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Abstract – There are several non-associative finite dimensional division algebras over different number fields. Their representations 
in the corresponding matrix algebras preserve additive structure. However, the embedding does not preserve multiplication as matrix 
multiplication is associative. As such, it gives a generalized matrix representation. Indeed, a non-associative structure provides different 
platforms for more effective and useful space-time coding satisfying rank criteria, and coding gain criteria for multiple antenna wireless 
communication. Associative division algebras have dimension restrictions, whereas non-associative division algebras over suitable fields 
exist in infinitely many dimensions. We illustrate the above program by using octonion algebras.
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1. INTRODUCTION

The main issue in space-time coding is to develop a 
space-time code which minimizes the probability of er-
ror Pe that a receiver antenna decodes. Several models 
have been discussed in detail and proposed for the pur-
pose of using different structures such as unitary spaces 
[1, 4, 5], quaternionic spaces [6, 7, 8], and representation 
theory models [8, 9, 10, 11] for wireless communication 
in multiple unknown channels, where ingredients of 
several transmitters and receiver antennas such as fad-
ing coefficients of channels are difficult to be measured 
or may be indeterminate. In this paper, we propose and 
initiate space-time modulation using non-associative 
structures like a Moufang loop of octonions and other 
non-associative structures, and minimize the probability 
of error by enlarging a diversity product further. We shall 
discuss constellations associated to these structures via 
suitable representations in unitary space and study their 
performance. In unitary space-time modulation [1], for 
a multiple antenna-based wireless communication sys-
tem with M transmitter and N receiver antennas through 
a Rayleigh flat fading channel, we consider a set X con-
sisting of L unitary matrices A0, A1, A2,∙ ∙ ∙ ∙,AL-1. The set X is 

called a signal constellation. For high SNR ρ, the pairwise 
error probability Pe that a receiver antenna decodes an 
error from Ai to Aj can be estimated [2, 3] as follows:

(1)

where α = 1 for known channels and α = 2 unknown 
channels. Thus, to minimize the probability of error, 
one has to search for a unitary constellation X for which 
the diversity product ξX given by

(2)

is as large as possible. A unitary constellation X is said 
to be with full diversity if ξX> 0. As mentioned above, 
several constellations with full diversity products us-
ing different associative algebraic structures have been 
proposed and studied [4, 5]. In [5, 7], a full diversity uni-
tary space-time constellation has been designed by us-
ing complex 2x2 matrix representations
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of the quaternion algebra  
over 𝓡. In this paper, another type of a unitary space-
time constellation has been designed using represen-
tations of 𝓗 as a subalgebra of the algebra of the real 
4x4 matrices.

The octonion algebra 𝓞, also called the Cayley alge-
bra, is a non-associative alternative division algebra of 
dimension 8 over the field 𝓡 of real numbers.

Since a matrix algebra is always associative, the alge-
bra 𝓞 cannot be embedded in the matrix algebra over 
𝓡. However, 𝓞 can be embedded as a subspace O ̅ of 
the space M8( ) of the 8x8 real matrices, and then look-
ing at some compatible identities between the opera-
tion on O ̅ induced by a multiplication on 𝓞 and matrix 
multiplication, we design a constellation with a full di-
versity product. 

Further, by using an (L, n) cyclic code to get the maxi-
mum equidistant points on the sphere S7 = {xЄ 𝓡8| ||x|| 
= 1}, we get a constellation with a large diversity prod-
uct. Apart from a real division normed algebra 𝓒, 𝓗 and 
𝓞 giving unitary constellations, there are several other 
non-associative division algebras over certain number 
fields which give rise to space-time block codes with 
full diversity.

2. QUATERNION ALGEBRA AND ITS REAL MATRIX 
REPRESENTATION

The real quaternion algebra is an associative algebra 
𝓗 which is a 4-dimensional vector space over 𝓡 with 
the basis {1, i, j, k} and in which multiplication is subject 
to the relations 1.q = q, for all q in 𝓗, i2 = j2 = k2 = -1, ij 
= k and jk = i (and so ji = -k). Clearly, 𝓗 is non-commu-
tative. An arbitrary element q in 𝓗 is uniquely express-
ible as q = a0 + a1i + a2 j + a3 k, ai in 𝓡. The conjugate q̅ 
of q is given by q̅ = a0 – a1i – a2j – a3k. Clearly, qq̅ = a0

2 + 
a1

2 + a2
2 + a3

2 = |q|2 and the inverse q-1 of q is given by q-1 
= q̅/|q|2. The left multiplication map fq by q defined by 
fq(h) = qh is a linear transformation from 𝓗 to 𝓗 which 
is invertible and the inverse is given by fq-1 ). The matrix 
representation M(q) of fq with respect to the basis {1, i, 
j, k} is given by

(3)

Since 𝓗 is an associative algebra, M defines an injec-
tive algebra homomorphism from 𝓗 to the full matrix 
algebra M4(𝓡) of the 4x4 matrices with entries in 𝓡. 
Thus, 𝓗 is isomorphic to the subalgebra  {M(q) | q Є 𝓗} 
of M4(𝓡). Another way to represent M(q) is as follows:

(4)

The transpose conjugate of 𝓠 is a unitary 4x4 matrix 
over 𝓗. We also note that

(5)

It follows that every matrix M(q) is unitarily similar to 
a scalar matrix qI over 𝓗, and consequently, M(q) is uni-
tary if and only if |q|=1.

3. QUATERNIONIC CONSTELLATION DESIGN

Consider {M(q) q Є 𝓗- {0}}. For all q Є 𝓗- {0}},

(6)

In turn, it follows that {M(q) q Є 𝓗- {0}} is a constel-
lation with a full diversity product. As a consequence, 
to construct a signal constellation X consisting of L 4x4 
unitary matrices with the diversity product ξX as large 
as possible, we need to construct L points q0, q1,…..,qL-1 
on the unit sphere S3 in R4 so that

(7)

is as large as possible. For that purpose, let us start with 
a point q0 = (a1, a2, a3 ,a4) in S3. For each k1, k2 in ZL={0, 1, 
2,.., L-1}, and for each I in ZL, consider the matrix

(8)

and the set X={qi=q0Ai(k1k2) | i Є ZL} of L points in S3. 
Then, since Ai (k1,k2) is orthogonal, we have

Thus,
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(9)

It follows that the diversity product depends only on 
a1

2 + a2
2 and a3

2 + a4
2, where q0 = (a1, a2, a3, a4), a1

2 + a2
2 + a3

2 
+ a4

2 = 1. Thus, we can conveniently start with q0 = (b1, 
0, b2, 0) with b1

2 + b2
2 = 1, and then the points qi, i in ZL 

are given by

and by (9),

(10)

Hence, by (6) and (10), the diversity product ξX of the 
constellation X={M(qi) | i Є ZL is given by

(11)

Thus, the diversity product

where a1 = b1
2, a2 = b2

2, can be maximized subject to the 
condition a1+a2=1, a1, a2, ≥ 0 and k1, k2 in ZL, and corre-
sponding a1, a2 and k1, k2 can be found.

Remark: Although the distance between any two 
points on unit spheres in any dimension is at most 2, 
we can find equidistant points with distances greater 
than 1. As such, the diversity product of the constella-
tion described in this paper is larger than those other 
constellations based on quaternions [4, 5, 6].

4. OCTONIONS AND GENERALIZED MATRIX 
REPRESENTATION

The octonion algebra 𝓞 (also called the Cayley al-
gebra) over 𝓡 is an 8-dimensional non-associative 
normed division algebra obtained by doubling a qua-
ternion division algebra using the Cayley-Dickson pro-
cess. Thus,

(12)

(13)

Here, a + be = 0 = 0 + 0e if and only if a = 0 and b = 0. 
Addition + and multiplication ∙ in 𝓞 is defined by

(14)

(15)

Obviously, 𝓗 is embedded through a ⤑ a + 0e as a 
subalgebra of 𝓞. Denote ie, je, ke by f, g and h, respec-
tively. Then B={1, i, j, k, e, f, g, h} is a basis of 𝓞 and an 
arbitrary element u Є 𝓞 has a unique representation as 
follows:

Further, 1 acts as a multiplicative identity; the square 
of each element of 𝓞-{1} is -1. Indeed, the product of 
any two elements of 𝓞 is given by the following multi-
plication Table 1.

. 1 i J k e f G h

1 1 i J k e f G h

i i -1 K -j f -e -h g

j j -k -1 i g h -e -f

k k j -i -1 h -g F -e

e e -f -g -h -1 i J k

f f e -h g -i -1 -k j

g g h E -f -j k -1 -i

h h -g F e -k -j I -1

Table1: Multiplication

For all a, b in 𝓞. It is also |a| normed algebra in the 
sense that

(16)

for all a, b in 𝓞, where |a| denotes the Euclidean norm

of a. For a in 𝓞, left multiplication fa from 𝓞 to 𝓞 defined 
by fa(x) = ax is a linear transformation from ( ≅R8 ) to and 
since 𝓞 is a normed algebra, 

for all x. Thus, for a in the 7-sphere S7, fa preserves 
length and so it is an orthogonal transformation. Let us 
denote matrix representation of fa with respect to the 
basis B (which is an orthonormal basis) by M(a). Then,
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(17)

Since fa is an orthogonal transformation, M(a) is an 
orthogonal matrix for all a in S7. The map M is clearly an 
injective map from 𝓞 to the set M8( ) of 8x8 matrices, 
which takes S7 to the orthogonal group O(n). Also, since 
multiplication in 𝓞 distributes over addition,

Since fa is an orthogonal transformation, M(a) is an 
orthogonal matrix for all a in S7. The map M is clearly an 
injective map from 𝓞 to the set M8( ) of 8x8 matrices, 
which takes S7 to the orthogonal group O(n). Also, since 
multiplication in 𝓞 distributes over addition,

However, since multiplication in 𝓞 is not associative,  
M(ab) need not be M(a)M(b). The identity

(18)

(19)

is immediate, and it follows from (16). A straightfor-
ward computation establishes the following:

(20)

(21)

for all a, b in 𝓞. In particular, M(a) is an orthogonal ma-
trix if and only if a is in the 7-sphere S7.

5. OCTONION CONSTELLATION DESIGN

As in Section 3, it follows from equations (18), (19) 
and (21) that the set {M(a)| a Є 𝓞-{0}} is a constellation 
with a full diversity product. Further, as in Section 3, 
starting from a point u0 = (b1, 0, b2, 0, b3, 0, b4, 0) in the 
unit sphere S7⊆𝓞 and k1, k2, k3, k4, l in ZL, the points 

determine the constellation X={M(ui) | I Є ZL with the 
diversity product:

(22)

Further, it can be maximized subject to the condition 
a1+ a2+ a3+ a4=1, ai≥0, and the corresponding ai and ki 
can be found to yield a constellation with a large diversi-
ty product compared to the one given by equation (12).

6. FULL DIVERSITY CONSTELLATION USING 
OTHER NON-ASSOCIATIVE STRUCTURES

Let 𝓕 be a field of characteristic different from 2 and 
let 𝓚 be a quadratic field extension of 𝓕. More explic-
itly, 𝓚 = (√a0) = {u +(√a0)v | u, v ϵ𝓕 } for some a0 in 𝓕 
such that the polynomial X2 – a0 is irreducible in 𝓕[X]. 
Evidently, 𝓚 is a Galois extension of 𝓕. The map σ from 
𝓚 to 𝓚 given by σ(u+ √(a0 )v) = u-√(a0 )v is a unique 
nontrivial 𝓕- automorphism of 𝓚. Let b0 = u0 + √av0 be 
a nonzero element of 𝓚-{0} different from√a0. Let 𝓐 
denote the 4-dimensional vector space 𝓚 x 𝓚 over the 
field 𝓕. Using the Cayley-Dickson process, define the 
multiplication ∙ in 𝓐 by

(23)

where k1, k2, k3, k4 belong to 𝓚. It can be easily shown 
that 𝓐 is a 4-dimensional algebra over 𝓕 which is a di-
vision (not necessarily associative) over 𝓕 if and only 
if b0 cannot be expressed as u2 - a0v2, u, v in 𝓕. It is as-
sociative provided that b0 is in 𝓕 and non-associative 
otherwise. Note that

The correspondence k↠(k,0) is an injective embed-
ding of 𝓚 as a subfield of the algebra 𝓐 and if we iden-
tify k with (k,0) and put j=(0, 1), then any element (k1, 
k2) of 𝓐 has a unique representation as  k1+ jk2. Further, 
for the sake of simplicity, if we put i for√a0 , then any 
element k of 𝓚 can be written uniquely as u + iv, where 
u, v are in 𝓕. Again, as in the case of a classical quater-
nion algebra, if we put ij = k, any element a of 𝓐 has a 
unique representation: a = a1+ a2 i+ a3 j+ a4 k.

Thus, 𝓐 is a 4-dimensional division algebra with the 
basis {1, i, j, k} over 𝓕 subject to the relation i2 = a0, j2 
= b0= u0+ v0 √a0, ij = -ji and, of course, 1 acting as an 
identity. It is associative if and only if b0∈ 𝓕. Matrix rep-
resentation M(a) of right multiplication fa determined 
by a with respect to the basis {1, i, j, k} can be seen as:

(24)
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It follows that the matrix representation map M is an 
injective vector space homomorphism from 𝓐 to the 
vector space M4(𝓕) of the 4x4 matrices with entries in 
𝓕. Thus, M(a-b) = M(a)–M(b). Further, since 𝓐 is a di-
vision algebra, the map fa is a vector space automor-
phism of 𝓐 for all nonzero a in 𝓐. Hence, M(a) has a 
nonzero determinant for all nonzero a in 𝓐. This shows 
that the constellation {M(a)| a∈𝓐-{0}} is with the full di-
versity code. Starting from a suitable number field and 
a suitable choice of elements a0, u0 and v0 in the num-
ber field and restricting to lie in OK × OK ⊆ A, where OK 
denotes the ring of integers of 𝓚, we can get constella-
tions with good diversity products.

7. RESULT

The choice of non-associative structure increases 
the diversity product and thereby minimizes the prob-
ability of error. The coding used is more efficient. We 
have several choices of the non-associative structure as 
given above which can be used for this purpose.

8. CONCLUSION

The purpose of this paper is to initiate and develop 
space-time codes satisfying rank criteria and coding 
gain criteria for a multiple antenna-based wireless com-
munication using generalized matrix representations 
of a non-associative group like structures for secured 
transmission. In future, more and more non-associative 
algebraic structures can be used to have more effective 
and useful space-time coding in different dimensions.
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