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Abstract – The number of heuristic optimization algorithms has exploded over the last decade with new methods being proposed 
constantly. A recent overview of existing heuristic methods has listed over 130 algorithms. The majority of these optimization 
algorithms have been designed and applied to solve real-parameter function optimization problems, each claiming to be superior to 
other methods in terms of performance. However, most of these algorithms have been tested on relatively low dimensional problems, 
i.e., problems involving less than 30 parameters. With the recent emergence of Big Data, the existing optimization methods need to 
be tested to find those (un)suitable to handle highly dimensional problems. This paper represents an initial step in such direction. 
Three traditional heuristic algorithms are systematically analyzed and tested in detail for problems involving up to 100 parameters. 
Genetic algorithms (GA), particle swarm optimization (PSO) and differential evolution (DE) are compared in terms of accuracy and 
runtime, using several high dimensional standard benchmark functions.
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1. INTRODUCTION

Optimization is the process of minimizing or maximiz-
ing a goal (or goals) taking into consideration the exist-
ing constraints. Optimization algorithms are basically 
iterative in nature and as such the quality of an optimiza-
tion algorithm is determined by the quality of the result 
obtained in a finite amount of time. Global optimization 
algorithms can generally be divided into two categories: 
deterministic and probabilistic algorithms [1]. The main 
difference between the two categories is that determin-
istic algorithms are designed such that the optimal so-
lution is always found in a finite amount of time. Thus, 
deterministic algorithms can only be implemented in 

situations where the search space can efficiently be ex-
plored. In situations where the search space cannot be 
efficiently explored, e.g., high dimensional search space, 
implementing a deterministic algorithm might result in 
exhaustive search which would be unfeasible due to a 
time constraint. In such situations, probabilistic algo-
rithms are used. Probabilistic algorithms generally opti-
mize a problem by iteratively trying to improve a candi-
date solution with respect to a given measure of quality. 
They make few or no assumptions about the problem 
being optimized and can search very large spaces of 
candidate solutions. However, probabilistic algorithms 
provide no guarantee of an optimal solution being 
found, only a good solution in a finite amount of time.
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Examples of deterministic optimization algorithms 
include the pattern search or direct search by Hooke 
and Jeeves [2], the Nelder-Mead method [3] and the 
Branch and Bound algorithm [4], while examples of 
probabilistic algorithms include Genetic Algorithms 
(GA) [5,6], Differential evolution (DE) [7,8], Particle 
Swarm Optimization (PSO) [9,10] and Ant Colony Opti-
mization (ACO) [11,12], to name but a few. 

Heuristics used in global optimization are functions 
or methods that help us decide which solution candi-
date is to be examined or tested next or how the next 
solution candidate can be produced. Deterministic al-
gorithms usually employ heuristics in order to define 
the processing order of solution candidates. Probabi-
listic methods, on the other hand, may only consider 
those elements of the search space in further computa-
tions that have been selected by the heuristic [1]. In this 
paper, the term heuristic algorithms refers to probabi-
listic algorithms employing heuristic methods.

Real-world optimization problems are often very 
challenging to solve, and are often NP-hard problems. 
Thus, heuristic algorithms are usually employed. Many 
heuristic algorithms using various optimization tech-
niques have been developed to deal with these chal-
lenging optimization problems. The number of heuris-
tic optimization algorithms has exploded over the last 
decade with new methods being proposed constantly. 
A recent overview of the existing heuristic methods has 
listed over 130 algorithms [13].  These algorithms can 
be classified into four main groups: biology-, physics-, 
chemistry-, and mathematics-based algorithms de-
pending on the source of inspiration for the research-
ers. The largest group of heuristic optimization algo-
rithms is biology-based, i.e., bio-inspired. Two of the 
most important subsets of heuristic algorithms, which 
are coincidentally bio-inspired, are Evolutionary Algo-
rithms (EA) and Swarm Intelligence (SI). GA and DE are 
the most well-known evolutionary algorithms, while 
PSO is a well-known swarm intelligence algorithm.

The majority of these optimization algorithms have 
been designed and applied to solve real-parameter 
function optimization problems, each claiming to be 
superior to other methods in terms of performance [13, 
14]. However, most of these algorithms have been test-
ed on relatively low dimensional problems, i.e., prob-
lems involving less than 30 parameters. With the re-
cent emergence of Big Data, the existing optimization 
methods need to be tested to find those (un)suitable to 
handle highly dimensional problems. This paper repre-
sents an initial step in such direction. The main focus 
of this paper is to analyze, test and compare in detail, 
GA, DE and PSO in solving high dimensional real-pa-
rameter optimization problems, especially in terms of 
accuracy and runtime. Standard benchmark functions 
with up to 100 parameters are used. All tests and analy-
ses are conducted using Matlab. The rest of this paper 
is structured as follows. In Section 2, a description of 
the optimization problem is provided. An overview of 

the heuristic algorithms GA, DE and PSO is provided in 
Section 3, while the test results obtained while solving 
three examples of high dimensional real-parameter 
optimization problems are given and analyzed in Sec-
tion 4. Finally, the paper is concluded with Section 5.

2. PROBLEM DESCRIPTION

Many real-world optimization problems from en-
gineering, biology and other disciplines can often be 
expressed as optimization of a continuous function. 
These functions depend on a set of parameters, the 
choice of which affects the performance or objectives 
of the system concerned. The optimization goal is often 
measured in terms of objective or fitness functions in 
qualitative models. 

The problem considered in this paper can be formu-
lated as follows. Given an objective function

(1)

where and , one has to estimate the 
optimal parameter vector *x such that

(2)

where represents a vector of real pa-
rameters of dimension D.
Since  , the restriction 
to maximization is without loss of generality. The do-
mains of real parameters are defined by their lower and 
upper bounds: .

( )1, Dx x=x 

( ){ } ( ){ }min maxf f= − −x x

{ }, ; 1,2, ,j jlow up j D∈ 

In practice, no a priori knowledge of the objective 
function exists, and it can generally be assumed that 
the objective function is nonlinear and may have mul-
tiple local minima. In this paper, the objective function 
will also be referred to as the fitness function or the 
quality of the parameter vector. The quality or fitness of 
a candidate solution xi is defined by

( )i if f= x (3)

3. AN OVERVIEW OF GA, DE AND PSO

GA, DE and PSO have been implemented in a wide 
variety of real-parameter function optimization prob-
lems, some of which include speech synthesis, antenna 
design, genes design, neural network learning, model-
ing of chemical and biochemical processes [15], radio 
network design [16], segmentation of brain MR images 
[17], etc. 

GA, DE and PSO are population based algorithms 
and as such, they always work on a set of candidate 
solutions during each iteration of the 
algorithm. N represents the number of candidate solu-
tions and is usually kept constant during the execution 
of the algorithm.

( )T
1, N=X x x



3Volume 5, Number 1, 2014

3.1. GENETIC ALGORITHMS (GA)

Concepts from biology, genetics and evolution are 
freely borrowed to describe GA. The element xj, j=1,...,D, 
a candidate solution xi, i=1,...,N, the set of candidate 
solutions X and an iteration of the algorithm are re-
ferred to as a gene, an individual, a population and a 
generation, respectively. During the execution of the 
algorithm, a candidate solution or parent is modified 
in a particular way to create a new candidate solution 
or child.

The basic evolutionary computation algorithm first 
constructs an initial population, then it iterates through 
three procedures. It first assesses the quality or fitness 
of all individuals in the population. Then it uses this 
fitness information to reproduce a new population of 
children. Finally, it merges the parents and children in 
some fashion to form a new next-generation popula-
tion, and the cycle continues. This procedure is out-
lined in Algorithm 1 [14].

kmax denotes the maximum number of iterations to 
be performed, while xBEST represents the best solution 
found by the EA. All algorithms analyzed herein gener-
ate the initial population or set of candidate solutions 
randomly according to equation :

(4)

for i=1,...,N and j=1,...D, where Xi,j denotes the j-th 
element, xj, of the i-th vector, xi. U(lowj, upj) is a random 
number in [lowj, upj ]drawn according to uniform dis-
tribution and the symbol ~ denotes sampling from the 
given distribution.

Algorithm 1: An abstract Evolutionary Algorithm (EA)

Input: N, kmax

Output: xBEST

1: xBEST ← Ø, fBEST=0 

2: Build an initial population X 

k:=0

3: repeat

4:     k:=k+1

4:     for each individual xi in X
5:         Calculate fi  

6:         If xBEST = Ø or , fi >fBEST ,then

7:             xBEST ← xi

            fBEST ← fi 

8:          end if

9:      end

10:    X← Merge(X, Reproduce(X))

11: until xBEST is the ideal solution or k > kmax

Evolutionary algorithms differ from one another 
largely in how they perform the Reproduce and Merge 
operations. The Reproduce operation usually has two 
parts: Selecting parents from the old population, then 
creating new individuals or children (usually mutating 
or recombining them in some way) to generate chil-

dren. The Merge operation usually either completely 
replaces the parents with the children, or includes fit 
parents along with their children to form the next gen-
eration [14].

The stopping condition of the algorithm is often de-
fined in a few ways, i.e., 1) limiting the execution time of 
the algorithm. This is normally done either by defining 
the maximum number of iterations, as shown in Algo-
rithm 1, or by limiting the maximum number of fitness 
function evaluations; 2) fBEST does not change apprecia-
bly over successive iterations; 3) attaining a pre-speci-
fied objective function value.

One of the first EA is GA invented by John Holland in 
1975 [5]. The standard GA consists of three genetic op-
erators, i.e., selection, crossover and mutation. During 
each generation, parents are selected using the selec-
tion operator. The selection operator selects individuals 
such that individuals with better fitness values have a 
greater chance of being selected. Then new individuals, 
or children, are generated using the crossover and mu-
tation operators. The Reproduce operation used in Al-
gorithm 1 consists of these 3 operators. There are many 
variants of GA due to the different selection, crossover 
and mutation operators proposed, some of which can 
be found in [1, 5-6, 14, 18-20]. The GA analyzed in this 
paper is available in the Global Optimization Toolbox 
of Matlab R2010a. The implemented genetic operators 
used in this study are defined as follows.

Selection

The selection function used in this paper is the Sto-
chastic Universal Sampling (SUS) method [20]. Parents 
are selected in a biased fitness-proportionate way such 
that fit individuals get picked at least once. This meth-
od can be explained by means of Fig. 1, which shows 
an array of all individuals sized by their fitness values 
(N = 7). It can be noticed that f4 > f7 > f2 > f1 > f6 > f3 > f5. 
The total fitness range fƩ is initially determined by using 
equation :

1

N

i
i

f f∑
=

= ∑ (4)

Then, the sampling length fƩ/NS is determined, where 
NS denotes the number of individuals that need to be 
selected from the entire population.

Fig.1. Array of individual ranges, initial search 
range, and chosen positions in Stochastic Universal 

Sampling.

.
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A random position is generated between 0 and fƩ /NS 
and the individual covering this position is selected as 
the first individual. The value fƩ /NS is then added to this 
initial position to determine the second position and, 
thus, the second individual. Hence, each subsequent 
individual is selected by adding the value fƩ / NS to the 
previous position. This process is performed until N in-
dividuals have been selected.

Crossover

The representation of an individual in GA determines 
the type of crossover and mutation operators that can 
be implemented. By far, the most popular represen-
tation of an individual in GA is the vector representa-
tion. Depending on the problem, the individual can be 
defined using a boolean vector, an integer vector or a 
real-valued vector as is the case in this paper. 

The crossover operator used in this paper is the Scat-
tered or Uniform crossover method. Assuming the par-
ents xi and xk have been selected, a random binary vec-
tor or mask is generated. The children xi, new and xk, new 
are then formed by combining genes of both parents. 
This recombination is defined by equations (6) and (7):

( )
( )
( ),

, ( ) 1

,
i

i new
k

j if mask j
j

j otherwise

 == 


x
x

x

( )
( )
( ),

, ( ) 1

,
k

k new
i

j if mask j
j

j otherwise

 == 


x
x

x

(6)

(7)

The number of children to be formed by the cross-
over operator is provided by a user defined parameter 
Pcrossover which represents the fraction of the population 
involved in crossover operations.

The crossover operator tends to improve the overall 
quality of the population since better individuals are 
involved. As a result, the population will eventually 
converge, often prematurely, to copies of the same in-
dividual. In order to introduce new information, i.e., to 
move to unexplored areas of the search space, the mu-
tation operator is needed.

Mutation

The Uniform mutation operator is used in this paper. 
Uniform mutation is a two-step process. Assuming an 
individual has been selected for mutation, the algorithm 
selects a fraction of vector elements for mutation. Each 
element has the same probability, Rmutation, of being se-
lected. Then the algorithm replaces each selected ele-
ment by a random number selected uniformly from the 
domain of that element. For example, assuming the ele-
ment xj of the individual xi has been selected for muta-
tion, then the value of element xj is changed by generat-
ing a random number from U(lowj, upj).

In order to guarantee convergence of GA, an addi-
tional feature - elitism is used. Elitism ensures that at 
least one of the best individuals of the current genera-

tion is passed on to the next generation. This is often a 
user defined value, Nelite, and it indicates the top Nelite in-
dividuals, ranked according to their fitness values that 
are copied on to the next generation directly.

3.2. DIFFERENTIAL EVOLUTION (DE)

DE is a very powerful yet simple real-parameter opti-
mization algorithm proposed by Storn and Price about 
20 years ago [7, 8]. As with GA, a lot of variants of the 
basic algorithm with improved performance have been 
proposed [21, 22]. The evolutionary operations of clas-
sical DE can be summarized as follows [8].

Mutation

Mutation of a given individual xi is defined by

( )i k m nF= + ⋅ −v x x x (8)

where i,k,m,n ∈ [1,N] are mutually different, F > 0  is 
the mutation scale factor used to control the differen-
tial variation di=(xm-xn).

Crossover

The crossover operator is defined by equation (9):

( )
( ) ( )
( )

, 0,1

,
i

i
i

j if U CR
j

j otherwise

 <= 


v
u

x
(9)

where CR ∈ (0,1) is the crossover rate and it con-
trols how many elements of an individual are changed. 
ui is the new individual generated by recombining the 
mutated individual vi and the original individual xi. This 
operator is basically the Uniform crossover ((6) or (7)), 
except for the fact that only one child is generated.

Selection

The selection operator is defined by equation :

,
, ( ) ( )
, .

i i i
i new

i

if f f
otherwise

>
= 


u u x
x

x (10)

Thus, the individual xi is replaced by the new individ-
ual ui only if ui represents a better solution.

Based on these equations, it can be noticed that DE 
has three main control parameters: F, CR and N, which 
are problem dependent. Storn and Price [8] recom-
mended N to be chosen between 5*D and 10*D, and 
F to be between 0.4 and 1. A lot of papers and research 
have been published indicating methods to improve 
the ultimate performance of DE by tuning its control 
parameters [23-25]. In this paper, a variant of the types 
of DE discussed in [22] is used, where the mutation 
scale factor and the crossover rate are generated ran-
domly from continuous uniform distributions.

3.3. PARTICLE SWARM OPTIMIZATION (PSO)

PSO belongs to the set of swarm intelligence algo-
rithms. Even though there are some similarities to EA, it 



5Volume 5, Number 1, 2014

is not modeled after evolution but after swarming and 
flocking behaviors in animals and birds. It was initially 
proposed by Kennedy and Eberhart in 1995 [9]. A lot 
of variations and modifications of the basic algorithm 
have been proposed ever since [26, 27]. A candidate 
solution in PSO is referred to as a particle, while a set 
of candidate solutions is referred to as a swarm. A par-
ticle i is defined completely by 3 vectors: its position, xi, 
its velocity, vi, and its personal best position xi,Best. The 
particle moves through the search space defined by a 
few simple formulae. Its movement is determined by 
its own best known position, xi,Best, as well as the best 
known position of the whole swarm, xBEST. First, the ve-
locity of the particle is updated using equation (11):

( )
( )

, 0 1 1 ,

2 2 ,
i new i i Best i

BEST i

c c r

c r

= ⋅ + ⋅ ⋅ −

+ ⋅ ⋅ −

v v x x

x x
(11)

then the position is updated using equation (12):

, ,i new i i new= +x x v (12)

where r1 and r2 are random numbers generated from 
U(0,1), c0 is the inertia weight, and c1 and c2 are the cogni-
tive and social acceleration weights, respectively. Modern 
versions of PSO such as the one analyzed in this paper do 
not use the global best solution, xBEST, in equation (11) 
but rather the local best solution xi,LBest [26, 28]. Hence, 
the velocity update equation is given by

( )
( )

, 0 1 1 ,

2 2 , .

i new i i Best i

i LBest i

c c r

c r

= ⋅ + ⋅ ⋅ −

+ ⋅ ⋅ −

v v x x

x x
(13)

The local best solution of a given individual is de-
termined by the best-known position within that par-
ticle’s neighborhood. Different ways of defining the 
neighborhood of a particle can be found in [26, 28-31]. 
The analyzed PSO algorithm in this paper uses an adap-
tive random topology, where each particle randomly 
informs K particles and itself (the same particle may 
be chosen several times), with K usually set to 3. In this 
topology, the connections between particles randomly 
change when the global optimum shows no improve-
ment [26, 28].

4. EXPERIMENTAL ANALYSIS

Standard benchmark test functions are used to test 
the accuracy, robustness and speed of convergence of 
optimization algorithms. Such benchmark functions 
are necessary especially when the quality of a pro-
posed optimization algorithm needs to be assessed 
or when several optimization algorithms need to be 
compared under the same conditions. Examples of 
such benchmark test functions can be found in [32, 33]. 
These benchmark suites include unimodal, multimodal 
and composition functions. Among other functions, 
these benchmark suites always include three standard 

test functions, i.e., the Ackley function, the Rastrigin 
function and the Rosenbrock function, as well as their 
shifted and rotated variations. In this paper, these three 
standard test functions are used in their original form 
in the analyses.

Ackley’s function, (14), is in its 2D form characterized 
by a nearly flat outer region, has a lot of local minima 
and a large hole at the center (Fig 2).

( )

( )

2

1

1

1( ) 20 exp 1 20exp 0.2

1exp cos 2 .

D

i
i

D

i
i

f x
D

x
D

π

=

=

 
= + − −  

 
 −  
 

∑

∑

x

(14)

The domain is defined on the hypercube 
, with the global minimum 

, at
[ ]5,5 , 1, ,ix i D∈ − ∀ = 

( )* 0f =x ( )* 0, ,0=x  .

Fig. 2. Ackley function for D = 2

Rastrigin’s function, (15), also has several local minima 
and is highly multimodal. The 2D form is shown in Fig 3.

( )2

1
( ) 10 10cos 2

D

i i
i

f D x xπ
=

 = + − ∑x (15)

The domain is defined on the hypercube 
, with the global mini-

mum also, at
[ ]5.12,5.12 , 1, ,ix i D∈ − ∀ = 

( )* 0f =x ( )* 0, ,0=x 

Fig. 3. Rastrigin function for D = 2 
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On the other hand, the Rosenbrock function, (16), 
which is a popular test problem for gradient-based op-
timization algorithms, is unimodal, and the global min-
imum lies in a narrow, parabolic valley. Even though 
this valley is easy to find, convergence to the minimum 
is difficult [34]. The 2D plot is shown in Fig 4.

( ) ( )
1 2 22

1
1

( ) 100 1
D

i i i
i

f x x x
−

+
=

 = − + −  
∑x (16)

The domain is defined on the hypercube 
 , with the global minimum , 

 at 
[ ]5,5 , 1, ,ix i D∈ − ∀ = 

( )* 0f =x ( )* 1, ,1=x  .

Fig. 4. Rastrigin function for D = 2 

GA, DE and PSO were tested on these 3 test functions 
for D = 2, 5, 10, 50 and 100. All analyses were performed 
in Matlab. The algorithm specific control parameters 
values are given in Table 1. Similarly to [32, 33], all three 
algorithms had the same maximum number of fitness 
function evaluations defined in order to ensure a fair 
comparison. Hence, the common control parameters 
for the heuristic algorithms were:

• The size of the solution set, N = 50.
• The maximum number of iterations, kmax = 3,000. 
All experiments were performed 100 times. Details 

of the results are presented in Figures 5 and 6. Analyz-
ing the results displayed in Figures 6 and 7, it can be 
noticed that:

• for optimization problems with D ≤ 10, all 
three algorithms had comparable results;

• for D ≥ 50, GA and PSO performed better than 
DE especially for the Rastrigin and Rosenbrock 
functions. However, GA showed degraded 
performance with the Ackley function;  

• the runtime of PSO rapidly increases with an 
increase in the dimensionality of the problem, 
while that of GA and DE remains relatively low.

It can be concluded that PSO, in general, has bet-
ter accuracy for high dimensional problems but with 
very poor runtime performance.  If the runtime is 
the main condition, then GA is a better optimization 

tool. However, care should be taken if the optimiza-
tion problem is similar to the Ackley function.

Table 1. Algorithm specific control parameter 
values used in the experiments.

Algorithm Control parameters

GA Nelite = 2; Pcrossover = 0.8; Rmutation = 0.01

DE ( )0.5,2F U∼
; ( )0.2,0.9CR U∼

PSO 0
1

2 ln(2)
c =

⋅ ; 1 2 0.5 ln(2)c c= = +

(a)

(b)

(c)

Fig. 5. Accuracy performance of the heuristic 
algorithms for 100 trials for a) Rastrigin b) 

Rosenbrock and c) Ackley function .
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Fig. 6. Runtime performance of heuristic algorithms 
for 100 trials for the Ackley function 

(similar results are obtained for the Rastrigin and 
Rosenbrock functions).

5. CONCLUSION 

In this paper, three heuristic algorithms are system-
atically analyzed and tested in detail for high dimen-
sional real-parameter optimization problems. These 
algorithms are GA, DE and PSO. An overview of the 
implemented algorithms is provided. The algorithms 
are tested on three standard optimization functions, 
namely, the Rastrigin, Rosenbrock and Ackley func-
tions. For lower dimensional problems, i.e., problems 
involving at most 10 parameters, all three algorithms 
had comparable results. However, for higher dimen-
sional problems, PSO outperformed the other algo-
rithms in terms of accuracy but had very poor runtime 
performance.  On the other hand, the runtime perfor-
mances of GA and DE did not change much with an in-
crease in problem dimensionality.
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