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Abstract – A state estimator is presented, in which conventional measurements from the SCADA system and synchrophasors 
available from Phasor Measurement Units (PMUs) are used. A recursive algorithm for the part of the system observable by PMUs 
is applied, in which multiple sets of synchrophasors are processed. The obtained state estimate is then used together with SCADA 
measurements in an iterative procedure to estimate the state of the entire power system. The developed methodology was tested 
on IEEE test systems with 30 and 57 buses as well as on the model of the Croatian transmission system. The proposed solution is 
comparable in convergence with the classical state estimator and other hybrid models, whereas it enhances state estimation 
accuracy and filtering of measurement errors.
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1. INTRODUCTION

In addition to energy market development, which re-
sulted in treating electrical energy as any other tradable 
good, integration of distributed generation introduces 
additional uncertainties in power system operation. A 
combination of lagging investments into the main in-
frastructure, due to either economical or environmental 
issues, with continuous focus on increased profits, often 
results in power system operation closer to its stability 
limits. Consequently, large power system blackouts in 
the last decade have further shifted attention and fund-
ing towards development and deployment of solutions 
based on emerging technologies. It is envisaged that the 
application of the synchronized measurement technol-
ogy on top of the obsolete infrastructure would help 
Transmission System Operators (TSO) to cope with the 
ongoing challenges. Not only have the TSOs worldwide 
started to popularize their transmission systems with 
Phasor Measurement Units (PMUs), but the applications 
using measured synchrophasors of voltage and cur-
rent have also been developed. Complex solutions are 
tailored to the parts of the power system and adjusted 
according to customer needs in order to preserve power 
system stability and integrity [1].

The cornerstone application in the control room that 
is expected to benefit from the utilization of synchro-
phasors is the power system state estimator. Since the 
estimated state of the power system is used as an input 
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for other applications crucial for power system opera-
tion, such as power flow calculation and contingency 
analysis, many researchers have been focused on the 
improvement of state estimator performance [2]-[3]. 
Due to availability of highly redundant SCADA mea-
surements and a gradual increase in the number of 
PMUs deployed in the power system, an evolutionary 
approach has been chosen by many utilities and hybrid 
state estimators were recognized as a solution how to 
integrate synchrophasors into state estimation prac-
tice [4].

A literature review reveals that there are several as-
pects in which state estimation can be enhanced, such 
as the accuracy of the estimated state, filtering of mea-
surement errors as well as the speed and convergence 
of the algorithm applied [5]. In the state estimator pro-
posed in [6], a set of constraints is introduced rather 
than transforming measurements, which would result 
in the propagation of measurement uncertainties. An-
other approach, which is given in [7], focuses on avoid-
ing convergence issues by using phasors for the current 
in rectangular coordinates. Pseudo-voltages based on 
measured synchrophasors and the known parameters 
of branches are calculated in [8], while pseudo-flows 
and pseudo-injections are used as parts of measure-
ment vectors in the state estimators given in [9]-[11], 
respectively. Although optimal PMU placement meth-
ods present an important part of state estimation prac-
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tice, they are not the focus of this paper, and therefore, 
an interested reader is advised to refer to [12].

The paper presents a state estimator in which syn-
chrophasors are preprocessed in a recursive algorithm 
to take the advantage of their high sampling frequen-
cy. The obtained estimate for the part of the system 
observable by PMUs is then merged with SCADA mea-
surements to estimate the state of the entire power 
system. The proposed methodology was applied to the 
IEEE test systems with 30 and 57 buses as well as the 
model of the Croatian transmission system. In order to 
validate its performance, the results of the proposed 
state estimator were compared with the results of the 
classical state estimator and other hybrid models.

The developed solution is explained in Section 2. 
Case studies and results obtained from simulations are 
given in Sections 3 and 4, respectively. Section 5 con-
cludes the paper.

2. HYBRID STATE ESTIMATOR FORMULATION

The architecture of the proposed method consists 
of preprocessing the synchrophasors and state esti-
mation of the entire power system. First, the recursive 
algorithm is used, with the measurement vector com-
prised of synchrophasors only, while the state vec-
tor comprises voltage angles and magnitudes only of 
those buses that are observable by PMUs deployed in 
the power system. The algorithm runs several times, 
each time with the newest set of synchrophasors. The 
result from the last run, which presents the estimated 
state of the part of the system observable by PMUs, is 
forwarded to the second part of the proposed state es-
timator. The second part of the solution is based on the 
iterative method. The measurement vector is formed 
from pseudo-measurements obtained in the first part 
and SCADA measurements. Since the state vector of 
this part comprises the states of all buses in the system, 
the result is the estimated state of the entire power 
system. The architecture of the developed solution is 
given in Figure 1.

Fig. 1. The architecture of the proposed 
state estimator

The first part of the proposed model uses the state 
vector in polar coordinates, with voltage magnitudes 
and angles of the buses observable by PMUs:

(1)

where XPMU is the subset of voltage phasors at the bus-
es with PMUs deployed and XAdjacent is the subset of volt-
age phasors at the buses adjacent to PMU buses. 

Figure 2 gives a pi-model of the network branch with 
tap modeling, where a is the off-nominal tap position 
of the transformer (for a transmission line a = 1), where-
as g and b are branch conductance and susceptance, 
respectively. If a PMU is deployed at bus k, the voltage 
phasor Vk at bus k and the current phasor Ikl between 
the buses k and l are measured.

Fig. 2. A pi-model of the network branch with tap 
modeling

When there are more PMUs deployed in the system, 
the sets of voltage and current phasors are measured. 
Here, it is assumed that the number of measurement 
channels of each PMU is sufficient to measure the volt-
age phasor at the PMU bus and current phasors on all 
branches emerging from the PMU bus. The sets of volt-
age and current phasors measured by one PMU make 
an observable island that consists of the PMU bus and 
the adjacent buses. There is an indirect connection be-
tween voltage phase angles θk at N buses in the island, 
since all of them refer to a common angle reference θ0 
of the slack bus:

(2)

The measurement vector of the state estimator used 
in the first part of the proposed solution consists of the 
set of voltage phasors in polar coordinates and the set 
of current phasors in rectangular coordinates:

(3)

Here, θkAngand VkMag are the vectors of voltage magni-
tudes and angles, respectively, that are combined into 
the vector VkPolar. The current phasor IklRect comprises 
real IklR  and imaginary IklI  parts of the measured cur-
rents. Due to the transformation of current phasors 
from polar to rectangular coordinates, one should cal-
culate the uncertainties of the obtained values. There-
fore, classical uncertainty propagation theory is used to 
derive standard deviations ϬiR and ϬiI of the real and 
imaginary parts of current phasors [13]:

(4)

(5)

where Ϭθ  and ϬI are standard deviations of current 
angles and magnitudes, respectively.
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While the relationship between voltage phasors and 
state vector elements is straightforward, the real and 
imaginary parts of current phasors are related to state 
vector elements as follows:

(6)

(7)

where B = bkl + bsk, G = gkl + gsk . 

Having a nonlinear measurement model due to mea-
surements of currents, for the time instant k, the mea-
surements and the states are related as follows:

zk=h(xk)+rk, (8)

where h(xk) is a set of nonlinear equations and vector 
r represents white Gaussian measurement noise with 
the covariance matrix R.

System state transition is assumed by slow changes 
of loads in a minute range. A linear discrete time pre-
diction model is used to capture the quasi steady-state 
behavior of the system at the time instant k:

xk = Fk-1xk-1 + gk-1 + qk-1 , (9)

where q is white Gaussian noise of the prediction 
model with the covariance matrix Q. The vector g 
and the matrix F, which are used to relate system 
states xk and xk-1, are calculated by applying the online 
parameter identification technique [14]:

(10)

(11)

where I is the identity matrix. Vectors ak and bk are 
given as follows:

(12)

(13)

(14)

where 1ˆ k−xP  is the associated covariance matrix. The 
matrix ˆ

kX  is then obtained by evaluating sigma points 
through the prediction model, as given in (9). The pre-
dicted state mean vector and the covariance matrix are 
determined as follows [17]:

(15)

(16)

where n is the number of states for the part of the 
system observable by PMUs, ˆ i

kX  is the i-th column of 
the matrix ˆ

kX , whereas the values of weights mW  and 
cW can be found in [18].

Sigma points are updated for the time instance k:

(17)

and then they are propagated through the nonlinear 
function given by (8) in order to obtain the matrix kZ . 
The mean of the propagated points is obtained as:

while αk and βk are constants taken in the range from 
0 to 1.

 After presenting the state and measurement models 
used for the proposed state estimator, what follows is 
a brief description of the procedure, a thorough over-
view of what is given in [15]-[16]. 

The recursive algorithm estimates the system state 
at the time instant k by using the system state from 
the previous time instant k-1 and the latest set of the 
measured synchrophasors. Rather than linearizing the 
nonlinear measurement model, in order to capture the 
mean and the covariance of the distribution of the state 
vector ˆ k -1x , the matrix of sigma points is calculated as:

(18)

where i
kZ  is the i-th column of kZ . The measure-

ment covariance matrix and the cross-covariance of 
the state and measurements are calculated as:

(19)

(20)

The estimated state and the covariance matrix at the 
time instant k are given as:

(21)

(22)

where 1
k k k

−=K C S is the filter gain. The estimated 
state is used at the next time instant k+1. The results 
obtained in the last run are used as pseudo-measure-
ments for the state estimator that estimates the state 
of the entire power system.

Estimation of the entire power system is obtained by 
applying the iterative method. In addition to voltage 
magnitudes and power measurements from the SCA-
DA system, the measurement vector includes pseudo-
measurements obtained in the last run of the state es-
timator that preprocesses synchrophasors:

(23)

With reference to Fig. 2, a nonlinear measurement 
model is used, since there is a nonlinear relationship of 
elements of the state vector x (voltage magnitudes V 
and angles θ  at all system buses) with measurements of 
power flows (Pkl and Qkl) and power injections (Pk and Qk):

(24)

(25)
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(26)

(27)

where Gkl and Bkl are the elements of the nodal admit-
tance matrix. The relationship between the measure-
ment vector z and the state vector x is given as:

z=h(x)+e, (28)

where ( )h x  is a set of nonlinear equations and e is the 
vector of measurement errors with the covariance ma-
trix R and the weight matrix W:

(29)

Here, iσ  is the standard deviation of the i-th meas-
urement and its inverse square is used at the meas-
urement weight. By assuming a uniform probability 
distribution over the entire range of uncertainties, the 
standard deviation of each measurement is computed 
by using the maximum uncertainty u∆  [13], [19]:

(30)

where m is the number of measurements.

Optimal estimation is obtained when the goal func-
tion J(x) is minimized:

(31)

As the measurement model is nonlinear, an iterative 
algorithm is applied and the change of the state vector 
elements k∆x  is computed in the k-th iteration:

(32)

(33)

where the gain matrix and the Jacobian matrix are giv-
en as follows:

(34)

(35)

In order to avoid high weights for highly accurate 
measurements, such as zero-injections, which leads to 
ill-conditioning of the gain matrix and possible conver-
gence issues [2], a set of constraints is introduced:

(36)

where λ is the vector of Lagrange multipliers. Minimiza-
tion of L(x, λ) is obtained by satisfying the first-order 
optimality conditions ϬL(x,λ) /Ϭx=0 and ϬL(x,λ) /
Ϭλ=0. Finally, by using the Gauss-Newton method the 
system of equations is iteratively solved for Δx and λ:

(37)

where ( )= ∂ ∂C c x x  and 1k k+∆ = −x x x . The scaling 
factor 11 max( ( ))diagα −= R  is used to additionally mini-
mize the gain matrix condition number. The stopping 
criterion for the iterative procedure is the value of k∆x  
smaller than the desired tolerance.

3. CASE STUDIES

The proposed state estimator was applied to IEEE 
test systems with 30 and 57 buses [20] as well as a 
mathematical model of the Croatian transmission sys-
tem. The results were compared with the results of the 
classical state estimator that uses only conventional 
SCADA measurements and other hybrid state estima-
tors given in Table 1.

Table 1. State estimators
Abbrevia-

tion Explanation Ref.

Classic Classical state estimator [2]
HCSE Hybrid Constrained State Estimator [6]

RectI Rectangular Currents State Estimator [7]

SEPV State Estimator with Pseudo Voltages [8]

SEPF State Estimator with Pseudo Flows [9]

SEPM State Estimator with Pseudo 
Measurements [10]

SEPI State Estimator with Pseudo Injections [11]

3.1. LOCATIONS AND GENERATION OF 
  MEASUREMENTS

For IEEE test systems, the locations of SCADA mea-
surements were determined after observability analy-
sis in order to ensure complete observability of the 
power system. The locations of PMUs were chosen by 
using redundancy analysis to enhance local redundan-
cy levels, as given in Table 2 – Table 3. For the Croatian 
transmission system, real locations of measurements 
were used, as given in Figure 3.

Table 2. Measurement locations 
for the IEEE 30 system

Measurement 
type Measurement location

Voltage phasor 
(# bus) 1, 4, 5, 7, 9, 14, 15, 16, 17

Current phasor 
(#from-#to)

1-2, 1-3, 4-6, 5-7, 9-11, 9-10, 4-12, 14-
15, 16-17, 15-18, 15-23, 4-2, 4-3, 5-2, 
7-5, 7-6, 9-6, 14-12, 15-12, 16-12, 15-

14, 17-16, 17-10

Voltage magni-
tude (#bus) 2, 3, 6, 9, 11, 14, 16, 17, 25, 30

Power flow 
(#from-#to)

1-3, 2-4, 2-6, 4-6, 5-7, 6-8, 6-9, 6-10, 
12-13, 12-15, 14-15, 16-17, 15-18, 10-
20, 10-17, 15-23, 25-26, 25-27, 28-27, 

29-30, 6-28

Power injection 
(#bus) 1, 2, 4, 6, 10, 11, 12, 15, 18, 19, 24, 25, 27, 30
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Standard uncertainties are computed by using ex-
pression (30) and the maximum measurement uncer-
tainties that are usually known for each type of mea-
surements and are given by equipment manufacturers, 
as shown in Table 4 [6], [21]. A set of true measurements 
was generated from the power flow calculation output, 
to which random Gaussian noise with a zero mean and 
given uncertainties was added in order to obtain noisy 
measurements.

Table 3. Measurement locations for the IEEE 57 
system

Measurement 
type Measurement location

Voltage phasor  
(# bus) 1, 3, 5, 8, 10, 11, 13, 14, 15, 16, 18, 41, 42, 57

Current phasor 
(#from-#to)

1-2, 3-4, 8-9, 13-14, 13-15, 1-15, 1-16, 1-17, 
3-15, 5-6, 10-12, 11-13, 14-15, 18-19, 11-41, 

41-42, 41-43, 15-45, 14-46, 10-51, 13-49, 
11-43, 57-56, 3-2, 5-4, 8-6, 10-9, 11-9, 13-9, 

14-13, 15-13, 15-1, 16-1, 15-3, 18-4, 18-4, 8-7, 
13-11, 13-12, 16-12, 15-14, 41-11, 42-41, 41-

56, 42-56, 57-39

Voltage 
magnitude (#bus)

1, 3, 4, 5, 7, 8, 11, 15, 17, 22, 27, 31, 37, 44, 
52, 54

Power flow 
(#from-#to)

1-15, 1-17, 2-3, 3-4, 4-5, 4-18, 6-7, 7-8, 7-29, 
8-9, 9-10, 9-11, 9-12, 9-13, 12-16, 12-17, 13-
15, 14-15, 14-46, 18-19, 22-23, 22-38, 24-25, 

28-29, 24-26, 26-27, 32-33, 35-36, 38-48, 
46-47, 52-29, 52-53

Power injection 
(#bus)

1, 2, 5, 6, 10, 12, 13, 15, 18, 19, 25, 27, 30, 32, 
35, 41, 43, 44, 47, 49, 51, 53, 54, 55, 57

Fig. 3. Measurement locations 
for the Croatian system

Table 4. Maximum measurement uncertainties

Synchrophasors

Current
magnitude

Voltage
magnitude

Current and voltage 
phase angle

0.03% 0.02% 0.01˚

SCADA measurements

Voltage
magnitude

Power
flow

Power
injection

0.2% 2% 2%

3.2. TRANSITION OF SYSTEM STATE

The estimators used in modern control rooms are 
rerun every few minutes, using the measurements col-
lected during that period. Therefore, between the two 
runs of state estimators we assumed the time period 
of several minutes during which the values of loads on 
selected buses were increased following a linear trend 
from 5% up to 30%, with random fluctuation of 3% in 
value. Furthermore, the time period was divided into 
kmax= 50 time-sample subintervals and in each subin-
terval power flow calculation was run to obtain a dif-
ferent set of measurements due to a smooth change 
in load. To make simulation more realistic, generator 
outputs were changed according to the assignment of 
participation factors in order to avoid overload of the 
slack bus.

Since synchrophasors are sampled at a much higher 
frequency in comparison with SCADA measurements, 
the proposed model in the preprocessing stage used 
a new set of synchrophasors in each subinterval k. The 
state estimate obtained from the previous run in the 
subinterval k-1 was updated and the result was used to 
compute the state in the subinterval k+1. The state esti-
mated for the part of the system observable by PMUs in 
the last subinterval of the whole simulation period was 
used as pseudo-measurements in the iterative state es-
timator that also takes SCADA measurements into the 
measurement vector and estimates the state of the en-
tire power system. Since SCADA measurements do not 
have precise time tags such as synchrophasors, they 
were collected during the whole simulation period for 
all state estimators. Hybrid state estimators, with the 
exception of the proposed model, used the latest set of 
the measured synchrophasors and were run at the end 
of the simulation period.

The online parameter identification technique was 
initialized by using the first two samples of voltage 
magnitudes and angles from power flow calculation. 
As the initial states were assumed as highly accurate, 
the diagonal elements of the matrix P0 were initialized 
to 10-6 and updated, while the diagonal elements of 
the matrix Q were set to the same value and remained 
constant during the whole simulation period [22]. The 
constants α and β were set to 0.8 and 0.5, respectively 
[13].

3.3. EVALUATION OF THE STATE ESTIMATOR 
PERFORMANCE

The results of the proposed state estimator were 
compared with the results obtained by applying other 
hybrid models and the classical state estimator. The 
results given in the section that follows were obtained 
by averaging the results of 100 Monte Carlo trials, each 
time with different random noise in measurements. 
The accuracy of state estimators was compared by cal-
culating the variance of the estimated states of the en-
tire power system:
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(38)

where:

M is the number of Monte Carlo trials,

L is the number of state variables,

x  is the vector of true state values, and

( )ˆ ix  is the estimated state vector in the i-th Monte Carlo 
trail.

The filtering of measurement errors is presented 
through the filtering index ( )x̂ξ  that was obtained as:

(39)

where,

ẑ  are the calculated values based on the estimated 
state,

z  are the noisy measurements,
truez  are the true values (without random errors), and

m is the number of measurements.

The number of iterations and the computation time 
needed to reach the convergence criterion of 10-6 were 
used as indicators of convergence and speed of state 
estimators.

4. RESULTS

What follows are the results obtained from simula-
tions when state estimators were applied to test sys-
tems. Table 5 – Table 7 provide the results of the pro-
posed solution (HSE) in comparison with the classical 
state estimator and other hybrid models.

System SE
2σ∑ ξ Iter. Time 

[s]

IEEE 30

Classic 6.35 x 10-3 1.013 4.98 0.03

HCSE 8.928 x 10-5 0.035 4.28 0.10

RectI 8.928 x 10-5 0.035 4.79 0.08

HSE 8.315 x 10-5 0.034 1+3.19 0.17+0.04

SEPV 8.826 x 10-5 0.161 4.19 0.05

SEPF 8.448 x 10-5 0.035 4.28 0.06

SEPM 8.475 x 10-5 0.035 4.36 0.07

SEPI 1.356 x 10-4 0.146 4.73 0.03

Table 5. State estimation results for the IEEE 30 system

When comparing the results of hybrid models with 
the results of a classical solution, it can be seen that 
the inclusion of synchrophasors into the measurement 
vector enhances state estimation accuracy and the fil-
tering of measurements errors. Furthermore, from the 
results obtained, it can be concluded that, in compari-
son with other hybrid models [6]-[11], the proposed 
model additionally enhances state estimation accuracy 

and the filtering of measurement errors, since it pro-
vides the smallest values of the variance of  estimated 
states of the entire power system and of the filtering 
index. Therefore, it is clear that a modification of the 
measurement vector in comparison to the models giv-
en in previous publications, results in enhancement of 
hybrid state estimator performance.

Table 6. State estimation results for the IEEE 57 
system

System SE 2σ∑ ξ Iter. Time 
[s]

IEEE 
57

Classic 4.553 x 10-3 0.944 5.02 0.08

HCSE 8.826 x 10-5 0.036 4.97 0.35

RectI 8.837 x 10-5 0.036 5.00 0.13

HSE 4.038 x 10-5 0.013 1+3.00 0.47+0.06

SEPV 7.228 x 10-5 0.066 4.30 0.10

SEPF 1.023 x 10-4 0.041 4.98 0.12

SEPM 1.045 x 10-4 0.044 5.00 0.12

SEPI 1.214 x 10-4 0.091 4.71 0.10

Table 7. State estimation results for the Croatian 
system

System SE
2σ∑ ξ Iter. Time 

[s]

CRO

Classic 1.435 x 10-5 0.322 4.00 1.94

HCSE 3.819 x 10-6 0.055 4.00 3.05

RectI 3.819 x 10-6 0.055 4.00 2.70

HSE 3.766 x 10-6 0.055 1+2.83 0.53+1.42

SEPV 6.099 x 10-6 0.106 4.00 2.70

SEPF 3.778 x 10-6 0.055 4.00 2.15

SEPM 3.782 x 10-6 0.056 4.00 2.15

SEPI 8.320 x 10-6 0.161 4.00 2.01

When comparing the results of hybrid models with the 
results of a classical solution, it can be seen that the in-
clusion of synchrophasors into the measurement vector 
enhances state estimation accuracy and the filtering of 
measurements errors. Furthermore, from the results ob-
tained, it can be concluded that, in comparison with other 
hybrid models [6]-[11], the proposed model additionally 
enhances state estimation accuracy and the filtering of 
measurement errors, since it provides the smallest values 
of the variance of  estimated states of the entire power 
system and of the filtering index. Therefore, it is clear that 
a modification of the measurement vector in comparison 
to the models given in previous publications, results in en-
hancement of hybrid state estimator performance.

The computation time and the number of iterations 
for the proposed solution are given in two parts. Preproc-
essing of synchrophasors is shown as a single iteration, 
whereas the second part presents the number of itera-
tions of the second method. Regarding the computation 
time, a classical state estimator is the fastest one due to its 
simplicity and the smallest number of measurements, as 
only SCADA measurements are used.
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Although the computation time of the proposed 
state estimator is slightly larger due to processing of 
multiple sets of synchrophasors in comparison with 
other models that use only one set of measurements, it 
is still within acceptable time limits, which is confirmed 
by the smallest number of iterations necessary to reach 
the convergence criterion.

Due to space limitations, the results are visualized for 
the model of the Croatian power system only. As the com-
plete mathematical model of the Croatian transmission 
system comprises 110 kV, 220 kV and 400 kV voltage lev-
els, with 200 buses and 287 branches in total, the results 
are given for the part of the system that is observable by 
PMUs. Estimation errors for the buses with the deployed 
PMUs are given in Figure 4. Errors of calculated power in-
jections and flows are given in Fig. 5 - Fig. 7, respectively. 
In these figures, the results for the classical state estima-
tor are not presented, since high values of its errors would 

Fig. 4. Estimation errors for the Croatian power system

BusBus

BusBus

BusBus

BusBus

make the results of hybrid state estimators unreadable. 
In comparison with other models, the proposed method 
provides the smallest errors of the estimated voltage 
magnitudes and angles on the buses equipped with 
PMUs. Furthermore, estimation of the power system state 
which is more accurate results in the calculation of power 
injections and power flows that are also more accurate.

Fig. 5. Power injection errors for the Croatian system

From-To

From-To

Fig. 6. Active power flow errors for the Croatian system

From-To

From-To

Fig. 7. Reactive power flow errors for the Croatian system

5. CONCLUSIONS

The paper presents the state estimator that uses both 
conventional SCADA measurements and synchropha-
sors available from PMUs. The methodology uses mul-
tiple sets of synchrophasors in order to take advantage 
of their high sampling frequency and precise time tags. 
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After synchrophasors are preprocessed in the recursive 
algorithm, the state estimate for the part of the system 
observable by the PMU is forwarded to the iterative 
procedure, where SCADA measurements are also taken 
into the measurement vector and the state of the en-
tire power system is estimated.

In order to test its performance for power systems 
of different sizes, topologies and the number of mea-
surements, the developed solution was applied to IEEE 
test systems with 30 and 57 buses. Additionally, as an 
example of the real power system, the mathematical 
model of the entire Croatian transmission system was 
used, with actual locations of SCADA measurements 
and PMUs. After running 100 Monte Carlo simulations, 
the averaged results were compared with the results of 
the classical state estimator and other hybrid models. 
Performance indices were computed to investigate es-
timation accuracy and filtering of measurement errors 
as well as convergence and speed of computation. 

When compared with other state estimators, the de-
veloped model enhances state estimator accuracy that 
leads towards increased accuracy of the calculation 
of power injections and flows. Furthermore, filtering 
of measurement errors for all test systems is also im-
proved. Although the computation time of the given 
estimator is slightly larger in comparison with other 
methods, it is still within acceptable time limits. The lat-
ter is supported by the smallest number of iterations. 
The enhancement of state estimator performance by 
applying the proposed model offers a useful tool for 
the power system operator to operate the power sys-
tem economically, while preserving power system sta-
bility and integrity.
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