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Abstract – Optimal load shedding is a very critical issue in power systems. It plays a vital role, especially in third world countries. 
A sudden increase in load can affect the important parameters of the power system like voltage, frequency and phase angle. This 
paper presents a case study of Pakistan’s power system, where the generated power, the load demand, frequency deviation and load 
shedding during a 24-hour period have been provided. An artificial neural network ensemble is aimed for optimal load shedding. 
The objective of this paper is to maintain power system frequency stability by shedding an accurate amount of load. Due to its fast 
convergence and improved generalization ability, the proposed algorithm helps to deal with load shedding in an efficient manner.
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1. INTRODUCTION

In this modern era, power consumption is increasing 
extensively with each passing day. A growing popu-
lation with the need of more new plazas and build-
ings is responsible for greater energy consumption. 
An increase in power demand requires construction 
of more and more grids, and third world countries do 
not have enough resources to cope with this problem. 
The method to deal with this problem in order to gain 
system stability is to shed some load. This process is 
known as load shedding. 

Optimal load shedding is defined as the curtailment 
of minimum load for each subsystem so that poise of 
demand and supply remain conserve [1]. When the 
load increases, generators connected to the power sys-
tem slow down results in frequency decay. The thresh-
old frequency value in Pakistan is 49.5 Hz. A decrease in 
frequency below the threshold value results in shutting 
down the generators. The shutting down of a genera-
tor in an interconnected system can trigger the failure 
of other parallel generators. This condition is known as 
a cascaded failure or blackout [2].

The case when system generation is greater than 
system demand causes the frequency to rise up [1]. 
An increase in frequency above the threshold value re-
sults in speeding up the generator until it burns out as 
shown in Figure 1.
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Fig. 1. Relation of frequency with 
generation and demand

When the load increases, the first action is performed 
by the governor that adjusts the speed by increasing 
the fuel quantity to recover the slow speed of the ma-
chine. In the case when the governor is not able to com-
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pensate for declining frequency, load shedding is the 
final and ultimate solution [3]. There are several ways to 
shed load, like the breaker interlock method, under the 
frequency relay and programmable logic controller [4]. 
The disadvantages of these methods are that they are 
too slow and not highly efficient when disturbances 
and losses in the system are included during real-time 
calculation of load [5]. 

Many algorithms have been applied for optimal load 
shedding for maintaining the steady state of the power 
system. Results obtained by traditional methods take 
more time as compared to artificial neural networks 
(ANN) [6]. This method can determine the amount of 
load shedding magnitude in each step simultaneously 
that leads to a higher speed than traditional methods 
[5]. The error in the learning of an artificial neural net-
work can be reduced by ensembling neural networks 
which will increase the accuracy of the system [7]. Op-
timal load shedding using an artificial neural network 
ensemble is the outcome of this research. In this paper, 
the Bootstrap Aggregating (Bagging) algorithm with 
Disjoint Partition is used to ensemble an ANN because 
of its fast convergence and low variance [8].

2. RELATED WORK

The basic idea of an ANN comes from the biological 
nervous system. ANNs are considered to be a simplified 
model of a biological neural network. ANNs are trained 
so that a specific input leads to a specific output target. 
It has to be trained to find a nonlinear relation between 
an input and an output. The basic layout of an ANN 
consists of an input layer, a hidden layer and an output 
layer.

The first step in designing the ANN is to find out the 
architecture that will yield best possible results. The 
size of the hidden layer is mostly 10% of the input layer 
[9]. Data transmission from the input layer to the out-
put layer is shown in Figure 2.

Fig. 2. Activation and flow of information in an ANN

Each of the ANN inputs has a specified weight which 
is indicated by w0, w1 and w2, respectively. These 
weights are the strength of inputs and they determine 
the intensity of the input signal. The summation func-
tion decides how inputs and their weights are com-
bined. Sometimes an activation function or bias is add-
ed in order to get the threshold value. The threshold 

value is determined by the type of the transfer func-
tion. The summation function is compared with the 
threshold value; if the sum is greater than this thresh-
old value, the output signal will be activated and vice 
versa. The desired output is compared with the ANN 
output and the difference between these two outputs 
is called error. The error is propagated backward to ad-
just the input weights in order to match the neural out-
put with the desired one. 

Nakawiro et al. [10] proposed the Ant Colony Opti-
mization (ACO) technique for optimal load shedding. 
In this algorithm, the authors achieved load shedding 
by observing load variation at various buses by voltage 
stability margin; ACO will decide which load of which 
particular bus will be shed. A high speed makes this 
technique superior to other conventional methods. 
The shortcoming of this technique is its high complex-
ity and convergence time is very high. 

Chawla et al. [11] proposed a genetic algorithm (GA) 
for optimal load shedding. In this algorithm, load shed-
ding is used to prevent voltage stability. A power world 
simulator is used to analyze the continuation of the 
power flow that helps determine load shedding. The 
GA will decide how much load will be shed at each bus. 
This algorithm is very easy to understand and it does 
not require much knowledge of mathematics. The 
shortcoming of this algorithm is the occurrence of data 
overfitting and it is too slow for real-time cases where 
long training is required.

3. ENSEMBLE OF ARTIFICIAL NEURAL NETWORK

An Ensemble of Artificial Neural Networks (EANN) 
consists of a number of ANN networks and an algorithm 
for combining their outputs [9]. Each individual 
network has a different input data set but the same 
target data set. After being combined and processed 
by the algorithm, the outputs of neural networks give 
the final EANN output. 

Fig. 3. Artificial neural network ensemble
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There are many algorithms to ensemble ANNs [12]. In 
this research, Bootstrap Aggregating (Bagging) is used 
to ensemble ANNs. This algorithm depends on majority 
voting and different classifiers are combined by taking 
their means as shown in Figure 4: 

Fig. 4. General idea of bagging

Bagging is classified in two ways, i.e.; i) small bags, 
and ii) disjoint partition [13]. The small bags algorithm 
works such that subsets of the original data set may 
not be equal to the original data set. A disadvantage of 
small bags is the probability of repeating the number 
more than once. Disjoint partition makes the subsets 
of original data sets such that the number of the subset 
shall be equal to the original data set. Disjoint partition 
is considered to be more effective and accurate com-
pared to small bags [13], [14]. The original data set is 
shown in Figure 5:

Fig. 5. Original data set

In a disjoint partition case, each particular number 
from the original data set is selected such that no rep-
etition occurs, as shown in Figure 6:

Fig. 6. Disjoint partition

4. PROBLEM MOTIVATION

It is well-known that prediction can be improved by 
combining results of several predictors. In comparison 
to ANNs, EANNs always improve the results. EANN pre-
diction will only be incorrect when the majority of ANN 
prediction data sets proves to be wrong. If the majority 
of prediction of ANNs proves to be wrong, then there is 
a problem in the data set [7, 15].

The output of an ANN does not match with the tar-
get function even after several trainings. The difference 

between the actual and the target output is called er-
ror. The reason for this error lies in the learning process. 
Three main factors of errors in learning are bias, vari-
ance and noise [6].

(1)

Large bias causes underfitting of data, while high 
variance causes overfitting of data [8]. Compared to 
a single classifier, grouping of classifiers may teach a 
more expressive concept class resulting in the reduc-
tion of bias [14], [15]. Results are relatively less depen-
dent on a single training data set that results in variance 
reduction. Generalization of data to opt new data will 
increase when bias and variance are cut to a minimum 
and data will not suffer from over- and underfitting.

5. THE PROPOSED METHOD

The procedure to be adopted in this scenario has the 
following three steps:

1. Real data set generation,
2. Design of an ANN,
3. Design of an EANN.
Step 1: In this paper, a real-data set of one complete 

day of the Water and Power Development Authority 
(WAPDA), Pakistan, has been used. Data is provided by 
the National Power Control Centre (NPCC) Islamabad 
that monitors and controls each and every parameter 
of the power system. This data set includes power 
generation (PG), power demand (PL) and the rate of 
change of frequency (df/dt) shown in Table 1 and load 
management presented in Table 2.

Error=Noise+ Bias+ Variance

Time Total 
Generation

Total  
Demand

Frequency 
Decay

00:00:00 s 8151.2 11651.22 -0.22
01:00:00 s 7891.6 11394.93 -0.20
02:00:00 s 7725.8 11225.8 -0.50
03:00:00 s 7696.3 11196.3 -0.28
04:00:00 s 7713.12 11213.12 -0.29
05:00:00 s 8521.29 11694.62 0.16
06:00:00 s 9524.38 11524.39 -0.30
07:00:00 s 9897.81 11897.76 -0.09
08:00:00 s 9536.1 11746.1 -0.07
09:00:00 s 9792.77 12392.88 -0.15
10:00:00 s 9800.39 12400.39 -0.16
11:00:00 s 9828.43 12428.48 -0.02
12:00:00 s 9826.83 12426.85 -0.01
13:00:00 s 9555.35 12155.39 0.00
14:00:00 s 9796.15 12396.14 -0.04
15:00:00 s 9659.27 12259.21 0.03
16:00:00 s 9510.74 12110.77 -0.15
17:00:00 s 9568.38 12543.49 -0.03
18:00:00 s 9886.25 13386.21 0.07
19:00:00 s 9723.15 13223.17 -0.03
20:00:00 s 9726.16 12801.17 -0.15
21:00:00 s 9272.85 12272.83 -0.08
22:00:00 s 8809.23 11809.23 0.17
23:00:00 s 8424.41 11157.92 0.14

Table 1. PG, PL and df/dt
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The rate of change of frequency can be calculated as [5]:

, (2)

where
f0 = permissible frequency,

ΔP = change in power ΔP=

PD= power demand,

PG= power generation,

H = inertial constant.

(3),

H is the machine inertia constant that varies from 
machine to machine [5]. Larger inertia causes less 
frequency to decay. It can be calculated from the 
equation (4):

(4)

The main reason for load shedding is not only short 
generation but distribution constraints and transmis-
sion constraints are also responsible. Transmission con-
straints are zero as NTDC transmits the entire load it re-
ceives; DISCO’s constraints are not zero because of grid 
bottlenecks. Every power system has some spinning 
reserve, i.e., generators are not running at full speed. 
The WAPDA has no spinning reserve (Emergency L/M), 
as shown in Table (2).

In case of underfrequency load shedding, the total 
amount of load shed can be calculated from the equa-
tion (5):

(5)

where

f = standard frequency in Pakistan,

f0= permissible frequency,

L = rate of overload per unit. 

L can be calculated as:

(6)

d = load reduction factor.

Load shed against each hour by the NPCC is shown 
in the table below and can also be calculated from the 
above equations. This load shed is taken as the output 
for ANN training.

Step 2:  Before creating a neural network, selection of 
inputs and the target function is required. In this paper, 
PG, PL and df/dt are selected as inputs, while load shed 
during each hour is selected as the target. Specification 
of the ANN structure is presented in Table 3.
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0000 1167 0 24 1272 0 2463
0100 1095 0 14 1266 0 2375
0200 1160 0 14 1240 0 2414
0300 1068 0 17 1262 0 2347
0400 1024 0 18 1271 0 2313
0500 977 0 17 1261 0 2255
0600 1091 0 141 1255 0 2487
0700 1318 0 93 1230 0 2641
0800 1468 0 182 1201 0 2851
0900 1520 0 80 1172 0 2772
1000 1685 0 43 1086 0 2814
1100 1700 0 182 1168 0 3050
1200 1709 0 188 1166 0 3063
1300 1735 0 100 1209 0 3044
1400 1629 0 50 1191 0 2870
1500 1481 0 90 1231 0 2802
1600 1605 0 102 1282 0 2989
1700 1512 0 237 1182 0 2931
1800 1711 0 101 1207 0 3019
1900 1837 0 260 1097 0 3194
2000 1739 0 214 1093 0 3046
2100 1473 0 19 1105 0 2597
2200 1394 0 25 1139 0 2558
2300 1445 0 26 1231 0 2702

Table 2. Load management

Number of input neurons 3 (PG, PL, df/dt)

Number of output neurons 1(Pshed)

Number of hidden layer neurons 10

Neural network model Feed forward back propagation

Training function Levenberg-Marquardt back 
propagation (LMBP)

Adaptation learning function Gradient descent with 
momentum weight and bias

Number of layers 2

Activation function for Layer 1 Trans-sigmoid

Activation function for Layer 2 Pure linear

Performance function Mean square error (MSE)

Percentage of using information Train (70%), test (15%), cross 
validation (15%)

Maximum of epoch 1000

Learning rate 0.01

Maximum validation failures 6

Error threshold 0.001

Weight update method Batch

Table 3. ANN Specification

The LMBP training function is used in this research for 
training the ANN because it is considered as the fast-
est back propagation algorithm [16]. Gradient descent 
is used for adaptation learning that updates the mean 
weight and bias according to the batch method. Gradi-
ent descent is used to minimize the mean square error.
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(7)

where

n = the number of examples,

ti = the desired target value,

yi = target output.

Gradient:

(8)

The training rule:

(9)

(10)

Update:

(11)

where

E is an error,

w is the weight of input vectors, and

η is a learning rate.

The training data set is used to adjust ANN weights, 
75% of data is used for training purposes, while 15% 
is used for validation to avoid overfitting of data. The 
testing set is used for testing the final solution in order 
to predict the actual output of the neural network.

Step 3: MATLAB is used to create bootstraps from the 
original data set to ensemble the ANN. In this paper, 
ten bootstraps are created by disjoint partition. Ten dif-
ferent bootstraps are trained that, having ten different 
neural network outputs, are then combined by taking 
their means. The final predicted EANN output gives the 
value of load shed. When this final predicted value is 
compared with the previously trained neural network 
values, the percentage error is reduced to a minimum.

6. RESULT SIMULATION

This section includes plots of the first neural network, 
the first bootstrap. The first bootstrap that simply resa-
mples the original data set is shown in Table 4.

Fig. 7. Flowchart of optimal load shedding 
using the EANN

First Bootstrap

Power Generation
(MW)

Power Demand
(MW)

Frequency Decay
(seconds)

8809.23 12534.49 -0.2

9828.43 12426.85 -0.15

9510.74 11694.62 -0.28

8521.29 12400.39 0.14

9536.10 11809.23 -0.15

8151.20 12259.21 -0.16

7696.30 11746.10 -0.22

9568.38 13223.17 -0.50

7713.12 13386.21 0.00

9792.77 11651.22 -0.03

9800.39 12396.14 -0.09

7891.60 11157.92 -0.02

9659.27 11897.76 -0.08

9555.35 12392.88 0.07

9272.85 11213.12 -0.29

9723.15 11225.80 -0.30

9897.81 12801.17 -0.01

9886.25 12272.83 -0.03

9796.15 11196.30 0.16

9826.83 11394.93 -0.07

8424.41 12110.77 -0.15

7725.80 12428.39 0.03

9524.38 11524.39 -0.04

9726.16 12155.39 0.17

Table 4. The first bootstrap

The divider and the function used for dividing data 
are shown in Figure 8. The LMBP training method is 
used with the mean square error (MSE) performance 
function.
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Fig. 8. ANN training window

The regression plot presents the relation between 
the desired output (Target) and the actual output (ANN 
output). For an ideal case, the data should be within the 
45 degree line, where ANN outputs are equal to targets.

Fig. 9. ANN regression plot

The first neural network output and the percentage 
errors are shown in Table 5:

NN1 Output % Errors
2588.146349 0.0484

2711.167012 0.1240

2313.741919 0.0433

2497.484983 0.0603

2463.103022 0.0609

2905.432884 0.2239

3662.615851 0.3210

3108.166746 0.1503

2762.270979 0.0321

2800.228241 0.0101

2838.334945 0.0086

2555.398179 0.1936

2560.946318 0.1960

2660.746810 0.1440

2561.016882 0.1206

2647.375219 0.0584

2746.761337 0.0882

2643.432732 0.1088

2756.426501 0.0953

2502.151551 0.2765

2450.702934 0.2429

2654.883259 0.0218

2879.407539 0.1116

2838.853948 0.0482

Table 5. ANN output and % error

After creating ten different neural networks and by 
creating their bootstraps, all neural networks are com-
bined by the bagging algorithm. The predicted EANN 
output is closer to the target value when compared to 
the predicted ANN value. This comparison implies that 
the percentage error of an ensemble output is smaller.

Ensemble Output (EO) Ensemble % Error

2491.504434 0.007458354

2646.946619 0.002739744

2523.905181 0.043545685

2403.053650 0.098366643

2394.548802 0.010851551

2425.999743 0.022932324

2694.164820 0.076893892

2715.635443 0.027483602

2754.423904 0.035062176

2788.343257 0.005861279

2786.175262 0.009986715

2786.346057 0.004623545

2784.539434 0.000102378

2800.665490 0.086884532

2791.466720 0.028133339

2784.988816 0.006108170

2889.617498 0.071473061

2852.844219 0.027395741

2880.139671 0.085916665

2859.472524 0.011989226

2832.979901 0.075192944

2622.204930 0.020131302

2604.972773 0.019440973

2790.174601 0.077870650

Table 6. EANN output and % error
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The EANN results are more accurate not only for the 
first neural network but also for all remaining seven 
neural networks.

The second and the third ANN output are compared 
with the EANN output in Table 7:

NN2 Output %  
Errors

NN3 
Output

% 
Errors EO  % Error

2492.122209 0.0117 2918.041571 0.1559 2661.50 0.0074

2370.790193 0.0180 2585.629010 0.0815 2646.94 0.0027

1760.727638 0.3710 2422.175714 0.0340 2523.90 0.0435

2102.709566 0.1162 2407.539358 0.2510 2603.05 0.0983

2070.927034 0.1169 2419.376117 0.0440 2594.54 0.0108

3151.053893 0.2844 3166.272959 0.2878 2925.99 0.0229

3157.66764 0.2124 2294.824446 0.0837 2694.16 0.0768

2868.252121 0.0792 2406.313788 0.0975 2715.63 0.0274

3187.317963 0.1055 2499.540409 0.1406 2754.42 0.0350

3060.356414 0.0942 2616.476639 0.0594 2788.34 0.0058

3050.397740 0.0775 2612.738227 0.0770 2786.17 0.0099

3042.827062 0.0024 2639.117652 0.1557 2786.34 0.0046

3038.898886 0.0079 2638.082587 0.1611 2784.53 0.0001

3144.737487 0.0320 2606.716779 0.1678 2800.66 0.0868

3066.224015 0.0640 2635.924572 0.0888 2791.46 0.0281

3090.515658 0.0934 2612.841860 0.0724 2784.98 0.0061

3202.412036 0.0666 2530.012925 0.1814 2789.61 0.0714

3100.376931 0.0546 2686.600772 0.0910 2852.84 0.0273

2949.389031 0.0236 2663.787944 0.1333 2780.13 0.0859

3015.461480 0.0592 2680.396677 0.1916 2859.47 0.0119

3074.356027 0.0920 2682.307639 0.1356 2832.97 0.0751

3187.364507 0.1852 2695.658172 0.0366 2873.20 0.0201

3014.81893 0.1515 2863.563957 0.1067 2904.97 0.0194

3545.632153 0.2379 3097.950495 0.1278 2930.17 0.077

Table 7. Comparison of the 2nd and the 3rd ANN 
output with the EANN output

Figure 10 shows a comparison of the percentage er-
ror of the NN2 output and the EANN output. It is very 
much clear from Figure 10 that the ensemble output is 
closer to the target value.

Fig.10. % Errors of NN2 and the EANN

Figure 11 shows the regression plot of the EANN in 
which the value of R represents the relation between 
the output and the target. R=1 suggests the exact re-
lation between the output and the target, while R=0 
implies that there is no relation at all between the two.

Fig. 11. Regression plot of the EANN

7. CONCLUSION

In this paper, optimal load shedding has been pro-
posed based on the EANN algorithm. The occurrence 
of fault and an increase in demand are two prominent 
cases of load shedding in the power system. Extensive 
literature referring to ANN based load shedding has 
shown that the techniques presented so far do not 
deal with optimal load shedding so efficiently. In the 
proposed technique, an effort has been made to fill this 
technological gap. 

It is shown that when the EANN is used to deal with 
load shedding, a great deal of improvement is wit-
nessed compared with the ANN. The EANN shows an 
increase in the performance gain in terms of conver-
gence. By looking at the results, it has been found out 
that the bagging algorithm for the EANN reduces vari-
ance to a minimum. ANNs perform accurately for the 
given training data but, when the training data set 
changes for the next hour, the ANN faces some prob-
lems like over-or underfitting. These issues may disturb 
system accuracy during load shedding or may disrupt 
power system stability. To overcome these problems, to 
increase system accuracy and generalization ability of 
the ANN, the EANN technique has been used.
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