
A Comparison of Several Heuristic Algorithms for
Solving High Dimensional Optimization Problems

1Volume 5, Number 1, 2014

Preliminary Communication

Emmanuel Karlo Nyarko
J. J. Strossmayer University of Osijek,
Faculty of Electrical Engineering, Department of Computer Engineering and Automation
Kneza Trpimira 2B, 31000 Osijek, Croatia
nyarko@etfos.hr

Robert Cupec
J. J. Strossmayer University of Osijek,
Faculty of Electrical Engineering, Department of Computer Engineering and Automation
Kneza Trpimira 2B, 31000 Osijek, Croatia
robert.cupec@etfos.hr

Damir Filko
J. J. Strossmayer University of Osijek,
Faculty of Electrical Engineering, Department of Computer Engineering and Automation
Kneza Trpimira 2B, 31000 Osijek, Croatia
damir.filko@etfos.hr

Abstract – The number of heuristic optimization algorithms has exploded over the last decade with new methods being proposed
constantly. A recent overview of existing heuristic methods has listed over 130 algorithms. The majority of these optimization
algorithms have been designed and applied to solve real-parameter function optimization problems, each claiming to be superior to
other methods in terms of performance. However, most of these algorithms have been tested on relatively low dimensional problems,
i.e., problems involving less than 30 parameters. With the recent emergence of Big Data, the existing optimization methods need to
be tested to find those (un)suitable to handle highly dimensional problems. This paper represents an initial step in such direction.
Three traditional heuristic algorithms are systematically analyzed and tested in detail for problems involving up to 100 parameters.
Genetic algorithms (GA), particle swarm optimization (PSO) and differential evolution (DE) are compared in terms of accuracy and
runtime, using several high dimensional standard benchmark functions.

Keywords – heuristic optimization, high dimensional optimization, nature-inspired algorithms, optimization techniques

1. INTRODUCTION

Optimization is the process of minimizing or maximiz-
ing a goal (or goals) taking into consideration the exist-
ing constraints. Optimization algorithms are basically
iterative in nature and as such the quality of an optimiza-
tion algorithm is determined by the quality of the result
obtained in a finite amount of time. Global optimization
algorithms can generally be divided into two categories:
deterministic and probabilistic algorithms [1]. The main
difference between the two categories is that determin-
istic algorithms are designed such that the optimal so-
lution is always found in a finite amount of time. Thus,
deterministic algorithms can only be implemented in

situations where the search space can efficiently be ex-
plored. In situations where the search space cannot be
efficiently explored, e.g., high dimensional search space,
implementing a deterministic algorithm might result in
exhaustive search which would be unfeasible due to a
time constraint. In such situations, probabilistic algo-
rithms are used. Probabilistic algorithms generally opti-
mize a problem by iteratively trying to improve a candi-
date solution with respect to a given measure of quality.
They make few or no assumptions about the problem
being optimized and can search very large spaces of
candidate solutions. However, probabilistic algorithms
provide no guarantee of an optimal solution being
found, only a good solution in a finite amount of time.

2 International Journal of Electrical and Computer Engineering Systems

Examples of deterministic optimization algorithms
include the pattern search or direct search by Hooke
and Jeeves [2], the Nelder-Mead method [3] and the
Branch and Bound algorithm [4], while examples of
probabilistic algorithms include Genetic Algorithms
(GA) [5,6], Differential evolution (DE) [7,8], Particle
Swarm Optimization (PSO) [9,10] and Ant Colony Opti-
mization (ACO) [11,12], to name but a few.

Heuristics used in global optimization are functions
or methods that help us decide which solution candi-
date is to be examined or tested next or how the next
solution candidate can be produced. Deterministic al-
gorithms usually employ heuristics in order to define
the processing order of solution candidates. Probabi-
listic methods, on the other hand, may only consider
those elements of the search space in further computa-
tions that have been selected by the heuristic [1]. In this
paper, the term heuristic algorithms refers to probabi-
listic algorithms employing heuristic methods.

Real-world optimization problems are often very
challenging to solve, and are often NP-hard problems.
Thus, heuristic algorithms are usually employed. Many
heuristic algorithms using various optimization tech-
niques have been developed to deal with these chal-
lenging optimization problems. The number of heuris-
tic optimization algorithms has exploded over the last
decade with new methods being proposed constantly.
A recent overview of the existing heuristic methods has
listed over 130 algorithms [13]. These algorithms can
be classified into four main groups: biology-, physics-,
chemistry-, and mathematics-based algorithms de-
pending on the source of inspiration for the research-
ers. The largest group of heuristic optimization algo-
rithms is biology-based, i.e., bio-inspired. Two of the
most important subsets of heuristic algorithms, which
are coincidentally bio-inspired, are Evolutionary Algo-
rithms (EA) and Swarm Intelligence (SI). GA and DE are
the most well-known evolutionary algorithms, while
PSO is a well-known swarm intelligence algorithm.

The majority of these optimization algorithms have
been designed and applied to solve real-parameter
function optimization problems, each claiming to be
superior to other methods in terms of performance [13,
14]. However, most of these algorithms have been test-
ed on relatively low dimensional problems, i.e., prob-
lems involving less than 30 parameters. With the re-
cent emergence of Big Data, the existing optimization
methods need to be tested to find those (un)suitable to
handle highly dimensional problems. This paper repre-
sents an initial step in such direction. The main focus
of this paper is to analyze, test and compare in detail,
GA, DE and PSO in solving high dimensional real-pa-
rameter optimization problems, especially in terms of
accuracy and runtime. Standard benchmark functions
with up to 100 parameters are used. All tests and analy-
ses are conducted using Matlab. The rest of this paper
is structured as follows. In Section 2, a description of
the optimization problem is provided. An overview of

the heuristic algorithms GA, DE and PSO is provided in
Section 3, while the test results obtained while solving
three examples of high dimensional real-parameter
optimization problems are given and analyzed in Sec-
tion 4. Finally, the paper is concluded with Section 5.

2. PROBLEM DESCRIPTION

Many real-world optimization problems from en-
gineering, biology and other disciplines can often be
expressed as optimization of a continuous function.
These functions depend on a set of parameters, the
choice of which affects the performance or objectives
of the system concerned. The optimization goal is often
measured in terms of objective or fitness functions in
qualitative models.

The problem considered in this paper can be formu-
lated as follows. Given an objective function

(1)

where and , one has to estimate the
optimal parameter vector *x such that

(2)

where represents a vector of real pa-
rameters of dimension D.
Since , the restriction
to maximization is without loss of generality. The do-
mains of real parameters are defined by their lower and
upper bounds: .

()1, Dx x=x 

(){ } (){ }min maxf f= − −x x

{ }, ; 1,2, ,j jlow up j D∈ 

In practice, no a priori knowledge of the objective
function exists, and it can generally be assumed that
the objective function is nonlinear and may have mul-
tiple local minima. In this paper, the objective function
will also be referred to as the fitness function or the
quality of the parameter vector. The quality or fitness of
a candidate solution xi is defined by

()i if f= x (3)

3. AN OVERVIEW OF GA, DE AND PSO

GA, DE and PSO have been implemented in a wide
variety of real-parameter function optimization prob-
lems, some of which include speech synthesis, antenna
design, genes design, neural network learning, model-
ing of chemical and biochemical processes [15], radio
network design [16], segmentation of brain MR images
[17], etc.

GA, DE and PSO are population based algorithms
and as such, they always work on a set of candidate
solutions during each iteration of the
algorithm. N represents the number of candidate solu-
tions and is usually kept constant during the execution
of the algorithm.

()T
1, N=X x x

3Volume 5, Number 1, 2014

3.1. GENETIC ALGORITHMS (GA)

Concepts from biology, genetics and evolution are
freely borrowed to describe GA. The element xj, j=1,...,D,
a candidate solution xi, i=1,...,N, the set of candidate
solutions X and an iteration of the algorithm are re-
ferred to as a gene, an individual, a population and a
generation, respectively. During the execution of the
algorithm, a candidate solution or parent is modified
in a particular way to create a new candidate solution
or child.

The basic evolutionary computation algorithm first
constructs an initial population, then it iterates through
three procedures. It first assesses the quality or fitness
of all individuals in the population. Then it uses this
fitness information to reproduce a new population of
children. Finally, it merges the parents and children in
some fashion to form a new next-generation popula-
tion, and the cycle continues. This procedure is out-
lined in Algorithm 1 [14].

kmax denotes the maximum number of iterations to
be performed, while xBEST represents the best solution
found by the EA. All algorithms analyzed herein gener-
ate the initial population or set of candidate solutions
randomly according to equation :

(4)

for i=1,...,N and j=1,...D, where Xi,j denotes the j-th
element, xj, of the i-th vector, xi. U(lowj, upj) is a random
number in [lowj, upj]drawn according to uniform dis-
tribution and the symbol ~ denotes sampling from the
given distribution.

Algorithm 1: An abstract Evolutionary Algorithm (EA)

Input: N, kmax

Output: xBEST

1: xBEST ← Ø, fBEST=0

2: Build an initial population X

k:=0

3: repeat

4: k:=k+1

4: for each individual xi in X
5: Calculate fi

6: If xBEST = Ø or , fi >fBEST ,then

7: xBEST ← xi

 fBEST ← fi

8: end if

9: end

10: X← Merge(X, Reproduce(X))

11: until xBEST is the ideal solution or k > kmax

Evolutionary algorithms differ from one another
largely in how they perform the Reproduce and Merge
operations. The Reproduce operation usually has two
parts: Selecting parents from the old population, then
creating new individuals or children (usually mutating
or recombining them in some way) to generate chil-

dren. The Merge operation usually either completely
replaces the parents with the children, or includes fit
parents along with their children to form the next gen-
eration [14].

The stopping condition of the algorithm is often de-
fined in a few ways, i.e., 1) limiting the execution time of
the algorithm. This is normally done either by defining
the maximum number of iterations, as shown in Algo-
rithm 1, or by limiting the maximum number of fitness
function evaluations; 2) fBEST does not change apprecia-
bly over successive iterations; 3) attaining a pre-speci-
fied objective function value.

One of the first EA is GA invented by John Holland in
1975 [5]. The standard GA consists of three genetic op-
erators, i.e., selection, crossover and mutation. During
each generation, parents are selected using the selec-
tion operator. The selection operator selects individuals
such that individuals with better fitness values have a
greater chance of being selected. Then new individuals,
or children, are generated using the crossover and mu-
tation operators. The Reproduce operation used in Al-
gorithm 1 consists of these 3 operators. There are many
variants of GA due to the different selection, crossover
and mutation operators proposed, some of which can
be found in [1, 5-6, 14, 18-20]. The GA analyzed in this
paper is available in the Global Optimization Toolbox
of Matlab R2010a. The implemented genetic operators
used in this study are defined as follows.

Selection

The selection function used in this paper is the Sto-
chastic Universal Sampling (SUS) method [20]. Parents
are selected in a biased fitness-proportionate way such
that fit individuals get picked at least once. This meth-
od can be explained by means of Fig. 1, which shows
an array of all individuals sized by their fitness values
(N = 7). It can be noticed that f4 > f7 > f2 > f1 > f6 > f3 > f5.
The total fitness range fƩ is initially determined by using
equation :

1

N

i
i

f f∑
=

= ∑ (4)

Then, the sampling length fƩ/NS is determined, where
NS denotes the number of individuals that need to be
selected from the entire population.

Fig.1. Array of individual ranges, initial search
range, and chosen positions in Stochastic Universal

Sampling.

.

4 International Journal of Electrical and Computer Engineering Systems

A random position is generated between 0 and fƩ /NS
and the individual covering this position is selected as
the first individual. The value fƩ /NS is then added to this
initial position to determine the second position and,
thus, the second individual. Hence, each subsequent
individual is selected by adding the value fƩ / NS to the
previous position. This process is performed until N in-
dividuals have been selected.

Crossover

The representation of an individual in GA determines
the type of crossover and mutation operators that can
be implemented. By far, the most popular represen-
tation of an individual in GA is the vector representa-
tion. Depending on the problem, the individual can be
defined using a boolean vector, an integer vector or a
real-valued vector as is the case in this paper.

The crossover operator used in this paper is the Scat-
tered or Uniform crossover method. Assuming the par-
ents xi and xk have been selected, a random binary vec-
tor or mask is generated. The children xi, new and xk, new
are then formed by combining genes of both parents.
This recombination is defined by equations (6) and (7):

()
()
(),

, () 1

,
i

i new
k

j if mask j
j

j otherwise

 == 


x
x

x

()
()
(),

, () 1

,
k

k new
i

j if mask j
j

j otherwise

 == 


x
x

x

(6)

(7)

The number of children to be formed by the cross-
over operator is provided by a user defined parameter
Pcrossover which represents the fraction of the population
involved in crossover operations.

The crossover operator tends to improve the overall
quality of the population since better individuals are
involved. As a result, the population will eventually
converge, often prematurely, to copies of the same in-
dividual. In order to introduce new information, i.e., to
move to unexplored areas of the search space, the mu-
tation operator is needed.

Mutation

The Uniform mutation operator is used in this paper.
Uniform mutation is a two-step process. Assuming an
individual has been selected for mutation, the algorithm
selects a fraction of vector elements for mutation. Each
element has the same probability, Rmutation, of being se-
lected. Then the algorithm replaces each selected ele-
ment by a random number selected uniformly from the
domain of that element. For example, assuming the ele-
ment xj of the individual xi has been selected for muta-
tion, then the value of element xj is changed by generat-
ing a random number from U(lowj, upj).

In order to guarantee convergence of GA, an addi-
tional feature - elitism is used. Elitism ensures that at
least one of the best individuals of the current genera-

tion is passed on to the next generation. This is often a
user defined value, Nelite, and it indicates the top Nelite in-
dividuals, ranked according to their fitness values that
are copied on to the next generation directly.

3.2. DIFFERENTIAL EVOLUTION (DE)

DE is a very powerful yet simple real-parameter opti-
mization algorithm proposed by Storn and Price about
20 years ago [7, 8]. As with GA, a lot of variants of the
basic algorithm with improved performance have been
proposed [21, 22]. The evolutionary operations of clas-
sical DE can be summarized as follows [8].

Mutation

Mutation of a given individual xi is defined by

()i k m nF= + ⋅ −v x x x (8)

where i,k,m,n ∈ [1,N] are mutually different, F > 0 is
the mutation scale factor used to control the differen-
tial variation di=(xm-xn).

Crossover

The crossover operator is defined by equation (9):

()
() ()
()

, 0,1

,
i

i
i

j if U CR
j

j otherwise

 <= 


v
u

x
(9)

where CR ∈ (0,1) is the crossover rate and it con-
trols how many elements of an individual are changed.
ui is the new individual generated by recombining the
mutated individual vi and the original individual xi. This
operator is basically the Uniform crossover ((6) or (7)),
except for the fact that only one child is generated.

Selection

The selection operator is defined by equation :

,
, () ()
, .

i i i
i new

i

if f f
otherwise

>
= 


u u x
x

x (10)

Thus, the individual xi is replaced by the new individ-
ual ui only if ui represents a better solution.

Based on these equations, it can be noticed that DE
has three main control parameters: F, CR and N, which
are problem dependent. Storn and Price [8] recom-
mended N to be chosen between 5*D and 10*D, and
F to be between 0.4 and 1. A lot of papers and research
have been published indicating methods to improve
the ultimate performance of DE by tuning its control
parameters [23-25]. In this paper, a variant of the types
of DE discussed in [22] is used, where the mutation
scale factor and the crossover rate are generated ran-
domly from continuous uniform distributions.

3.3. PARTICLE SWARM OPTIMIZATION (PSO)

PSO belongs to the set of swarm intelligence algo-
rithms. Even though there are some similarities to EA, it

5Volume 5, Number 1, 2014

is not modeled after evolution but after swarming and
flocking behaviors in animals and birds. It was initially
proposed by Kennedy and Eberhart in 1995 [9]. A lot
of variations and modifications of the basic algorithm
have been proposed ever since [26, 27]. A candidate
solution in PSO is referred to as a particle, while a set
of candidate solutions is referred to as a swarm. A par-
ticle i is defined completely by 3 vectors: its position, xi,
its velocity, vi, and its personal best position xi,Best. The
particle moves through the search space defined by a
few simple formulae. Its movement is determined by
its own best known position, xi,Best, as well as the best
known position of the whole swarm, xBEST. First, the ve-
locity of the particle is updated using equation (11):

()
()

, 0 1 1 ,

2 2 ,
i new i i Best i

BEST i

c c r

c r

= ⋅ + ⋅ ⋅ −

+ ⋅ ⋅ −

v v x x

x x
(11)

then the position is updated using equation (12):

, ,i new i i new= +x x v (12)

where r1 and r2 are random numbers generated from
U(0,1), c0 is the inertia weight, and c1 and c2 are the cogni-
tive and social acceleration weights, respectively. Modern
versions of PSO such as the one analyzed in this paper do
not use the global best solution, xBEST, in equation (11)
but rather the local best solution xi,LBest [26, 28]. Hence,
the velocity update equation is given by

()
()

, 0 1 1 ,

2 2 , .

i new i i Best i

i LBest i

c c r

c r

= ⋅ + ⋅ ⋅ −

+ ⋅ ⋅ −

v v x x

x x
(13)

The local best solution of a given individual is de-
termined by the best-known position within that par-
ticle’s neighborhood. Different ways of defining the
neighborhood of a particle can be found in [26, 28-31].
The analyzed PSO algorithm in this paper uses an adap-
tive random topology, where each particle randomly
informs K particles and itself (the same particle may
be chosen several times), with K usually set to 3. In this
topology, the connections between particles randomly
change when the global optimum shows no improve-
ment [26, 28].

4. EXPERIMENTAL ANALYSIS

Standard benchmark test functions are used to test
the accuracy, robustness and speed of convergence of
optimization algorithms. Such benchmark functions
are necessary especially when the quality of a pro-
posed optimization algorithm needs to be assessed
or when several optimization algorithms need to be
compared under the same conditions. Examples of
such benchmark test functions can be found in [32, 33].
These benchmark suites include unimodal, multimodal
and composition functions. Among other functions,
these benchmark suites always include three standard

test functions, i.e., the Ackley function, the Rastrigin
function and the Rosenbrock function, as well as their
shifted and rotated variations. In this paper, these three
standard test functions are used in their original form
in the analyses.

Ackley’s function, (14), is in its 2D form characterized
by a nearly flat outer region, has a lot of local minima
and a large hole at the center (Fig 2).

()

()

2

1

1

1() 20 exp 1 20exp 0.2

1exp cos 2 .

D

i
i

D

i
i

f x
D

x
D

π

=

=

 
= + − −  

 
 −  
 

∑

∑

x

(14)

The domain is defined on the hypercube
, with the global minimum

, at
[]5,5 , 1, ,ix i D∈ − ∀ = 

()* 0f =x ()* 0, ,0=x  .

Fig. 2. Ackley function for D = 2

Rastrigin’s function, (15), also has several local minima
and is highly multimodal. The 2D form is shown in Fig 3.

()2

1
() 10 10cos 2

D

i i
i

f D x xπ
=

 = + − ∑x (15)

The domain is defined on the hypercube
, with the global mini-

mum also, at
[]5.12,5.12 , 1, ,ix i D∈ − ∀ = 

()* 0f =x ()* 0, ,0=x 

Fig. 3. Rastrigin function for D = 2

6 International Journal of Electrical and Computer Engineering Systems

On the other hand, the Rosenbrock function, (16),
which is a popular test problem for gradient-based op-
timization algorithms, is unimodal, and the global min-
imum lies in a narrow, parabolic valley. Even though
this valley is easy to find, convergence to the minimum
is difficult [34]. The 2D plot is shown in Fig 4.

() ()
1 2 22

1
1

() 100 1
D

i i i
i

f x x x
−

+
=

 = − + −  
∑x (16)

The domain is defined on the hypercube
 , with the global minimum ,

 at
[]5,5 , 1, ,ix i D∈ − ∀ = 

()* 0f =x ()* 1, ,1=x  .

Fig. 4. Rastrigin function for D = 2

GA, DE and PSO were tested on these 3 test functions
for D = 2, 5, 10, 50 and 100. All analyses were performed
in Matlab. The algorithm specific control parameters
values are given in Table 1. Similarly to [32, 33], all three
algorithms had the same maximum number of fitness
function evaluations defined in order to ensure a fair
comparison. Hence, the common control parameters
for the heuristic algorithms were:

• The size of the solution set, N = 50.
• The maximum number of iterations, kmax = 3,000.
All experiments were performed 100 times. Details

of the results are presented in Figures 5 and 6. Analyz-
ing the results displayed in Figures 6 and 7, it can be
noticed that:

• for optimization problems with D ≤ 10, all
three algorithms had comparable results;

• for D ≥ 50, GA and PSO performed better than
DE especially for the Rastrigin and Rosenbrock
functions. However, GA showed degraded
performance with the Ackley function;

• the runtime of PSO rapidly increases with an
increase in the dimensionality of the problem,
while that of GA and DE remains relatively low.

It can be concluded that PSO, in general, has bet-
ter accuracy for high dimensional problems but with
very poor runtime performance. If the runtime is
the main condition, then GA is a better optimization

tool. However, care should be taken if the optimiza-
tion problem is similar to the Ackley function.

Table 1. Algorithm specific control parameter
values used in the experiments.

Algorithm Control parameters

GA Nelite = 2; Pcrossover = 0.8; Rmutation = 0.01

DE ()0.5,2F U∼
; ()0.2,0.9CR U∼

PSO 0
1

2 ln(2)
c =

⋅ ; 1 2 0.5 ln(2)c c= = +

(a)

(b)

(c)

Fig. 5. Accuracy performance of the heuristic
algorithms for 100 trials for a) Rastrigin b)

Rosenbrock and c) Ackley function .

7

Fig. 6. Runtime performance of heuristic algorithms
for 100 trials for the Ackley function

(similar results are obtained for the Rastrigin and
Rosenbrock functions).

5. CONCLUSION

In this paper, three heuristic algorithms are system-
atically analyzed and tested in detail for high dimen-
sional real-parameter optimization problems. These
algorithms are GA, DE and PSO. An overview of the
implemented algorithms is provided. The algorithms
are tested on three standard optimization functions,
namely, the Rastrigin, Rosenbrock and Ackley func-
tions. For lower dimensional problems, i.e., problems
involving at most 10 parameters, all three algorithms
had comparable results. However, for higher dimen-
sional problems, PSO outperformed the other algo-
rithms in terms of accuracy but had very poor runtime
performance. On the other hand, the runtime perfor-
mances of GA and DE did not change much with an in-
crease in problem dimensionality.

6. REFERENCES

[1] T. Weise, Global Optimization Algorithms: Theory
and Application; http://www.it-weise.de/projects/
book.pdf, (accessed: 20 August 2014)

[2] R. Hooke, T. A. Jeeves, “‘Direct Search’ Solution of
Numerical and Statistical Problems”, Journal of the
Association for Computing Machinery (ACM) Vol.
8(2), pp. 212–229, 1961.

[3] J. A. Nelder, R. Mead, “A Simplex Method for Func-
tion Minimization”, Computer Journal, Vol. 7, pp.
308–313, 1965.

[4] A. H. Land, A. G. Doig, “An Automatic Method of
Solving Discrete Programming Problems”, Econo-
metrica, Vol. 28(3), pp. 497–520, 1960.

 [5] J. H. Holland, Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applica-
tions to Biology, Control, and Artificial Intelligence.

The University of Michigan Press, Ann Arbor, 1975.
Reprinted by MIT Press, NetLibrary, Inc., April 1992.

[6] D. E. Goldberg, Genetic Algorithms in Search, Opti-
mization, and Machine Learning, Addison-Wesley
Longman Publishing Co. Inc., Boston, MA, USA, 1989.

[7] R. Storn, “On the Usage of Differential Evolution for
Function Optimization”, Biennial Conference of the
North American Fuzzy Information Processing So-
ciety (NAFIPS), Berkeley, CA, USA, 19-22 June 1996,
pp. 519–523.

[8] R. Storn, K. Price, “Differential Evolution - a Simple
and Efficient Heuristic for Global optimization over
Continuous Spaces”, Journal of Global Optimiza-
tion, Vol. 11, pp. 341–359, 1997.

[9] J. Kennedy, R. Eberhart, “Particle Swarm Optimiza-
tion”, Proceedings of IEEE International Conference
on Neural Networks, Perth, WA, USA, 27 November
– 1 December 1995, Vol. 4, pp. 1942–1948.

[10] Y. Shi, R.C. Eberhart, “A Modified Particle Swarm
Optimizer”, Proceedings of IEEE International Con-
ference on Evolutionary Computation, Anchorage,
AK, USA, 4-9 May, 1998, pp. 69–73.

[11] M. Dorigo, “Optimization, Learning and Natural Al-
gorithms”, PhD thesis, Politecnico di Milano, Italy,
1992.

[12] M. Dorigo, V. Maniezzo, A. Colorni, “The ant system:
Optimization by a Colony of Cooperating Agents”,
IEEE Transactions on Systems, Man, and Cybernet-
ics Part B: Cybernetics, Vol. 26(1), pp. 29–41, 1996.

[13] B. Xing, W. – J. Gao, “Innovative Computational
Intelligence: A Rough Guide to 134 Clever Algo-
rithms”, Intelligence Systems Reference Library, Vol.
62, Springer International Publishing, 2014.

[14] S. Luke, “Essentials of Metaheuristics, Lulu, 2nd edi-
tion”; http://cs.gmu.edu/~sean/book/metaheuris-
tics/, (accessed: 20 August 2014)

[15] O. Roeva (ed.), “Real-World Applications of Genet-
ic Algorithms”, InTech Ltd., Rijeka, Croatia, Febru-
ary 2012.

[16] S.P. Mendes, J.A Gómez-Pulido, M.A.V., Rodríguez,
M.D Jaraiz simon, J.M. Sánchez-Pérez, “A Differ-
ential Evolution Based Algorithm to Optimize the
Radio Network Design Problem”, Second IEEE Inter-
national Conference on Science and Grid Comput-

Volume 5, Number 1, 2014

8

ing, Amsterdam, The Netherlands, December 2006,

p.119.

[17] N. Forghani, M. Forouzanfar, A. Eftekhari, S. Mo-

hammad-Moradi, M. Teshnehlab, “Application of

Particle Swarm Optimization in Accurate Segmen-

tation of Brain MR Images”, Particle Swarm Optimi-

zation, Lazinica, A. (ed.). InTech, January 2009. pp.

203-222.

 [18] M. Srinivas, L. Patnaik, “Adaptive Probabilities of

Crossover and Mutation in Genetic Algorithms”,

IEEE Transactions on System, Man and Cybernetics,

Vol. 24(4), pp. 656–667, 1994.

[19] J. Zhang, H. Chung, W.L. Lo, “Clustering-Based

Adaptive Crossover and Mutation Probabilities for

Genetic Algorithms”, IEEE Transactions on Evolu-

tionary Computation, Vol. 11(3), pp. 326–335, 2007.

[20] J. E. Baker, “Reducing Bias and Inefficiency in the

Selection Algorithm”, Genetic Algorithms and Their

Applications, Proceedings of the Second Interna-

tional Conference on Genetic Algorithms (ICGA),

1987, pp. 14–21.

[21] Z. Yang, K. Tang, X. Yao, “Differential evolution for

high-dimensional function optimization”, IEEE Con-

gress on Evolutionary Computation, CEC 2007, Sin-

gapore, 25-28 September, 2007, pp. 3523-3530.

[22] S. Das, P.N. Suganthan, “Differential Evolution: A Sur-

vey of the State-of-the-Art”, IEEE Transactions on

Evolutionary Computation, Vol. 15(1), 2011, pp. 4-31.

[23] J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer,

“Self-Adapting Control Parameters in Differen-

tial Evolution: a Comparative Study on Numerical

Benchmark problems”, IEEE Transactions on Evolu-

tionary Computation, Vol. 10(6), pp. 646–657, 2006.

[24] J. Zhang, A.C. Sanderson, “JADE: Adaptive Differen-

tial Evolution with Optional External Archive”, IEEE

Transactions on Evolutionary Computation, Vol.

13(5), pp. 945–958, 2009.

[25] A.K. Qin, P.N. Suganthan, “Self-Adaptive Differential

Evolution Algorithm for Numerical Optimization”,

IEEE Congress on Evolutionary Computation, CEC

2005, Edinburgh, Scotland, 2-5 September, pp.

1785–1791, 2005.

[26] M. Zambrano-Bigiarini, M. Clerc, R. Rojas, “Standard

Particle Swarm Optimisation 2011 at CEC-2013: A

baseline for future PSO improvements”, IEEE Con-
gress on Evolutionary Computation (CEC), Cancun,
Mexico, 20-23 June 2013, pp. 2337 -2344.

[27] J. J. Liang, A.K. Qin, P.N. Suganthan, S. Baskar, “Com-
prehensive Learning Particle Swarm Optimizer for
Global Optimization of Multimodal Functions”, IEEE
Transactions on Evolutionary Computation, Vol.
10(3), pp. 281–295, 2006.

[28] M. Clerc, “Standard Particle Swarm Optimisation,
Particle Swarm Central, Technical Report, 2012”;
http://clerc.maurice.free.fr/pso/SPSO descriptions.
pdf, (accessed: 24 August 2014)

[29] J. Kennedy, “Small Worlds and Mega-Minds: Effects
of Neighborhood Topology on Particle Swarm Per-
formance”, Proceedings of the 1999 Congress on
Evolutionary Computation, Washington, DC, USA,
July 6-9, 1999, Vol. 3. p. 1938.

[30] J. Kennedy, R. Eberhart, Y. Shi, Swarm Intelligence,
Morgan Kaufmann Publishers Inc. San Francisco,
CA, USA, 2001.

[31] J. Kennedy, R. Mendes, “Population Structure and
Particle Swarm Performance”, Proceedings of the
2002 Congress on Evolutionary Computation, CEC
’02, Honolulu, HI, USA, 12-17 May, 2002, pp. 1671–
1676.

[32] J. J. Liang, B-Y. Qu, P. N. Suganthan, A. G. Hernández-
Díaz, “Problem Definitions and Evaluation Criteria
for the CEC 2013 Special Session and Competition
on Real-Parameter Optimization, Technical Re-
port 201212”, Computational Intelligence Labora-
tory, Zhengzhou University, Zhengzhou China and
“Technical Report”, Nanyang Technological Univer-
sity, Singapore, January 2013.

[33] J. J. Liang, B-Y. Qu, P. N. Suganthan, “Problem Defini-
tions and Evaluation Criteria for the CEC 2014 Spe-
cial Session and Competition on Single Objective
Real-Parameter Numerical Optimization, Technical
Report 201311”, Computational Intelligence Labo-
ratory, Zhengzhou University, Zhengzhou China
and “Technical Report”, Nanyang Technological
University, Singapore, December 2013.

[34] V. Picheny, T. Wagner, D. Ginsbourger, “A Benchmark
of Kriging-Based Infill Criteria for Noisy optimiza-
tion”, Structural and Multidisciplinary Optimization,
Vol. 48(3), pp. 607-626, 2013.

International Journal of Electrical and Computer Engineering Systems

