
Methodology for Detection of Cloud
Interoperability Problems

53Volume 7, Number 2, 2016

Preliminary Communication

Darko Andročec
dandrocec@foi.hr

Neven Vrček
nvrcek@foi.hr

Abstract – Interoperability problems between cloud providers are one of the most serious issues of this new computing paradigm.
A methodology is needed to systematically and effectively find and solve interoperability problems. For these reasons, a new
methodology with detailed steps to find and solve interoperability problems is proposed here. This new methodology is focused
and implemented on the platform as a service model, but it can be used in any of the three main models of cloud computing.
The methodology uses an iterative approach, because platform as a service offers and their application programming interfaces
evolve and change very often. The focus of the methodology is to use remote cloud application programming interfaces to solve
interoperability problems on technical, storage and services levels, respectively. Finally, we show the application of the methodology
to achieve service-level interoperability among different providers of platform as a service.

Keywords – cloud interoperability, methodology, ontology, service composition

1. INTRODUCTION

Cloud computing is nowadays becoming a popular
paradigm for the provision of computing infrastructure
that enables organizations to achieve financial savings.
On the other hand, there are some known obstacles,
among which vendor lock-in stands out. The aforemen-
tioned problem is characterized by time-consuming and
costly migration of applications and data to alternative
cloud solutions offered by different vendors, the inabil-
ity or limited ability to use some computing resources,
applications or data outside the selected cloud comput-
ing service and dependence on a specific programming
language used by the selected cloud computing vendor.

Numerous heterogeneities among different vendors
make cloud interoperability an interesting and com-
plex research and practical problem. A methodology is
needed to systematically and effectively find and solve
interoperability problems. Currently, there is still no meth-
odology that aims at identification and resolution of in-
teroperability problems, either among APIs of commer-
cial platforms as a service or among cloud offers in gen-
eral. Most relevant similar interoperability methodologies
are explained in the related work section of this paper. For
these reasons, a new methodology with detailed steps to
find and solve interoperability problems is proposed here.
This new methodology is focused and implemented on
platform as a service, but it can be used in any of the three
main cloud computing models. The methodology uses an
iterative approach, because platform as a service (PaaS)
offers and their APIs evolve and change very often. User’s

University of Zagreb,
Faculty of Organization and Informatics, Department of Information
System Development
Pavlinska 2, 42000 Varaždin, Croatia

interoperability requirements also change over time and
new interoperability problems might arise. This paper fo-
cuses on the use of remote PaaS APIs to solve interoper-
ability problems on technical, PaaS storage and services
levels, respectively. Other levels of interoperability (for
example, legal and organizational level) cannot be solved
by using remote APIs, and they are not the subject of this
paper and the proposed methodology.

This paper is organized as follows. First, in Section 2,
the related work is listed. In Section 3, we proposed the
cloud interoperability methodology. Section 4 shows
the practical application of the proposed methodol-
ogy. Our conclusions are provided in the final section.

2. RELATED WORK

Several European research projects used to deal with
cloud computing interoperability. The main objective
of the FP7-funded Cloud4SOA project [1] was to se-
mantically interconnect heterogeneous platform as a
service (PaaS) solutions sharing the same technology
(programming languages and frameworks). The main
research objectives were as follows: design of a seman-
tic interoperability framework, introduction of a refer-
ence architecture to interconnect different clouds and
development of the Cloud4SOA system. This project
dealt with semantic interoperability at platform level.

The European project mOSAIC [2] aimed at developing
the open-source cloud application programming inter-
face. Petcu et al. [3] presented the mOSAIC architecture
and its various usage scenarios. The aforementioned FP7

54 International Journal of Electrical and Computer Engineering Systems

project covers three basic business scenarios for using
multiple clouds: switch to the cloud (application develop-
ers or their clients should easily change the cloud provid-
er); service brokerage (finding the best cloud services for
a certain application); and development of cloud applica-
tions. The concepts of mOSAIC cloud ontology were iden-
tified by analyzing standards and the existing literature on
cloud interoperability and integration.

The FP7-funded Contrail project [4] aimed at de-
signing an open source system for cloud federations.
Contrail developed a software stack that enables a fed-
eration (combines services from different cloud provid-
ers), identity management (federated identity manage-
ment to use all services from different cloud vendors),
federated service level agreements (defined by a user
and translated into requirements by the system), a
cloud file system, and an interoperability layer that fa-
cilitates infrastructure management and application
deployment. It describes four use cases that represent
a diverse set of requirements: distributed provision of
geo-referenced data which is an implementation of a
3D Virtual Tourist Guide (VTG service), a multimedia
processing service marketplace that will exploit a Con-
trail federated cloud to develop a marketplace offering
multimedia services to end-users, scientific data analy-
sis that will archive climate model output data and
neutron scattering, and an electronic drug discovery
use case that plans to use modern bioinformatics tools/
applications on a federated cloud system.

The main aim of the Vision Cloud project [5] was to
solve data management conflicts in cloud federations
and multi-clouds. A federated cloud assumes a formal
vendors’ agreement, while the term multi-cloud [6] de-
notes the usage of multiple independent clouds. Five
areas of innovation in the VISION Cloud platform [5]
include the following: data objects are enriched with
detailed metadata, data lock-in should be avoided, com-
putations are put close to the data, efficient retrieval of
objects is enabled, and strong QoS guarantees, security
and compliance with international regulations are guar-
anteed. Real-world scenarios driving the Vision Cloud
FP7 project are: SAP – Business intelligence on-demand
(Vision Cloud is used for storage, data mobility and data
federation), Telco use cases (telecommunication op-
erators want to offer data-intensive applications with
the high quality of service), media use cases (videos in
clouds), and healthcare use cases (personalized health-
care applications based on patient health records).

The primary goal of the REMICS project [7] is to trans-
form legacy systems into UML models and to manipu-
late these models to migrate applications to clouds.
REMICS extracts the architecture of the legacy applica-
tion, analyzes it and finds out how to modernize it. This
information is converted into models that represent
the start of the migration activity. Researchers work-
ing on the REMICS project defined a methodology [8]
for the migration of legacy systems to clouds. Their
methodology consists of the following activities: re-

quirements and feasibility (to gather migration require-
ments), recovery (to get the application model of the
legacy application), migration (to migrate to the cloud),
validation (to define a testing strategy), supervision (to
control the performance of the system), interoperabil-
ity (to solve interoperability problems), and withdrawal
(to stop the service).

There are also some interoperability methodologies
in the existing literatures that are mostly concerned
with enterprise interoperability. The ATHENA Interop-
erability Methodology (AIM) [9] is an extension of the
Unified Software Development Process (UP) [10] which
introduces a group of interoperability activities. AIM is
used to identify interoperability issues and select the
adequate ATHENA solutions. Chen and Daclin [11] pro-
posed four main interoperability methodology phases,
i.e., definition of interoperability objectives and needs,
analysis of the existing system to identify interoperabil-
ity barriers and measure the current interoperability
level, select and combine solutions, and implementa-
tion and testing.

Sanati et al. [12] presented their E-service Integration
Methodology (E-SIM) to solve complex interoperability
problems and configure service workflow. The tasks in
this methodology include specification of life-event ser-
vice user requirements, specification of interoperability
requirements at business process, data, and interface
levels, detailed design of e-government services, design
and implementation of Semantic Web specifications.

The European Interoperability Framework (EIF) [13]
addresses interoperability of European public services
at four identified interoperability levels, i.e., legal, or-
ganizational, semantic, and technical. The involved
public organizations should make interoperability
agreements for each level, such as agreements on the
transposition of European directives to national leg-
islation, SLAs, reference taxonomies, code lists, data
dictionaries, interface specifications, data formats, etc.
Interoperability agreements specify one or more in-
teroperability solutions implemented by one or more
interoperability solution instances. Due to environ-
ment changes, interoperability of European public ser-
vices is a continuous task.

When dealing with the composition of web services,
a dominant interoperability problem is how to map the
inputs and outputs of involved services, and in most
cases, data mediation is required to achieve interoper-
ability among web services [14]. This problem has been
addressed in many papers and books. Nagarajan et al.
[14] proposed a data mediation architecture that uses
WSDL-S for mapping from inputs and outputs to com-
mon ontology and vice versa. The web services should
be semantically annotated by using WSDL-S, and the
mapping engine was used to transform SOAP mes-
sages according to defined XSLT or XQuery mappings.
WSDL-S later became the main input for W3C recom-
mendation SAWSDL that provides a similar data media-
tion mechanism. The main contributors to the SAWSDL

55Volume 7, Number 2, 2016

standard were members of the METEOR-S research
project and IBM [15]. Sheth et al. [15] claim that the key
benefit of SAWSDL is systematic data mediation, where
XSLT is used to map a service schema to ontology (lift-
ing schema mapping) and vice versa (lowering schema
mapping). Klímek and Necaský [16] introduced a mod-
el-driven method to automatically generate XSLT for
lifting and lowering schema mappings and its proto-
type implementation.

Li et al. [17] presented an approach to reconciliate
semantic conflicts in the composition of web services.
They used COIN ontology, SAWSDL and mapping algo-
rithms to handle complex differences by using minimal
numbers of predefined transformations. The method
to automatically analyze data flows of the BPEL process
and automatically determine possible semantic differ-
ences is also shown in the same paper. Stollberg et al.
[18] proposed a mediation model for Semantic web
services using WSMO mediators at data, functional,
and process levels, respectively.

There is currently still no methodology that aims at
identification and resolution of interoperability prob-
lems, either among APIs of commercial platforms as a
service or among cloud offers in general. The only ex-
isting methodology that takes into consideration cloud
interoperability problems is the methodology devel-
oped by the REMICS consortium [8], but its main pur-
pose is to provide a model-driven approach to migrate
the legacy application on software as a service.

Part of the methodology that addresses interopera-
bility deals with finding possible interoperability prob-
lems for the future migrated system, and with build-
ing interoperability components in migrated software
when needed. It does not consider interoperability
problems between different cloud providers. In terms
of the REMICS methodology, interoperability is mod-
eled as one of five technical practices with five tasks,
i.e., identification of interoperability problems/scenari-
os, definition of interoperability requirements, interop-
erability analysis, implementation of interoperability
components and interoperability monitoring [8].

3. PROPOSED METHODOLOGY

Based on a literature review and the service-level
cloud interoperability use case [19], the new method-
ology for the detection of interoperability problems
among different providers of platform as a service was
developed. This methodology uses semantic web an-
notations, semantic web services, ontology and the
AI planning method to detect and solve common
interoperability problems. Remote PaaS API opera-
tions are used to execute interoperability actions. The
proposed methodology has five main steps: Require-
ment identification; Interoperability analysis; Solution
design; Solution implementation; and Evaluation. The
steps of the proposed methodology and their main ac-
tivities are listed in Table 1. The methodology uses an

iterative approach, because platform as a service (PaaS)
offers and their APIs evolve and change very often, so
we can repeat these steps over time.

The most important interoperability needs of users
should be listed in the first step, i.e., interoperability ac-
tions such as migration of data from one PaaS offer to
another cloud storage, working with external cloud data
in PaaS applications, communication between two ap-
plications deployed on different PaaS offerings, compo-
sition of two or more API operations of different provid-
ers, etc. These actions can be derived from the available
use cases presented in technical and research papers,
deliverables of related projects, and proposals for cloud
standards, where the authors have already done some
research on user’s interoperability requirements. Based
on the identification of relevant interoperability actions,
adequate use cases should be defined and described.

Interoperability analysis deals with identifying levels
of interoperability problems and reasoning on possible
interoperability problems between different commer-
cial providers of platform as a service. This step starts
with studying the existing literature with the aim of
finding the most important known interoperability
problems for a given context. The systematic mapping
study or systematic review methods can be used to
perform the said review. The final result of the review
will be identification of levels of interoperability prob-
lems and specific problems on each level. Next, ontol-
ogy of interoperability problems should be developed
by using the chosen ontology development methodol-
ogy such as Ontology Development 101 [20].

Technical and semantic interoperability issues
among commercial providers of platform as a service
can be derived from database interoperability prob-
lems, metadata interoperability problems, interoper-
ability problems of web services and problems iden-
tified by different interoperability frameworks. In the
platform as a service context, the following levels of
interoperability problems were determined: legal, or-
ganizational, service level, application level, and stor-
age level. At legal level, we differentiate the following
main problems: different countries with different data
privacy laws, data sovereignty interoperability prob-
lems, and cloud data ownership issues. However, in-
compatibilities at legal and organizational level cannot
be solved by using cloud providers’ remote APIs, and
are not the focus of this paper. At service level, the main
problems are operations and parameter level differ-
ences that arise because two semantically similar API
operations or parameters are represented at different
levels of abstraction, differences that arise because
of using different descriptions of semantically similar
API operations, some necessary API operations can be
missing from cloud vendor’s remote APIs, and there
can be differences that arise because different descrip-
tions for semantically similar parameters are used. At
data (storage) level, the main interoperability problems
are as follows: aggregation is used in one cloud storage

56 International Journal of Electrical and Computer Engineering Systems

to represent a set of entities in another cloud storage,
the same entity can be modeled as an attribute in one
cloud storage and a data container in another storage,
two entities can be represented at different levels of
generalization in various cloud storages, semantically
unrelated entities might have the same name in differ-
ent cloud storages (homonyms), semantically similar
entities can be named differently in different PaaS stor-
ages (synonyms), some names are reserved and forbid-
den, and some types of names can be required (e.g.,
Salesforce requires that you name your custom object
with postfix __c), different means to define relation-
ships between two data containers (e.g., foreign key, no
relationship between data containers, etc.), or maybe
some cloud storage does not have any means to con-
nect two data containers, two attributes might have
different default values in different cloud storages, dif-
ferent cloud storages support different data types, and
differences between cloud data models.

Solution design prepares the whole architecture. It
includes activities such as the development of the on-
tology of resources, remote operations and data types
[21], definition of the semantic web service, needed
mappings and transformations, and defining the AI
planning domain. Remote operations of commercial
platform as a service, their data types and mappings
are modeled by means of the ontology of resources,
remote operations, and data type mappings. However,
the landscape of cloud APIs is changing constantly, and
the ontology should be upgraded over time. The refine-
ment of the ontology is mandatory when users detect
important changes in APIs of included providers and
when they want to add a new cloud provider to its new
remote functions, data types and new mappings. Next,
the language for semantic web services is selected, and
after that semantic web services are created by anno-
tating operation, inputs and outputs, data types and
needed mappings and transformations. Finally, an AI
planner is chosen, and the planning domain is created
by taking into account interoperability actions chosen
in the previous steps.

Solution implementation deals with approach im-
plementation and execution of the defined use cases.
The initial state and goal for the AI planner are gener-
ated programmatically based on the chosen interoper-
ability action, semantic annotations, the ontology, and
defined mappings and transformations. The interoper-
ability tool is developed or upgraded; the AI planner is
executed to get a plan or list detected interoperability
problems. If there is a suitable plan, appropriate service
compositions are executed, taking into account pos-
sible mappings and transformations of inputs and out-
puts of different services representing remote APIs or
composite service consisting of more remote APIs with
additional logic. The evaluation step evaluates success-
ful execution of use cases and correct identification of
possible interoperability problems. If some problems
are found, the AI domain and problem definitions, the
interoperability tool and semantic annotations should

Step Activities

1.
Requirement
identification

1.1 Choose a cloud model

1.2 Study the existing use cases

1.3 Identify relevant interoperability actions

1.4 Define use cases

2.
Interoperability
analysis

2.1 Review the existing literature on in-
teroperability problems

2.2 Identify levels of interoperability
problems

2.3 Identify specific interoperability issues
at each level

2.4 Choose ontology development meth-
odology

2.5 Create ontology of interoperability
problems

3.
Solution design

3.1 Create ontology of resources, remote
operations, and data types

3.2 Choose language for semantic web
services

3.3 Create mappings and transformations

3.4 Associate mappings and transforma-
tions to the appropriate elements of
services

3.5 Choose the AI planner

3.6 Define the AI planning domain

3.7 Define algorithms for finding interoper-
ability problems

4.
Solution
implementation

Use cases execution:

4.1 Implement needed web services to
invoke remote APIs

4.2 Generate the AI planning problem
based on semantic annotations, ontol-
ogy and user choice

4.3 Develop or modify/upgrade an interop-
erability tool

4.4 Get a suitable plan from the AI planner
or find interoperability problems

4.5 Execute service composition

5.
Evaluation

5.1 Evaluation of ontologies

5.2 Validation of execution of use cases

be inspected and errors should be eliminated. Addi-
tionally, it is useful to evaluate developed ontologies
by using known ontology evaluation techniques and
methods.

Table 1. Steps and activities of the proposed
methodology.

57Volume 7, Number 2, 2016

Fig. 1. API operations executed in use case 2

4. METHODOLOGY APPLICATION

All listed steps and activities were performed on the
platform as a service model and two use cases: migra-
tion of data between different PaaS storages and add-
ing a user to the application deployed on other PaaS of-
fers. These two use cases were constructed to illustrate
how PaaS storage interoperability and service-level
interoperability can be solved by using this approach
and remote APIs of PaaS providers.

In the first use case, data was migrated between differ-
ent providers of platform as a service. Successful execu-
tion of more complex interoperability scenarios cannot
be imagined without being able to move data from one
PaaS vendor to another. The majority of vendors’ API oper-
ations deals with data manipulation and management, so
the first use case is also important to learn more about the
mentioned APIs in practical problems. We have chosen
the three prominent platform as a service providers (Mi-
crosoft, Google and Salesforce) and managed to migrate
simple data (three tables) from one to another provider
using the presented interoperability methodology at data
level. We have determined the differences in data and ap-
plication models between chosen commercial vendors of
platform as a service. At Force.com platform, data objects
are called custom objects (similarly to tables in databas-
es). The Google App Engine Datastore holds data objects
named entities; each entity has one or more properties of
one of the supported data types and each entity is identi-
fied by its kind and key. Finally, Microsoft’s Azure SQL Da-
tabase is based on SQL Server technology and it provides
a relational database for the Azure platform. Google App
Engine, Microsoft Azure, and Salesforce do not allow ap-
plications deployed on their cloud to directly access ex-
ternal databases (other than their predefined ones that
are part of their platform as a service offer or one of their
other cloud storage options). The external data can only
be accessed using REST or SOAP web services.

In the future, we plan to build an architecture for data
migration among PaaS providers that uses data ontol-
ogy (OWL is an intermediate data format) and data
type mappings stored as individuals in PaaS ontology.
Validation of the first use case and the data migration
architecture will be done by migrating a more complex
set of data (to be more specific, data of an open-source
content management system) and manually checking
all of the migrated data elements.

Methodology application at service level is shown in
detail in paper [19]. In this paper, we tried to identify

Use Case ID: UC-2

Use Case
Name:

Add the existing user to other PaaS providers

Actors: PaaS application administrator, PaaS provider
1, PaaS provider 2

Description:

This use case shows how to add a user from one
PaaS offer to an application hosted on another
PaaS. PaaS administrator specifies the data
container of target PaaS where user informa-
tion will be stored. Adequate schema mapping
files should also be created. Finally, an e-mail is
sent to the PaaS application administrator a new
user is added to.

Trigger:

This use case is initiated by the PaaS application ad-
ministrator when he decides that he wants to add
the existing user information (from other PaaS of-
fer) to the PaaS application he manages.

Preconditions:

1. The user required to migrate must be logged-in
on the source PaaS offer
2. The PaaS application administrator must be able
to put data into the data container with user infor-
mation on the target PaaS offer

Post
Conditions:

1. The existing user from the source PaaS offer is
added to the application hosted on the target PaaS
offer, an e-mail is sent to the PaaS application ad-
ministrator

Normal Flow:

1. The PaaS application administrator selects the
source and connections of the target PaaS offer
and specifies the name of the data container where
user information is stored for target application

2. The PaaS application administrator initiates user
migration

3. Input/output mappings are performed, appro-
priate web services are called, the user is added to
the application stored on the target PaaS offer, and
an e-mail on the new user is sent to the adminis-
trator

Exceptions:

1. If there is a problem with connection to the cho-
sen source or target PaaS offers, the exception is
raised and an error message is shown

2. If the system detects the interoperability prob-
lem during the planning phase or service execu-
tion, the action is stopped and detected interoper-
ability problems are shown in user interface

Special
Requirements:

This use case should validate API service level in-
teroperability, using ontology based data media-
tion and lifting and lowering schema as defined in
SAWSDL.

Assumptions: The PaaS user understands English.

and address service-level interoperability issues when
using APIs from different commercial providers of plat-
form as a service. First, we have defined a use case to
add current user information from one platform as a
service offer to the application hosted on another offer.
To address interoperability problems, ontology driven

Table 1. Steps and activities of the proposed
methodology.

58 International Journal of Electrical and Computer Engineering Systems

data mediation is used and tested in this use case. Re-
mote vendors’ APIs are implemented as web services.
Resulting web operations and their inputs/outputs are
semantically annotated by using cross-PaaS concepts
from the developed platform as a service OWL ontol-
ogy. Next, SAWSDL and XSLT are used to define service
type mappings. The actual composition of platform as
a service APIs is implemented by means of the AI plan-
ner and the developed Java web application. Testing
and validation are performed on a case where the cur-
rent Salesforce user is added to the data container in
the Vosao content management system deployed on
Google App Engine [19]. The flow of cloud API opera-
tions with operation names as defined in the ontology
is shown in Figure 1. The use case is described in Table
2. The service annotated with GetUserInformation has
output UserInfoType and provides basic information
on the user logged in a specific PaaS offer. Its output
is used by other two operations (CreateDataOperation
and SendEmailOperation) to create a data object in
other PaaS offer, and send an e-mail to the application
administrator that a new user has been added. We have
executed a composite operation by using a prototype
we developed, “an AI planner has successfully found
the plan, CXF interceptor class and service data map-
ping and transformation were successfully finished,
and web services defined in composition were success-
fully invoked. UserEntity was successfully created with
the appropriate properties for username, name and
email filled-in. Finally, the email message was sent to
test e-mail representing mail of the application admin-
istrator” [19].

5. CONCLUSION

Interoperability problems between cloud providers
are one of the most serious issues of this new com-
puting paradigm. For this reason, a methodology is
needed to systematically and effectively detect and
solve interoperability problems. Currently, there is still
no methodology that aims at identification and resolu-
tion of interoperability problems, either among APIs of
commercial platforms as a service or among cloud of-
fers in general. Our proposed methodology is focused
and implemented on platform as a service, but it can
be used in any of the three main models of cloud com-
puting. The methodology uses an iterative approach
because platform as a service (PaaS) offers and their
APIs evolve and change very often. The user interop-
erability requirements also change over time and new
interoperability problems could arise.

The plan for the future is to apply the proposed meth-
odology to additional use cases regarding PaaS in-
teroperability, by using other AI planners (for example,
some contingent planner to address non-determinism
of the domain), and try to apply it to other two cloud
computing models (infrastructure as a service and soft-
ware as a service). Hopefully, other researchers will find
this methodology useful and apply it in their research.

6. ACKNOWLEDGEMENT

This work has been fully supported by the Croatian
Science Foundation under the project IP-2014-09-3877.

7. REFERENCES:

[1] E. Kamateri, N. Loutas, D. Zeginis, J. Ahtes, F.

D’Andria, S. Bocconi, P. Gouvas, G. Ledakis, F. Rava-

gli, O. Lobunets, K. A. Tarabanis, “Cloud4SOA: A

Semantic-Interoperability PaaS Solution for Multi-

cloud Platform Management and Portability”, Ser-

vice-Oriented and Cloud Computing, Vol. 8135,

pp. 64–78, Springer Berlin Heidelberg, 2013.

[2] D. Petcu, C. Sandru, B. Di Martino, S. Venticinque,

M. Rak, R. Aversa, M. Ficco, G. Cretella, D 1.1 - Ar-

chitectural Design of the mOSAIC’s API and

Platform, http://www.mosaic-cloud.eu/index.

php?option=com_chronocontact&Itemid=186

(accessed: January 16, 2016)

[3] D. Petcu, C. Craciun, M. Neagul, I. Lazcanotegui, M.

Rak, “Building an interoperability API for Sky com-

puting”, Proceedings of the 2011 International Con-

ference on High Performance Computing and Simu-

lation, Istanbul, Turkey, 4-8 July 2011, pp. 405–411.

[4] J. Jensen, P. Dazzi, P. Mori, P. Kershaw, I. Johnson,

M. Coppola, A. Lazouski, F. Martinelli, “The CON-

TRAIL approach to Cloud Federations”, Proceed-

ings of the International Symposium on Grids &

Clouds 2012, Taipei, Taiwan, 26 February - 2 March

2012, pp. 1–14.

[5] S. V. Gogouvitis, G. Kousiouris, G. Vafiadis, E. K.

Kolodner, D. Kyriazis, “OPTIMIS and VISION Cloud:

How to Manage Data in Clouds”, Euro-Par 2011:

Parallel Processing Workshops, Vol. 7155, pp. 35–

44, Springer Berlin Heidelberg, 2012.

[6] N. Grozev, R. Buyya, Inter-Cloud architectures and

application brokering: taxonomy and survey, Soft-

ware: Practice and Experience, Vol. 44, No. 3, 2012,

pp. 369–390.

[7] P. Mohagheghi, T. Sæther, “Software Engineering

Challenges for Migration to the Service Cloud Para-

digm: Ongoing Work in the REMICS Project”, Pro-

ceedings of the IEEE 7th World Congress on Services,

Washington, DC, USA, 4-9 July 2011, pp. 507–514.

[8] G. Benguria, P. Mohagheghi, Y. Gomez, C. Hein,

B. Morin, Deliverable D.2.2 - REMICS Methodol-

59Volume 7, Number 2, 2016

ogy, http://www.remics.eu/system/files/REMICS_

D2.2_V1.0.pdf (accessed: January 16, 2016)

[9] ATHENA Consortium, Interoperability methodolo-

gy, http://athena.modelbased.net/methodology/

index.pdf (accessed: January 16, 2016)

[10] I. Jacobson, G. Booch, J. Rumbaugh, “The Unified

Software Development Process”, Addison-Wesley,

1999.

[11] D. Chen, N. Daclin, “Barriers Driven Methodology

for Enterprise Interoperability”, Establishing the

Foundation of Collaborative Networks, pp. 453–

460, Springer US, 2007.

[12] F. Sanati, J. Lu, X. Zeng, “A methodological Frame-

work for E-government Service Delivery Integra-

tion”, eGovernment Interoperability Campus, Par-

is, 9 October 2007, pp. 1–9.

[13] European Commission, European Interoperabil-

ity Framework (EIF) for European public services,

http://ec.europa.eu/isa/documents/isa_annex_ii_

eif_en.pdf (accessed: January 16, 2016)

[14] M. Nagarajan, K. Verma, A. P. Sheth, J. A. Miller, “On-

tology Driven Data Mediation in Web Services”, In-

ternational Journal of Web Services Research., Vol.

4, No. 4, pp. 104–126, 2007.

[15] A. P. Sheth, K. Gomadam, A. Ranabahu, “Semantics

Enhanced Services: METEOR-S, SAWSDL and SA-

REST”, IEEE Data Engineering Bulletin, Vol. 31, No.

3, pp. 8–12, 2008.

[16] J. Klímek, M. Necaský, “Generating Lowering and
Lifting Schema Mappings for Semantic Web Ser-
vices”, IEEE Workshops of International Confer-
ence on Advanced Information Networking and
Applications, Biopolis, Singapore , 22-25 March
2011, pp. 29–34.

[17] W. Li, J. Tordsson, E. Elmroth, “Modeling for Dy-
namic Cloud Scheduling Via Migration of Virtual
Machines”, Proceedings of the IEEE 3rd Interna-
tional Conference on Cloud Computing Technol-
ogy and Science, Athens, Greece, 29 November - 1
December 2011, pp. 163–171.

[18] M. Stollberg, E. Cimpian, A. Mocan, D. Fensel, “A
Semantic Web Mediation Architecture”, Canadian
Semantic Web, Vol. 2, pp. 3–22, Springer US, 2006.

[19] D. Andročec, N. Vrček, P. Kungas, “Service-Level
Interoperability Issues of Platform as a Service”,
Proceedings of the IEEE 11th World Congress on
Services, New York City, New York, USA, 27 June - 2
July 2015, pp. 349–356.

[20] N. F. Noy, D. L. McGuinness, “Ontology Develop-
ment 101: A Guide to Creating Your First Ontol-
ogy”, Stanford Knowledge Systems Laboratory,
Stanford University, USA, Technical Report KSL-01-
05, 2001.

[21] D. Andročec, N. Vrček, “Platform as a Service API
Ontology”, Proceedings of the 12th European
Conference on eGovernment, Barcelona, Spain,
14-15 June 2012, pp. 47–54.

