
Performance Overhead of Haxe Programming 
Language for Cross-Platform Game Development

9Volume 6, Number 1, 2015

Domagoj Štrekelj
J. J. Strossmayer University of Osijek,
Faculty of Electrical Engineering, 
Department of Software Engineering
Cara Hadrijana 10b, Osijek, Croatia
dstrekelj@etfos.hr

Hrvoje Leventić
J. J. Strossmayer University of Osijek,
Faculty of Electrical Engineering, 
Department of Software Engineering
Cara Hadrijana 10b, Osijek, Croatia
hleventic@etfos.hr

Irena Galić
J. J. Strossmayer University of Osijek,
Faculty of Electrical Engineering, 
Department of Software Engineering
Cara Hadrijana 10b, Osijek, Croatia
igalic@etfos.hr

Abstract – Video game industry has become the largest entertainment based industry, surpassing both the film and the music 
industry in terms of revenue. Costs of game development are rising with a number of platforms one has to support. In today’s 
competitive industry, it is necessary to support as many platforms as possible to remain profitable. One way to cut down on time spent 
on porting the game to other platforms, is to use cross-platform programming languages and development frameworks. Even though 
such frameworks allow drastic reduction of development time spent on making sure games work on all intended platforms, they are 
not without cost. The cost in this case is mainly in reduced performance, compared to games developed in their native development 
environments. This paper evaluates performance overhead of a relatively new programming language (less than a decade old) called 
Haxe, which is built especially for cross-platform development. We have implemented the same game in both its native environment 
and in the Haxe programming language, from which the game is cross-compiled to run in the native environment. The authors tested 
developed games on three different hardware configurations, with three different complexity settings, and the results show that 
even though performance overhead of cross-compilation is not insignificant, the overall reduction in development time attained by 
developing in Haxe presents a viable option for cross-platform game development, with positive aspects outweighing the negatives.

Keywords – cross-platform development, cross-compilation, game development, Haxe, performance.

1. INTRODUCTION

Video games represent the largest entertainment 
based industry today, surpassing both the film and the 
music industry in terms of revenue. Video game mar-
ket revenue in 2013 was $66 billion, where the mobile 
games segment of the industry was $8 billion. Global 
video game revenue is expected to grow to $78 bil-
lion in 2017 [1]. This huge amount of revenue is spread 

Preliminary Communication

across a multitude of gaming platforms, including, but 
not limited to, PC, consoles, smartphones and tablets. 
Online revenue, including digital delivery, subscrip-
tions or Facebook games, is not included in the afore-
mentioned revenue data, and it is valued at additional 
$24 billion in 2013 [1]. It is clear from the given data 
that video game development provides significant 
business opportunities for newcomers to the market. 



10 International Journal of Electrical and Computer Engineering Systems

One of the main decisions newcomers have to make 
upon entering the global video game market is which 
platforms to support and which platforms will generate 
the highest return on investment [2]. Supporting mul-
tiple platforms often requires multiple development 
teams specialized in specific platforms [3]. Donnellan 
[4] showed that, depending on the platform the game 
was initially developed for, the costs of adding support 
for an additional platform can range from 15% (adding 
support for Mac to the game developed for Windows) 
to 158% of additional cost (adding support for PS3 to 
the game developed for Windows), measured in hours 
a programmer spends programming. He also stated 
that differences in costs of supporting an additional 
platform are correlated to technical differences be-
tween platforms.  Duc et al. [5] identified four primary 
challenges that increase costs of managing diverging 
codebases while supporting multiple platforms:

• a diverged codebase increases growth of tech-
nical debt (extra development that arises when 
the code is implemented in a manner that will 
require additional maintenance in the long run),

• a diverged codebase encourages redundant de-
velopment of features,

• in addition to redundant development, a di-
verged codebase also encourages redundant 
test effort, and

• developers and testers tend to become experts 
on the version of the codebase for their plat-
form, but their expertise is often not portable to 
other supported platforms.

Overcoming the above challenges requires invest-
ment of additional effort in coordination with develop-
ment between platforms.

Game developers often try to combat increasing costs 
of multiplatform development by using cross-platform 
toolkits, languages and frameworks. It is possible to dif-
ferentiate such toolkits and frameworks between gen-
eral purpose cross-platform application development 
tools and tools specific to game development. 

The goal of this paper is to evaluate feasibility of us-
ing the Haxe programming language in development 
of cross-platform games. This goal is accomplished by 
development of a simple 2D game in the Haxe pro-
gramming language, development of the same game 
in a native environment of a chosen platform and the 
comparison of the performance of the two.

1.1. RELATED WORK

Most of the papers examining cross-platform de-
velopment tools and techniques are based on cross-
platform development for mobile applications and 
not specifically on games [6]–[8]. Papers that deal with 
cross-platform game development investigate devel-
opment tools for either smartphone games [9], or “big” 

games (PC and console games) [4]. No study was found 
which evaluates the tools supporting all or most of 
the platforms, including both “small” platforms (smart-
phones, tablets and web games) and “big” platforms 
(PC and consoles).

The authors of this paper managed to find only one 
study which specifically acknowledges the Haxe pro-
gramming language [10]. The study describes cross-
platform development as one of the more recent 
trends in computing and explains that Haxe was cre-
ated to help overcome the challenges of cross-platform 
development, but has no information on performance 
or viability of the language in game development. 

2. HAXE PROGRAMMING LANGUAGE

Haxe is an open source toolkit for cross-platform de-
velopment which allows for compilation of programs 
to multiple target languages or platforms. It consists of 
the Haxe language, the Haxe compiler, and the Haxe 
standard library.

The Haxe language is a high-level programming lan-
guage, supporting both functional programming (e.g., 
type inference, nested functions, recursion) and object-
oriented programming principles (e.g., classes, interfac-
es, enumerators, getters and setters). Haxe is statically 
typed; however, it retains the flexibility of dynamically 
typed languages by employing a Dynamic data type to 
represent untyped data at design-time [11]. The Haxe 
language provides a mixture of features from languag-
es supported by the Haxe compiler. Language-specific 
differences are abstracted away through conditional 
compilation, allowing for compilation of a specific code 
depending on compilation parameters. As such, condi-
tional compilation is instrumental in cross-platform de-
velopment. The Haxe language syntax follows the EC-
MAScript standard, though deviates therefrom where 
necessary. Unlike other ECMAScript languages, such as 
Javascript, Haxe is a compiled language.

The Haxe cross-compiler is a command-line tool 
which compiles Haxe source code into source code or 
bytecode of a target language or platform. As of Haxe 
3.1.3, supported languages and platforms include 
Flash, Neko, JavaScript, ActionScript 3, PHP, C++, Java 
and C#, with Python support confirmed for version 
3.2. [12]. The compiler lexically scans the base class of 
a Haxe program, beginning at the entry point repre-
sented by a static main function. During the scanning 
process, the compiler checks for occurrences of new 
class names, which are also lexically scanned. The code 
is then parsed and type-checked before macros, opti-
mizations and transformations are applied, resulting in 
a typed abstract syntax tree (AST). The abstract syntax 
tree is then translated to either source code or byte-
code, depending on the language or platform targeted 
by the compiler.

The Haxe standard library consists of a general pur-
pose API, a system API and target specific APIs. The 



11Volume 6, Number 1, 2015

general purpose API contains classes describing data 
types, data structures and algorithms which can be 
used on all targets. The system API contains file system 
and database APIs, and can therefore only be accessed 
when compiling to targets supporting such operations. 
These targets include C++, C#, Java, Neko, and PHP. Tar-
get specific APIs contain operations unique to the tar-
geted language or platform, and can only be accessed 
when compiling to the chosen target.

3. GAME DEVELOPMENT AND IMPLEMENTATION

Two versions of the game were developed for the 
HTML5 platform. One was developed in the platform’s 
native environment using JavaScript. The other was 
developed in Haxe and compiled for the HTML5 plat-
form into Javascript source code. Both versions were 
built around game development frameworks, with the 
Javascript version using Phaser, and the Haxe version 
using HaxePunk.

The game was developed to utilize the 2D HTML5  can-
vas rendering context at a 640px by 480px resolution, 
rendering at a fixed frame rate of 60 frames per second.

Fig. 1. Game screen during gameplay

In the game, the player is tasked with juggling a ball 
in mid-air while avoiding collision with obstacles. A 
point is gained for every second the ball is kept in play. 
The ball’s position is fixed on the abscissa, but variable 
on the ordinate. This is due to gravitational acceleration 
affecting the body of the ball. Player input gives the ball 
an upward velocity for the frame it passed, resulting in 
the ball’s jumping motion. Obstacles are created at the 
far right side of the game window at varying points 
along the ordinate. As the game progresses, they move 
along the abscissa at varying speeds towards the left 
side of the screen where the player-controlled ball re-
sides. Colliding with an obstacle or leaving the bounds 
of the game window removes the ball from play. This 
stops further creation of obstacles, thus ending the 
game. Once all existing obstacles leave the bounds of 
the game window, the game can be restarted. Figure 
1 shows the game screen during gameplay, where the 
white ball is controlled by the player, while the blue 

balls are obstacles that player’s ball must not collide 
with. 

While the two game versions are functionally the 
same, disparity between frameworks called for dif-
ferent implementations of specific game elements. 
Phaser requires the Javascript version to use external 
raster graphics to display the ball and obstacles, while 
the Haxe version uses HaxePunk to create necessary 
bitmap images. Unlike HaxePunk, Phaser features a 
built-in physics system which handles the required cal-
culations regarding the player-controlled ball. Because 
of this, variables used in the calculations needed to be 
adjusted in order to achieve a similar playing experi-
ence in both versions of the game.

4. RESULTS

Game performance was evaluated by comparing 
frame rates achieved in both game versions during an 
average gaming session. Higher and consistent frame 
rates are more desirable, offering a smoother and more 
responsive gameplay experience. Lower and inconsis-
tent frame rates result in instabilities and difficulties 
while playing.

Performance was analysed by comparing the mini-
mum, the maximum and an average frame rate at-
tained throughout the course of a single gaming ses-
sion. Population variance of the recorded frame rate 
data set was calculated to determine frame rate consis-
tency. Lower variance values indicate a more consistent 
frame rate due to observed data points close to the 
determined average, while higher variance values indi-
cate frame rate instability. Due to the fast-paced nature 
of the game, testing sessions lasted up to two minutes 
in length. Both versions were tested on three different 
computer hardware configurations, each representing 
a high-end, an average and a low-end PC.  All tests were 
performed using the latest stable version of the Google 
Chrome web browser (37.0.2062.124 m).

Performance test results across different computer 
hardware configurations for the Javascript version and 
results for the Haxe version are presented in Table 1 
and Table 2, respectively.

Table 1. Haxe version performance test results

Haxe version Observed performance of the Haxe
game version across different PCs

Observed
values

High-end PC
results

Average PC
results

Low-end PC
results

Minimum
frame rate 58.82 58.48 55.87

Maximum
frame rate 60 60 60

Average
frame rate 59.65 59.64 59.36

Variance 0.0937 0.1111 0.2942



12 International Journal of Electrical and Computer Engineering Systems

Table 2. Javascript version performance test results

Javascript 
version

Observed performance of the Javascript
game version across different PCs

Observed
values

High-end PC
results

Average PC
results

Low-end PC
results

Minimum
frame rate 60 59 59

Maximum
frame rate 60 60 60

Average
frame rate 60 60 60

Variance 0 0.0528 0.0751

By comparing the results shown in Table 1 and Table 2, it 
is clear that the Haxe version of the game has a minimally 
lower frame rate across all computers it was tested on. 
This is evident from the observed average frame rate and 
variance. In contrast, the Javascript version of the game 
has a stable and consistent frame rate across all comput-
ers, as evidenced by the observed average frame rate in 
Table 2. Some slight deviation from the mean frame rate 
did occur on average and low-end computers. However, it 
was not frequent enough to affect the average frame rate, 
making it unobtrusive during the testing session.

As evidenced by data in Table 1 and Table 2, game 
performance was not found to be noticeably affected 
by the disparity between computer hardware con-
figurations used. However, this was expected due to 
game’s simplicity.

With both versions of the game achieving the game’s 
maximum frame rate of 60 frames per second, the 
authors concluded that such simple game is not ad-
equate for testing performance loss resulting from 
cross-compilation.

In order to improve the experiment, the authors in-
creased the complexity of the game by adding extra 
objects to the game. Extra objects were added to both 
native and Haxe versions of the game.

The levels of added complexity will be referred to 
as low, medium and high complexity levels for 1,000, 
5,000 and 10,000  extra objects added, respectively. 
Extra objects added to the game had the same 
properties as the obstacles in the game, with the 
exception of their bitmap image being transparent, 
making them invisible to the player. Also, the game was 
configured such that collisions of a player object with 
extra objects did not result in the “Game Over” screen. 
This configuration enabled the authors to artificially 
increase computational complexity of the game, thus 
making performance loss of cross- compilation evident, 
while not affecting the gameplay itself.

Tables 3 and 4 show the results of testing the gameplay 
with added complexity levels for Haxe and Javascript ver-
sions, respectively. The metrics shown in the aforemen-
tioned tables are the same metrics used in the previous 
experiment: the minimum and the maximum frame rate, 

an average frame rate and variance. Additionally, for each 
complexity level of the game, Tables 3 and 4 state the au-
thors’ subjective evaluation of whether the game is play-
able at that combination of hardware configuration and 
complexity level. The authors rated the game as playable if 
it averaged above 24 frames per second, without perceiv-
able dips in the frame rate or lags during gameplay.

Table 3. Haxe version performance test results with 
added complexity

Haxe version
Extra Objects

1000 5000 10000
Computer Metric Frames Per Second

Low-end

MIN 47.34 16.67 7.97

MAX 60 18.94 9.44

AVG 59.45 17.70 8.99

VAR 1.3437 0.1129 0.0308

NOTE Playable Unplayable Unplayable

Average

MIN 54.05 13.26 7.08

MAX 60 14.71 8.95

AVG 59.75 13.62 8.19

VAR 0.2155 0.0788 0.2514

NOTE Playable Unplayable Unplayable

High-end

MIN 59.17 25.28 13.12

MAX 60 29.41 17.54

AVG 59.8 28.57 13.53

VAR 0.0341 0.8907 0.3833

NOTE Playable Playable Unplayable

Table 4. Javascript version performance test results 
with added complexity

JavaScript version
Extra Objects

1000 5000 10000

Computer Metric Frames Per Second

Low-end

MIN 56 46 28

MAX 60 60 60

AVG 58.84 57.45 57.01

VAR 0.3561 3.1547 15.7804

NOTE Playable Playable Playable

Average

MIN 58 47 30

MAX 60 60 60

AVG 59.51 57.14 54.44

VAR 0.2734 2.816 12.1574

NOTE Playable Playable Playable

High-end

MIN 60 55 46

MAX 60 60 60

AVG 60 58.82 58.03

VAR 0 0.4387 3.1387

NOTE Playable Playable Playable

Generally speaking, the Javascript version (Table 4) of 
the game performs much better than the Haxe version, 
running at almost consistent 60 frames per second on 
average across all three different computer configurations 
used for testing, on all complexity levels. The authors’ 



13Volume 6, Number 1, 2015

in.reuters.com/article/2013/06/10/gameshow-e-
idINDEE9590DW20130610 (accessed: September 
28, 2014). 

[2]	 V.	Landsman,	S.	Stremersch,	“Multihoming	 in	Two-
sided Markets: An Empirical Inquiry in the Video 
Game	Console	Industry”,	Journal	of	Marketing,	Vol.	
75, No. 6, 2011, pp. 39–54. 

[3]	 J.	Babb,	N.	Terry,	“Comparing	Video	Game	Sales	by	
Gaming	Platform,”	Southwestern	Economic	Review,	
Vol. 40, No. 1, 2013, pp. 25–46. 

[4] C. Donnellan, “An Empirical Study on Cross-Plat-
form	Game	Development”,	2010,	http://www.smu.
edu/~/media/Site/guildhall/Documents/Theses/
Donnellan_FinalThesis.ashx?la=en	 (accessed:	 Sep-
tember 28, 2014). 

[5]	 A.N.	 Duc,	 A.	 Mockus,	 R.	 Hackbarth,	 J.	 Palframan,	
“Forking	 and	 Coordination	 in	 Multi-platform	 De-
velopment:	 a	 Case	 Study”,	 Proceedings	 of	 the	 8th	
ACM/IEEE	 International	 Symposium	 on	 Empirical	
Software	 Engineering	 and	 Measurement,	 Torino,	
Italy, September 18-19, 2014, p. 59. 

[6]	 G.	Hartmann,	G.	Stead,	A.	DeGani,	“Cross-platform	
Mobile	Development”,	Tribal	Linc.	House	Paddocks,		
Technical	Report	2011.	

[7]	 H.	 Heitkötter,	 S.	 Hanschke,	 T.A.	Majchrzak,	 “Evalu-
ating	 Cross-platform	Development	 Approaches	 for	
Mobile	Applications”,	Web	Information	Systems	and	
Technologies,	Springer,	2013,	pp.	120–138.	

[8]	 M.	 Palmieri,	 I.	 Singh,	 A.	 Cicchetti,	 “Comparison	 of	
Cross-platform	 Mobile	 Development	 Tools”,	 Pro-
ceedings of 16th	 International	Conference	on	 Intel-
ligence	 in	 Next	 Generation	 Networks,	 Berlin,	 Ger-
many, October 8-11, 2012, pp. 179–186. 

[9]	 A.	 Puder,	 I.	 Yoon,	 “Smartphone	 Cross-Compilation	
Framework	 for	 Multiplayer	 Online	 Games”,	 Pro-
ceedings of 2nd	International	Conference	on	Mobile,	
Hybrid,	and	On-Line	Learning,	Saint	Maarten,	Neth-
erlands,	Antilles,	February	10-16,	2010,	pp.	87–92.	

[10]	 S.	 Ortiz	 Jr.,	 “Computing	 Trends	 Lead	 to	 New	 Pro-
gramming Languages”, Computer, Vol. 45, No. 7, July 
2012, pp. 17–20. 

[11]	 Toolkit	 Introduction,	 http://haxe.org/documenta-
tion/introduction/toolkit-introduction.html	 (ac-
cessed: September 29, 2014). 

[12]	 F.	 Ponticelli,	 L.M.	 Sylveste,	 “Professional	HaXe	 and	
Neko”, Wiley, 2008.

subjective evaluation of game performance on all 
combinations of hardware configuration and complexity 
levels is that the game is highly playable. The minimum 
frame rate shown in the table occurs at the beginning 
of each round, while the game is still loading assets and 
creating objects, and it does not affect gameplay. After 
the initial dip in the frame rate, the game reaches a stable 
frame rate that is very close to a maximum of 60 frames 
per second.

In comparison, the Haxe version suffers from an un-
stable, albeit high frame rate which is capable of caus-
ing visible latency issues. On a low complexity level, the 
game was highly playable on all hardware configurations, 
reaching a high stable frame rate, which was very close to 
a maximum of 60 frames per second. On a medium com-
plexity level, the game was playable only on high-end con-
figuration, reaching an average frame rate of 28.57 frames 
per second. On medium and low-end configurations, the 
game was rated as unplayable, with average frame rates 
well below the 24 frames per second threshold. On a high 
complexity level, the game was rated as unplayable on all 
hardware configurations, with average frame rates well 
below the 24 frames per second threshold.

5. CONCLUSION

In this paper, the authors have developed a simple 
2D game in both the Haxe programming language and 
the native environment and evaluated the difference in 
performance between the two. This paper shows that the 
Haxe programming language is a viable alternative to 
development of 2D games in native environments, and 
performance loss attained through cross-compilation is 
not big enough to justify the time that would be required 
to develop the game in each of intended platforms. 

The results show that the difference in performance 
of Haxe and a native version of the game is minimal for 
a game of low to medium complexity. It is evident that 
the real difference in performance starts with games of 
medium complexity (with around five thousand moving 
objects on the screen at one time). Positive aspects of 
cross-platform development in Haxe far outweigh the 
negative ones observed through performance analysis. 
In the opinion of the authors, the difference in perfor-
mance is worth using Haxe for cross-platform develop-
ment instead of developing a separate version in a na-
tive environment. Future work consists of developing 
the game in all of the platforms the Haxe programming 
language is capable of exporting to and evaluating if 
performance differences are as small as in the case of 
the Javascript version, while taking into account the cost 
of development of the game for all targeted platforms. 

REFERENCES

[1]	 M.	Nayak,	“FACTBOX	-	A	Look	at	the	$66	Billion	Vid-
eo-Games	 Industry”,	 Reuters,	 10-Jun-2013,	 http://


