[3] P. Sanghera, T. Frank, “How to Cheat at Deploying

and Securing RFID”, Chapter 15 - RFID Security:

Attacking the Backend”, How to Cheat, 2007, pp.

311-321.

[4] J. Sweta, C. Pruthviraj, S. Ayushi, “The Fundamentals

of Internet of Things: Architectures, Enabling Tech-

nologies, and Applications”, Healthcare Paradigms

in the Internet of Things Ecosystem, 2021, pp. 1–20.

[5] O. Flauzac, C. Gonzalez, F. Nolot, “New Security

Architecture for IoT Network”, Procedia Computer

Science, Vol. 52, 2015, pp. 1028–1033.

[6] A. I. Sanka et al. “A Survey of Breakthrough in

Blockchain Technology: Adoptions, Applications,

Challenges and Future Research”, Computer Com-

munications, Vol. 169, 2021, pp. 179–201.

[7] Internet of Things Global Standards Initiative, ITU

2021.

[8] A. Mayuri, T. Sudhir, “Internet of Things: Architec-

ture, Security Issues and Countermeasures”, Inter-

national Journal of Computer Applications, Vol.

125, No. 14, 2015, pp. 1–4.

[9] Software-Defined Networking (SDN) Definition

Open Networking Foundation, https://www.

opennetworking.org/sdn-definition (accessed:

2018)

[10] Openflow-switch-v1.5.1, https://www.opennet-

working.org/wpcontent/uploads/2014/10/open-

flow-switch-v1.5.1 (accessed: 2018).

[11] J. Halpern, S. J. Hadi, “Forwarding and Control El-

ement Separation (ForCES) Forwarding Element

Model”, Internet Engineering Task Force , 2010.

[12] B. Pfaff, B. Davie, “The Open vSwitch Database Man-

agement Protocol”, RFC Editor, RFC7047, 2013.

[13] F. R. Thomas, “Architectural Styles and the Design

of Network-based Software Architectures”, Infor-

mation and Computer Science, 2000, pp. 180.

[14] C. Konstantinos, D. Michel, “Blockchains and smart

contracts for the internet of things”, IEEE Access,

Vol. 4, 2016, pp. 2292–2303.

[15] B. Mandrita, L. Junghee, R. Kim-Kwang, “A Block-

chain Future for Internet of Things Security: A

Position Paper”, Digital Communications and Net-

works, Vol. 4, No. 3, 2018, pp. 149–160.

[16] G. Sangeeta, A. Kavita, “Essentials of Blockchain

Technology for Modern World Applications”, Ma-

terials Today: Proceedings, 2021.

[17] T. Christos, B. Konstantinos, G. Panagiotis, A. Stav-

ros, D. Tasos, “Malicious threats and novel security

extensions in p2psip”, Proceedings of the IEEE In-

ternational Conference on Pervasive Computing

and Communications Workshops, Lugano, Swit-

zerland, 19-23 March 2012, pp. 746–751.

[18] S. Jie, Z. Pengyi, A. Mohammed, B. Yubin, Ge YU,

“Research Advances on Blockchain-as-a-Service:

Architectures, Applications and Challenges”, Digi-

tal Communications and Networks, 2021.

[19] M. J Islam, M. Mahin, S. Roy, B. Debnath, A. Khatun,

“DistBlackNet: A distributed secure black SDN-IoT

architecture with NFV implementation for smart

cities”, Proceedings of the International Confer-

ence on Electrical, Computer and Communication

Engineering, Cox'sBazar, Bangladesh, 7-9 Febru-

ary 2019, pp. 1–6.

[20] M. A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab,

L. Maglaras, H. Janicke, “Blockchain technologies

for the Internet of Things: Research issues and

challenges”, IEEE Internet Things, Vol. 6, No. 2,

2019, pp. 2188–2204.

[21] P. Sharma, S. Singh, Y. Jeong, J.H. Park, “DistBlock-

Net: A distributed blockchains-based secure SDN

architecture for IoT networks”, IEEE Communica-

tions Magazine, Vol. 55, No. 9, 2017, pp. 78–85.

[22] C. Qiu, F. R. Yu, F. Xu, H. Yao, C. Zhao, “Permissioned

blockchain based distributed software-defined in-

dustrial Internet of Things”, Proceedings of the IEEE

Globecom Workshops, 2018, Abu Dhabi, United

Arab Emirates, 9-13 December 2018, pp. 1-7.

[23] R. Kumar, R. Sharma, “Leveraging Blockchain for

Ensuring Trust in IoT: A Survey”, Journal of King

Saud University - Computer and Information Sci-

ences, 2021.

[24] S. A. Latif et al, “AI-Empowered, Blockchain and

SDN Integrated Security Architecture for IoT Net-

work of Cyber Physical Systems”, Computer Com-

munications, Vol. 181, 2022, pp. 274–283.

[25] S. Rathore, B. W. Kwon, J. H. Park, “BlockSecIoTNet:
Blockchain-Based Decentralized Security Architec-
ture for IoT Network”, Journal of Network and Com-
puter Applications, Vol. 143, 2019, pp. 167–177.

[26] P. Podili, K. Kataoka, “TRAQR: Trust Aware End-
to-End QoS Routing in Multi-Domain SDN Using
Blockchain”, Journal of Network and Computer
Applications, Vol. 182, 2021, 103055.

[27] P. P. Ray, N.j Kumar, “SDN/NFV Architectures for Edge-
Cloud Oriented IoT: A Systematic Review”, Computer
Communications, Vol. 169, 2021, pp. 129–153.

[28] Md. A. Uddin et al. “Blockchain Leveraged De-
centralized IoT EHealth Framework,” Internet of
Things, Vol. 9, 2020, 100159.

[29] V. Balasubramanian, M. Aloqaily, M. Reisslein, “An
SDN Architecture for Time Sensitive Industrial IoT”,
Computer Networks, Vol. 186, 2021, 107739.

163Volume 13, Number 2, 2022

