
Modified Dijkstra Shortest Path Algorithm for
SD Networks

203

Original Scientific Paper

Haitham M. Abdelghany
Electronics and Communication Engineering Department, Faculty
of Engineering, Mansoura University, El-Mansoura, Egypt
habdelghany@ outlook.com

Fayez W. Zaki
Electronics and Communication Engineering Department, Faculty
of Engineering, Mansoura University, El-Mansoura, Egypt
fwzaki2017@gmail.com

Mohammed M. Ashour
Electronics and Communication Engineering Department, Faculty
of Engineering, Mansoura University, El-Mansoura, Egypt
mohmoh2@yahoo.com

Abstract – This paper uses a modified Dijkstra shortest path method for considering cumulative delays rather than bandwidth in
software-defined networks. To implement the proposed method, an open-source Ryu controller is used, and a Mininet tool is used to
emulate the topology. The proposed method is compared with the traditional Dijkstra’s algorithm to demonstrate its performance.
This comparison shows that the modified Dijkstra’s algorithm provides higher performance of the different cumulative delays. Several
experiments were conducted to evaluate the performance of the proposed method using three parameters (bandwidth, transfer rate
and jitter). In addition, the cumulative distribution function is calculated using the parameters to show its distribution through the
experiment period.

Keywords: Dijkstra shortest path, Software-Defined Networking, Ryu, Mininet, Jitter, cumulative distribution function.

1. INTRODUCTION

Software-defined networking (SDN), considered
the next generation of networking [1-3], aims to sepa-
rate the control plane and the data plane. The control
plane is moved to the central unit, called the controller,
while the other switches act as forwarders [4]. Separat-
ing the control plane makes it easy to develop novel
techniques that give such networks the flexibility to
respond to network changes.

SDN technology allows network programmers to de-
ploy the controller in a flexible way through program-
ming languages such as Python and Java. For example,
programmers can apply load-balancing techniques
and intrusion prevention through programming [5].

In this paper, the widest Dijkstra shortest path meth-
od [6] is modified to forward load based on link delay.
Python is used to implement the modified method and
evaluate its performance by comparing it with the tra-
ditional Dijkstra’s method. The emulation is carried out
using the Mininet tool. The modified method outper-
forms the original one.

Volume 13, Number 3, 2022

As reported in [7], there are some problems in de-
ploying Dijkstra’s method [8] and the altered Floyed–
Warshall shortest path method in OpenFlow. The al-
tered Dijkstra’s method in [7] is not the same as the
method proposed here. The proposed method is there-
fore compared with the traditional Dijkstra’s method.

The remaining sections of this paper are organized
as follows. Section 2 introduces SDN and the Mininet
emulator. Section 3 discusses the related work. Section
4 presents the modified widest Dijkstra’s method and
its deployment. Section 5 reports the emulation re-
sults. Section 6 describes the analytical model of SDN.
Finally, Section 7 presents the conclusion of this work.

2. SOFTWARE-DEFINED NETWORKING AND
MININET

In SDN, forwarding decisions are taken by the central
unit, consisting of controllers [9], while the other net-
work devices are forwarders. Fig. 1 shows the main con-
cept of SDN. Communication from the controllers to the
network device is called the southbound interface. The

204 International Journal of Electrical and Computer Engineering Systems

most used protocol is the OpenFlow protocol [10,11]
that may have a single or many flow tables and group
tables. As shown in Fig. 2, the OpenFlow protocol allows
the controllers to add or remove entries in the table.

When data reach the switch, the OpenFlow switch
searches for a record in the flow table. If there is no re-
cord, the data are returned to the controller according
to the routing policy [12].

Fig. 1. The main concept of SDN [13]

Fig. 2. The OpenFlow switch and the controller [14]

Mininet [6,15] is the network emulator that runs in
Linux and is popular in SDN research. It is also widely
used by researchers to emulate Open vSwitch and vir-
tual hosts. As the complex topology depends on the
specification of the server used, Mininet allows the re-
searcher to create the topology using a Python script.

3. RELATED WORK

The Dutch computer researcher E. W. Dijkstra intro-
duced the traditional Dijkstra algorithm in 1959. It has
been used in many fields, such as mobile communica-
tion, computer networking, geographic information
science and transportation. Dijkstra is a mathematical
algorithm used to calculate the shortest path between
two nodes in a system. The traditional algorithm was
widely used in networking systems. Open Shortest
Path First [16] mainly relies on Dijkstra’s algorithm to
calculate the best route from the source to a destina-
tion. The pseudocode for the traditional Dijkstra’s algo-
rithm is shown below.

Input: P, k
Output: dis[V], pre[V]

1: for each v in P(V)

2: dis[v] ← ∞

3: pre[v] ← ∅

4: put distance at u node into Q set

5: while (Q!=∅)

6: u← Min distance(Q)

7: for each v of u

8: if dis[v] > dis[u]+ew[u,v] then

9: dis[v]←dis[u]+ew[u,v]

10: pre[v]←dis[u]

In [15], J. R. Jiang and a group of researchers pro-
posed an algorithm that extends the traditional Di-
jkstra’s algorithm by adding predefined values of the
node weights to prioritize the traffic [17]. Their ex-
tended Dijkstra’s algorithm outperforms the traditional
Dijkstra’s algorithm. The weighted Dijkstra’s algorithm
was implemented using the Abilene topology [18]. This
is because the extended Dijkstra’s algorithm calculates
the distance based on the weights of the nodes in the
network and takes node weight into account, whereas
the traditional Dijkstra’s algorithms do not consider the
edge weight or load balancing [19].

Laberio [20] and Lobus [21] proposed load-balancing
algorithms for SDN that use the path and link employ-
ment to optimize the network throughput. The other
algorithm is the service-based load-balancing algo-
rithm [22]. In service-based algorithms, the flow is re-
lated to fixed services. Using the service-based load-
balancing algorithm is specified to network devices
as switches and routers with particular services to in-
crease throughput of the network. Both methods con-
sider the route as the important way of achieving the
optimal throughput.

4. IMPLEMENTATION OF THE MODIFIED
DIJKSTRA’S ALGORITHM

4.1 MODIFIED ExtENDED DIJkStrA’S
 AlgOrItHM

Given a single source S and weighted graph G = (V,E),
the pseudocode is as shown below.

Input: g=(V, E), ed, nd, h
Output: delay[|V|], p[|V|]

1: delay [h]←0; delay [t]←∞, for each t≠h, t€V

2: insert t with key delay [t] into the priority queue Q, for each t€V

3: while (Q≠Ø)

4: t←Extract-Min(Q)

5: for each v adjacent to t

6: if delay [v] > delay [t]+ed[t,v]+nd[t] then

7: delay [v]←delay [t]+ed[t,v]+nd[t]

8: p[v]←delay [t]

205Volume 13, Number 3, 2022

The difference between the modified extended Di-
jkstra and the extended Dijkstra is that in the former
the route is selected based on distance instead of the
delay. The importance of the proposed method is evi-
dent when the delays are different on equal bandwidth
links. Thus, the selection is made based on delay. Table
1 shows a brief comparison of the traditional Dijkstra
and modified Dijkstra 3.

table 1. Comparison of traditional Dijkstra and
modified Dijkstra 3

Algorithm Traditional Dijkstra Modified Dijkstra 3

Criteria for Path
Selection Distance Delay

Initiation of
Destination Node +ve Infinity -ve Infinity

load Balancing No Yes

Weighted Nodes No Uses weights for
nodes

5. ANAlytICAl MODEl

As shown in Fig. 3, in the OpenFlow SDN model, the
controller is connected to a number of switches. It is as-
sumed that packet arrival follows a Poisson distribution
with an arrival rate λ_i. Packets that do not have match-
ing entries are probably sent to the controller. Thus, the
arrival rate is λi .*p, λi .*(1-p), and the processing time is
exponential 1/µi for the switches. The average service
time for the controller is equal to 1/µc where µi is the
processing rate of the switches and µc is the processing
time of the controller.

Fig. 3. OpenFlow SDN analytical model [23]

5.1. SWItCH PErFOrMANCE

The flow tables are not always the same and can be
changed based on link delay, and the processing time
is assumed to follow an exponential distribution.

The OpenFlow switches and the controller can be
modelled with a M/H2/1 queue [14]. This means that
the arrival of packets λi. and the serving rate are hyper-
exponential with two-phases.

Fig. 4. State diagram of an M/H2/1 queue [24]

In the state diagram in Fig. 4, p is the probability that
data are processed at rate µ1, and 1−p is the probability
of receiving a service rate of µ2.The stationary probabil-
ity π(i) is a vector and can be represented as

(1)

(2)

(3)

(4)

πk(1) is the k packet probability in the ith switch.

The mean value of packets in the queueing system is

(5)

(6)

For k = 0, the product is equal to 0, and so the sum-
mation can begin from k = 1:

(7)

(8)

(9)

So,

(10)

(11)

From Little’s formula, the mean processing delay in
the ith switch may be expressed as

(12)

The average processing delay of packets by all
switches can also be given as

(13)

206 International Journal of Electrical and Computer Engineering Systems

6. EMULATION

Mininet was used to implement the experiments of
the virtual environment. The experiments were hosted
on a custom-built server with Intel Core i5 CPU at 2.5
GHz, 8 GB RAM with a solid-state drive for storage and
switching. The Ubuntu Server 20.04 LTS distribution
was installed on the machine. Then the Open-V-Switch
software was installed. One controller, three switches
and three hosts were used, as shown in Fig. 5. The emu-
lation parameters are shown in Table 2. Iperf was used
to test the bandwidth, transfer rate and jitter. In the ex-
periments, host 3 acted as a server, while hosts 1 and 2
acted as clients.

table 2. Simulation parameters

Delay on Edges 1 ms

Delay Between Switches 1-3 ms

Number of Hosts 3

Number of Switches 3

Controller Ryu 4.34

Testing Tool Iperf

Fig. 5. The topology used in the experiment

6.1 EMulAtION rESultS

Fig. 5 shows that, when host 1 sent data to host 3,
the link delay was 4 ms plus the processing time of ev-
ery switch. Host 1 has two routes. The first route is the
direct link from switch 1 to switch 3, which has a link
delay of 4 ms plus the processing time of every switch.
The other route, which is through switch 2, has link de-
lay of 4 ms plus the processing time of every switch.
The proposed algorithm load-balances the traffic be-
tween the two routes, whereas the traditional Dijks-
tra’s algorithm does not. Iperf was used to measure the
bandwidth, transfer rate and jitter. The results in Figs.
6, 7 and 8 show that the modified extended Dijkstra
outperforms the extended Dijkstra when two hosts
send data at the same time to the same host (host 3).
In the preceding experiments, the cumulative distribu-
tion function (CDF) of the parameters was measured to
describe the distribution of the parameters across the
whole time.

As shown in Fig. 6, the CDF for the bandwidth from
host 1 to host 3 was between 46 Mbps and 56 Mbps
when the proposed method was used. In the tradition-
al Dijkstra, the CDF for the bandwidth from host 1 to
host 3 varied in a wide range from 20 Mbps to 43 Mbps.

Fig. 6. The CDF for the bandwidth in Mbps for
host 1 when the proposed method is applied vs

traditional Dijkstra

As shown in Fig. 7, the CDF for the transfer rate lies
between 5.5 Mbytes and 6.7 Mbytes using the pro-
posed method. The CDF for the transfer rate varies
widely from 2.3 Mbytes to 5 Mbytes using the tradi-
tional Dijkstra’s algorithm.

Fig. 7. The CDF for the transfer rate in MBytes for
host 1 when the proposed method is applied vs

traditional Dijkstra

Fig. 8. The CDF for the jitter in ms for host 1 when the
proposed method is applied vs traditional Dijkstra

207Volume 13, Number 3, 2022

Finally, as shown in Fig. 8, the CDF for the jitter is be-
tween 0.2 ms and 0.6 ms using the proposed method.
The CDF for the jitter varies from 0.3 ms to 0.8 ms when
traditional Dijkstra is used. Furthermore, Table 3 sum-
marizes the average values of bandwidth, transfer rate
and jitter for host 1 when traditional Dijkstra is used
versus the modified Dijkstra.

table 3. Average parameter values

Parameter Traditional Dijkstra Modified Dijkstra 3

Bandwidth (Mbps) 22.1213 52.4679

Transfer Rate (MB) 2.6367 6.2553

Jitter (ms) 0.4303 0.3501

7. CONCLUSION

This study proposes and implements a modified ex-
tended Dijkstra’s algorithm. The main test showed that
the proposed method outperforms the traditional Di-
jkstra’s algorithm. In the previous experiments, the CDF
of the selected parameters was used to evaluate the
performance of the proposed method against the tra-
ditional Dijkstra’s algorithm. It is important to mention
that every experiment was repeated 10 times and held
for about one hundred seconds. The proposed method
uses a Ryu controller implemented in Python, and the
Mininet tool was used to emulate the network topol-
ogy. In the future, a more complex design will be pro-
posed to further test the performance of the proposed
method.

8. REFERENCES

[1] S. Rowshanrad, S. Namvarasl, V. Abdi, M. Hajiza-

deh, M. Keshtgary, ”A survey on SDN, the future of

networking”, Journal of Advanced Computer Sci-

ence & Technology, Vol. 3, No. 2, 2014, pp.232-248.

[2] A. Hakiri, A. Gokhale, P. Berthou, D. C. Schmidt, T.

Gayraud, “Soft- ware-defined networking: Chal-

lenges and research opportunities for future in-

ternet”, Computer Networks, Vol. 75, No. 24, 2014,

pp.453-471.

[3] J. Pan, S. Paul, R. Jain, “A survey of the research on

future internet architectures”, IEEE Communica-

tions Magazine, Vol. 49, No. 7, 2011, pp. 26-36.

[4] A. Lara, A. Kolasani, B. Ramamurthy, “Network in-

novation using open- flow: A survey”, IEEE Com-

munications Surveys & Tutorials, Vol. 16, No. 1,

2014, pp. 493-512.

[5] S. Ahmad, A. H. Mir, “Scalability, consistency, reli-

ability and security in SDN controllers: A survey of

diverse SDN controllers”, Journal of Network and

Systems Management, Vol. 29, No. 1, 2021, pp.

1-59.

[6] E. Dijkstra, “A note on two problemsecin connex-

ion with graphs”, Numerische Mathematik, Vol. 1,

No.1, 1959, pp. 269-271.

 [7] A. Furculita, M. Ulinic, A. Rus, V. Dobrota, “Imple-

mentation issues for Modified Dijkstra's and Floyd-

Warshall algorithmsecin OpenFlow,” Proceedings

of the RoEduNet International Conference 12th

Edition: Networking in Education and Research,

2013, pp. 141-146.

[8] A. Rus, V. Dobrota, A. Vedinas, G. Boanea, M. Barabas,

“Modified Dijkstra’s algorithm with cross-layer QoS”,

ACTA TECHNICA NAPOCENSIS, Electronics and Tele-

communications, Vol. 51, No. 3, 2010, pp. 75-80.

[9] Open Network Foundation (ONF) Website (SDN

whitepaper), https://www.opennetworking.org/

sdn-resources/sdn-definition (accessed: 2021)

[10] A. Greenberg et al. ”A clean slate 4D approach to net-

work control and management”, Computer Com-

munication Review, Vol. 35, No. 5, 2005, pp. 41-54.

[11] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N.

McKeown, S. Shenker, “Taking control of the en-

terprise”, Computer Communication Review, Vol.

37, No. 4, 2007, pp. 1-12.

[12] Open Networking Foundation, “OpenFlow Switch

Specification version 1.4.0”, October 14, 2013.

[13] Floodlight OpenFlow Controller—Project Flood-

light, Big switch network, http://www.project-

floodlight.org/floodlight (accessed: 2019)

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Pa-

rulkar, L. Peterson, J. Rexford, J. Turner, S. Shenker.

“Openflow Enabling innovation in campus net-

works”, Computer Communication Review, Vol. 38,

No. 2, 2008, pp 69-74.

[15] J. Jiang, H. Huang, J. Liao, S. Chen, “Extending Di-

jkstra’s Shortest Path Algorithm for Software De-

fined Networking”, Proceedings of the 16th Asia-

Pacific Network Operations and Management

Symposium, Hsinchu, Taiwan, 2014, pp. 1-4.

[16] J. Moy, “OSPF: Anatomy of an Internet Routing

Protocol”, Addison-Wesley, 2000.

208 International Journal of Electrical and Computer Engineering Systems

[17] P. Tantisarkhornkhet, W.Werapun, B. Paillassa “SDN

experimental on the PSU network”, Proceedings

of the International Symposium on Intelligent

Signal Processing and Communication Systems,

Phuket, Thailand, 2016, pp. 1-6.

[18] Abilene Network, https://en.wikipedia.org/wiki/

Abilene_Network (accessed: 2021)

[19] W. Yahya, A. Basuki, J. R. Jiang, “The extended

Dijkstra’s-based load balancing for openflow net-

work”, International Journal of Electrical and Com-

puter Engineering, Vol. 5, No. 2, 2015, pp. 289-296.

[20] H. Long, Y. Shen, M. Guo, F. Tang. “LABERIO: Dy-

namic load-balanced routing in OpenFlow-en-

abled networks”, Proceedings of the IEEE 27th In-

ternational Conference on Advanced Information

Networking and Applications, Barcelona, Spain,

2013, pp. 290-297.

[21] N. Handigol, S. Seetharaman, M. Flajslik, N. McKe-

own, R. Johari, “Plug-n-Serve: Load-balancing web

traffic using Open Flow”, Demo at ACM SIGCOMM,

August 2009.

[22] M. Koerner, O. Kao, “Multiple service load-balanc-

ing with OpenFlow”, Proceedings of the 13th IEEE

International Conference on High Performance

Switching and Routing, Belgrade, Serbia, 2012,

pp. 210-214.

[23] S. Muhizi, G. Shamshin, A. Muthanna, R. Kirichek,

A. Vladyko, A. Koucheryavy, “Analysis and Perfor-

mance Evaluation of SDN Queue Model”, Inter-

national Federation for Information Processing,

2017, pp. 26-37.

[24] Z. Shang, K. Wolter, “Delay evaluation of openflow

network based on queueing model”, http://arxiv.

org/abs/1608.06491 (accessed: 2021)

