
19Volume 1, Number 1, June 2010 23Volume 1, Number 1, May 2010

Abstract – Today’s visualization tools are equipped with highly interactive visual aids, which allow analysis and inspection of
complex numerical data generated from high-bandwidth data sources such as simulation software, experimental rigs, satellites,
scanners, etc. Such tools help scientists and engineers in data extraction, visualization, interpretation and analysis tasks, enabling
them to experience a high degree of interaction and effectiveness in solving their design problems, which become more and more
complex day by day. As the variety of today’s visualization tools is diversifying, there is a need for their simultaneous use within different
engineering software when solving multidisciplinary engineering problems. It is evident that such tools have to be available for a
combined use, in order to eliminate many well known problems of sharing, accessing and exchanging design models and the related
information content. It is shown that Object-Oriented methodology is a well adapted approach to stream the software development
process of future engineering applications. The three European projects ALICE, LASCOT and SERKET are given as examples in which
the evolving computer software technologies have been researched and demonstrated to address the evolution of the visualization
software in engineering and for information visualization in general.

Advanced Scientific Visualization, a
Multidisciplinary Technology Based on
Engineering and Computer Science

Dean Vucinic
Department of Mechanical Engineering, Vrije Universiteit Brussel
Pleinlaan 2, B- 1050 Brussels, Belgium
dean.vucinic@vub.ac.be

Keywords – scientific visualization, object orientation, multidisciplinary engineering

1. VISUALIZATION SOFTWARE

Scientific visualization (SV) [1] is performed through
specialized software [2], which combines visualization
techniques to display and analyze scientific data. The
scientific visualization methodology defines methods
to manipulate and convert data into comprehensible
images [3]. The scientific visualization process starts
with transformation of data sets into geometric ab-
stractions, which are further processed in displayable
images, created by computer graphics algorithms [4].
Finally, human vision, possessing the highest band-
width of human’s information input, is exploited to un-
derstand the computer generated images.

In order to develop SV Software it is necessary to
combine advanced Computer Graphics (CG) and User
Interface (UI) technologies with engineering content.
Thus, we need to consider and integrate the men-
tioned methodical domains, when addressing the soft-
ware development of SV tools, as part of an integrated
computational environment, see Figure 1, in order to
efficiently support scientists/engineers at their work
in the research laboratories and industry. In industry,
visualization is used to gain a more quantitative under-
standing of the simulated phenomena (ex aerospace
product design). The results of visualization are also
used in management and commercial presentations.
In contrast to industry, in a research laboratory, scien-

tists develop codes and try to understand qualitatively
how simulation algorithms behave. In this context,
they tend to use SV as a debugging tool. In both cases,
the computational environment includes software that
supports a geometrical definition (as in CAD systems),
mesh generation (pre-processing), supervision of the
simulation (co-processing) and display and/or analysis
of results (post-processing).

Interactive visualization accelerates the problem
solving design cycle by allowing the user to ‘jump’ at
will between the various phases, so as to optimize his/
her analysis tasks. The user conducts an investigation in
a highly interactive manner; he/she can easily compare
variants of a simulation/analysis and may intuitively
develop a deep understanding of the simulation and
of calculation details. An example of an integrated en-
vironment application is the ‘Virtual Wind Tunnel’ [5],
which reproduces a laboratory experiment in a virtual
reality environment, where a virtual model can be cre-
ated and put to test with dramatic cost and time sav-
ings compared to what is done in the ‘real’ laboratory.

SV software has progressed enormously during the
past two decades. One reason is the exponential in-
crease of the computer processing power, which has
led to today’s low-cost PCs clusters, providing as much

20 International Journal of Electrical and Computer Engineering Systems24 International Journal of Electrical and Computer Engineering Systems

power as the high-end mainframes of some years ago.
Development of advanced SV tools is no longer the
prerogative of specialized labs with costly computer
equipment. Yet, there is an undiminished demand for
new visualization-enabled software, driven by continu-
ous hardware changes and the emergence of new soft-
ware platforms. Interactive visualization remains a key
element of advanced engineering/scientific software,
and their design must account for this fact. There are
presently many commercial interactive visualization
products on the market which provide SV functionality
with increasing success. Such visualization systems are
widely used in application areas as diverse as nuclear
energy exploration and atmospheric research. In the
field of engineering, such products are commonly used
to visualize flow patterns and stress fields, and gener-
ally to study large multi-dimensional data sets. SV ap-
plications are used in many industries including aero-
space, medicine, power production, shipbuilding, geo-
physics, automotive, electronics, oil, agriculture, food
production, etc. SV applications are now ubiquitous in
engineering and science, be it in:

•	 Fluid Mechanics,

•	 Structural Analysis,

•	 Electromagnetics,

•	 Thermodynamics,

•	 Nuclear Physics, etc.

For the sake of completeness, let us mention that SV
has been (and is) instrumental in advancing the state
of the art in industrial applications involving fluid flow
modeling, such as:

•	 Aerodynamics of trains, cars and airplanes.

•	 Hydrodynamics of ships and floating structures.

•	 Flow in turbo-machinery and torque converters.

•	 Cryogenic rockets, combustion chambers simu-
lations.

Fig. 1. Integrated Computational Environment

•	 Flow in manifold, pipes and machinery.

•	 Medical researches, circulation of blood in veins.

It is evident that advances in engineering software
are driven by demands from many application areas,
which in turn places requirements on the associated
visualization software. Today, visualization software so-
lutions with interactive 3D graphics capabilities can be
categorized into four groups:

1. Visualization Applications

2. Modular Visualization Environments

3. Visualization Toolkits

4. Integrated Modeling Environments

A. Visualization Applications

Stand-alone visualization applications are software
solutions, which offer direct functionality to the user,
who is responsible for defining the data set required to
be loaded for performing the visualization task. Some
of the well known visualization software tools for the
CFD and Finite Elements Analysis (FEA) are given in the
following list:

•	 EnSight from CEI [6],

•	 FieldView from Intelligent Light’s [7, 8],

•	 TecPlot from Amtec Engineering Inc. [9],

•	 CFView from NUMECA [10],

•	 PLOT 3D, NASA [11],

•	 VISUAL2-3 from MIT [12],

•	 ParaView from VTK [13],

•	 VisIt from Lawrence Livermore National Lab [14]

Fig. 2.: CFView the scientific visualization system

25Volume 1, Number 1, May 2010

Such programs are appropriate for users who need
off-the-shelf visualization functionality. Such software
implements the ‘event-driven’ programming paradigm
which is suitable where all functions are launched by
the user interacting with the Graphical User Interface
(GUI). This is the case for CFView [2]; see Figure 2, a sci-
entific visualization application developed by the au-
thor over the 1988-98 period. CFView started as an aca-
demic application in 1988 and it was continuously up-
graded in the following years. In the mid 90’s, CFView
was taken over by the VUB spin-off company NUMECA
and integrated in ‘FINE’, that nicely illustrates the vari-
ety of visualization tasks that need to be performed to
solve an engineering problem.

B. Modular Visualization Environments

Modular Visualization Environments (MVE) are pro-
grams often known as ‘visualization programming en-
vironments’. Examples are [15]:

•	 Advanced Visual Systems AVS [16],

•	 Iris Data Explorer from Silicon Graphics [15, 17],

•	 OpenDX, the IBM’s Data Explorer [18],

•	 PV Wave from Visual Numeric [19].

Fig. 3. The OpenDX Application Builder

Their most significant characteristic is the visual
programming paradigm. Visual programming intends
to give users an intuitive GUI for them to build cus-
tomized visualization applications. The user graphi-
cally manipulates programming modules displayed as
boxes, which encapsulate the available functionality.
By interconnecting boxes, the user defines the data
stream from one module to another, creating thereby
the application. The MVE can be viewed as a ‘visualiza-
tion network’ with predefined building blocks, which
often needs to be quite elaborate in order to be useful
to the user. The freedom given to the users to design
their own visualization applications is the strength of

so-called ‘application builders’. This class of software
implements the ‘data flow paradigm’, with a drawback
that iterative and conditional constructs are difficult
to implement. For example, PV Wave uses an interac-
tive fourth-generation programming language (4GL)
for application development, which supports condi-
tional logic, data sub-setting and advanced numerical
functionality in an attempt to simplify the use of such
constructs in a visual programming environment. The
interactive approach is usually combined with a script-
oriented interface, and such products are not easy to
use ‘right out of the box’ and have a longer learning
curve than stand-alone applications.

There is an ongoing debate on whether the ‘best’ way
to procure visualization software is to use stand-alone
applications or to build applications using MVEs. Time
has shown that both approaches are equally accepted
as there is no alternative. The suggested visualization
solution is a compromise between the previous and this
one. For example, the GUI of CFView looks very much
like the one of a stand-alone visualization application;
internally though, CFView is an object-oriented system
which has a flexible, modular architecture of the appli-
cation builder. This is to say that a new component can
be integrated in the core application structure with a
minimum coding effort; also, the resulting effects from
the modification propagation are kept limited.

A. Visualization Toolkits

Visualization Toolkits are general-purpose object-
oriented visualization libraries, usually present as back-
ground components of SV applications. They emerged
in the mid 1990’s, and the two representative examples
are VTK[20] and VisAD[21]:

The Visualization ToolKit (VTK) is an open-source soft-
ware system for 3D computer graphics, image processing
and visualization, now used by thousands of researchers
and developers in the world. VTK consists of a C++ class
library and several interpreted interface layers including
Tcl/Tk, Java, and Python. VTK supports a wide variety of
visualization algorithms (including scalar, vector, tensor,
texture and volumetric methods), advanced modeling
techniques (such as implicit modeling, polygon reduc-
tion, and mesh smoothing, cutting, contouring and De-
launay triangulation). In addition, dozens of imaging al-
gorithms have been directly integrated to allow the user
to mix 2D imaging / 3D graphics algorithms and data.

The VISualization for Algorithm Development (VisAD)
is a Java component library for interactive and collabora-
tive visualization and analysis of numerical data. VisAD is
implemented in Java and supports distributed comput-
ing at the lowest system levels using Java RMI distributed
objects. VisAD’s general mathematical data model can
be adapted to virtually any numerical data that supports
data sharing among different users, different data sources
and different scientific disciplines, and that provides trans-
parent access to data independent of storage format and

21Volume 1, Number 1, June 201024 International Journal of Electrical and Computer Engineering Systems

power as the high-end mainframes of some years ago.
Development of advanced SV tools is no longer the
prerogative of specialized labs with costly computer
equipment. Yet, there is an undiminished demand for
new visualization-enabled software, driven by continu-
ous hardware changes and the emergence of new soft-
ware platforms. Interactive visualization remains a key
element of advanced engineering/scientific software,
and their design must account for this fact. There are
presently many commercial interactive visualization
products on the market which provide SV functionality
with increasing success. Such visualization systems are
widely used in application areas as diverse as nuclear
energy exploration and atmospheric research. In the
field of engineering, such products are commonly used
to visualize flow patterns and stress fields, and gener-
ally to study large multi-dimensional data sets. SV ap-
plications are used in many industries including aero-
space, medicine, power production, shipbuilding, geo-
physics, automotive, electronics, oil, agriculture, food
production, etc. SV applications are now ubiquitous in
engineering and science, be it in:

•	 Fluid Mechanics,

•	 Structural Analysis,

•	 Electromagnetics,

•	 Thermodynamics,

•	 Nuclear Physics, etc.

For the sake of completeness, let us mention that SV
has been (and is) instrumental in advancing the state
of the art in industrial applications involving fluid flow
modeling, such as:

•	 Aerodynamics of trains, cars and airplanes.

•	 Hydrodynamics of ships and floating structures.

•	 Flow in turbo-machinery and torque converters.

•	 Cryogenic rockets, combustion chambers simu-
lations.

Fig. 1. Integrated Computational Environment

•	 Flow in manifold, pipes and machinery.

•	 Medical researches, circulation of blood in veins.

It is evident that advances in engineering software
are driven by demands from many application areas,
which in turn places requirements on the associated
visualization software. Today, visualization software so-
lutions with interactive 3D graphics capabilities can be
categorized into four groups:

1. Visualization Applications

2. Modular Visualization Environments

3. Visualization Toolkits

4. Integrated Modeling Environments

A. Visualization Applications

Stand-alone visualization applications are software
solutions, which offer direct functionality to the user,
who is responsible for defining the data set required to
be loaded for performing the visualization task. Some
of the well known visualization software tools for the
CFD and Finite Elements Analysis (FEA) are given in the
following list:

•	 EnSight from CEI [6],

•	 FieldView from Intelligent Light’s [7, 8],

•	 TecPlot from Amtec Engineering Inc. [9],

•	 CFView from NUMECA [10],

•	 PLOT 3D, NASA [11],

•	 VISUAL2-3 from MIT [12],

•	 ParaView from VTK [13],

•	 VisIt from Lawrence Livermore National Lab [14]

Fig. 2.: CFView the scientific visualization system

25Volume 1, Number 1, May 2010

Such programs are appropriate for users who need
off-the-shelf visualization functionality. Such software
implements the ‘event-driven’ programming paradigm
which is suitable where all functions are launched by
the user interacting with the Graphical User Interface
(GUI). This is the case for CFView [2]; see Figure 2, a sci-
entific visualization application developed by the au-
thor over the 1988-98 period. CFView started as an aca-
demic application in 1988 and it was continuously up-
graded in the following years. In the mid 90’s, CFView
was taken over by the VUB spin-off company NUMECA
and integrated in ‘FINE’, that nicely illustrates the vari-
ety of visualization tasks that need to be performed to
solve an engineering problem.

B. Modular Visualization Environments

Modular Visualization Environments (MVE) are pro-
grams often known as ‘visualization programming en-
vironments’. Examples are [15]:

•	 Advanced Visual Systems AVS [16],

•	 Iris Data Explorer from Silicon Graphics [15, 17],

•	 OpenDX, the IBM’s Data Explorer [18],

•	 PV Wave from Visual Numeric [19].

Fig. 3. The OpenDX Application Builder

Their most significant characteristic is the visual
programming paradigm. Visual programming intends
to give users an intuitive GUI for them to build cus-
tomized visualization applications. The user graphi-
cally manipulates programming modules displayed as
boxes, which encapsulate the available functionality.
By interconnecting boxes, the user defines the data
stream from one module to another, creating thereby
the application. The MVE can be viewed as a ‘visualiza-
tion network’ with predefined building blocks, which
often needs to be quite elaborate in order to be useful
to the user. The freedom given to the users to design
their own visualization applications is the strength of

so-called ‘application builders’. This class of software
implements the ‘data flow paradigm’, with a drawback
that iterative and conditional constructs are difficult
to implement. For example, PV Wave uses an interac-
tive fourth-generation programming language (4GL)
for application development, which supports condi-
tional logic, data sub-setting and advanced numerical
functionality in an attempt to simplify the use of such
constructs in a visual programming environment. The
interactive approach is usually combined with a script-
oriented interface, and such products are not easy to
use ‘right out of the box’ and have a longer learning
curve than stand-alone applications.

There is an ongoing debate on whether the ‘best’ way
to procure visualization software is to use stand-alone
applications or to build applications using MVEs. Time
has shown that both approaches are equally accepted
as there is no alternative. The suggested visualization
solution is a compromise between the previous and this
one. For example, the GUI of CFView looks very much
like the one of a stand-alone visualization application;
internally though, CFView is an object-oriented system
which has a flexible, modular architecture of the appli-
cation builder. This is to say that a new component can
be integrated in the core application structure with a
minimum coding effort; also, the resulting effects from
the modification propagation are kept limited.

A. Visualization Toolkits

Visualization Toolkits are general-purpose object-
oriented visualization libraries, usually present as back-
ground components of SV applications. They emerged
in the mid 1990’s, and the two representative examples
are VTK[20] and VisAD[21]:

The Visualization ToolKit (VTK) is an open-source soft-
ware system for 3D computer graphics, image processing
and visualization, now used by thousands of researchers
and developers in the world. VTK consists of a C++ class
library and several interpreted interface layers including
Tcl/Tk, Java, and Python. VTK supports a wide variety of
visualization algorithms (including scalar, vector, tensor,
texture and volumetric methods), advanced modeling
techniques (such as implicit modeling, polygon reduc-
tion, and mesh smoothing, cutting, contouring and De-
launay triangulation). In addition, dozens of imaging al-
gorithms have been directly integrated to allow the user
to mix 2D imaging / 3D graphics algorithms and data.

The VISualization for Algorithm Development (VisAD)
is a Java component library for interactive and collabora-
tive visualization and analysis of numerical data. VisAD is
implemented in Java and supports distributed comput-
ing at the lowest system levels using Java RMI distributed
objects. VisAD’s general mathematical data model can
be adapted to virtually any numerical data that supports
data sharing among different users, different data sources
and different scientific disciplines, and that provides trans-
parent access to data independent of storage format and

22 International Journal of Electrical and Computer Engineering Systems26 International Journal of Electrical and Computer Engineering Systems

location (i.e. memory, disk or remote). A general display
model supports interactive 3D, see Figure 4, data fusion,
multiple data views, direct manipulation, collaboration,
and virtual reality. The display model has been adapted to
Java3D and Java2D, and virtual reality displays.

Fig. 4. VisAD application example

B. Integrated Modeling Environments

Integrated Modeling Environments (IME) is software
that combines two or more engineering applications
and visualization systems to solve a multi-disciplinary
problem. For example, the naval architect shapes the
ship hull in order to reduce the ship’s hydrodynamic
drag, while the stress engineer calculates the ship’s steel
structure. Both use visualization to analyze the data gen-
erated by the hydrodynamics and stress calculation solv-
ers. The visualization software may be able to process
the CFD flow-field solver data and the FEA stress-field
solver data in a unified manner, giving the two engineers
the possibility to work in a compatible way, interfacing
simultaneously 3D representations of hydrodynamic
and structural problems. An example of such integration
is the Product Life-cycle Modeling (PLM) developed by
Dassault Systèmes and the CFD solver technology devel-
oped by ANSYS, Inc., where the FLUENT CFD flow model-
ing approach is integrated in CATIA CAD tools through-
out the whole product lifecycle [22].

Fig. 5. The integrated modeling environment from
Dassault Systèmes and ANSYS, Inc.

2. OBJECT ORIENTED METHODOLOGy

Computer hardware has improved drastically in quali-
ty and performance in the last 30 years, much faster than
software quality and complexity. The trend is drawn
qualitatively in Figure 6. The main reason for this situa-
tion is to be found in the reusability of hardware com-
ponents (chips), which are the cheap and reliable build-
ing blocks of hardware systems, small and large. To date,
software components with similar properties simply do
not exist, and reusable software ‘chips’ are not commer-
cially available. The effort to design and produce such
software would be too large, and standardization is not
pursued by software makers who keep customers cap-
tive with proprietary software and computer platforms.
As a result, software production cannot keep pace with
hardware technology, a situation often recognized as
symptomatic of a ‘software crisis’. The key idea is to try
and produce visualization software that could intrinsi-
cally evolve as fast and as cheaply as hardware.

Fig. 6. Comparison of Hardware/Software
productivity

In this respect Object Oriented Methodology (OOM) for
constructing software components is a well adopted
approach to be considered, as it is a fairly universal ap-
proach that can be applied to solve many types of com-
plex problems. The goal of OOM is to reduce the system
complexity by decomposing it in manageable compo-
nents called objects. Experience has shown that solv-
ing problems in a piece-wise manner leads to better
quality and easily scalable solutions. The system is ‘cut’
into component pieces represented by ‘objects’ that in-
teract through well-defined interfaces, by exchanging
information through messages. An interesting feature
of OOM is that objects can be created and developed
independently, even with no a priori knowledge of the
application in which the objects will be used. The exis-
tence of an object is independent of any specific applica-

23Volume 1, Number 1, June 2010 27Volume 1, Number 1, May 2010

tion. An interesting consequence of having many reus-
able software objects would be that it would then make
sense to get hardware designed to fit the available soft-
ware (and not the reverse as is the case today). The prin-
ciples of software reusability and portability are funda-
mental to foster software productivity. Reusability is an
intrinsic feature of all OO software and their efficient ex-
ploitation promotes the computer network to become a
commercial market place, as the Internet, in which such
general-purpose and specialized software components
need to be available, validated and marketed [23].

The OO approach has led to the emergence of Object
Oriented Programming (OOP) with specialized OO pro-
gramming languages, such as Smalltalk [24], CLOS, Ei-
ffel [25-27], Objective C [28], C++ [29], Java, C# and other
derivatives, which apply encapsulation and inheritance
mechanisms to enhance software modularity and im-
prove component reusability. It is important to stress
that the greatest benefit of OOM is obtained when OOM
covers the full software life-cycle, from the requirements
specification phase to the software delivery phase.
When an application is created applying OOM, reusabil-
ity in different development phases can be expected.
First, the OOP brings in object-oriented libraries, which
provide components validated in previously developed
applications. Second, software design of previously
modeled software could be reused through the estab-
lished design patterns. Previously developed compo-
nents may be reused for a new application which does
not need to be designed from scratch, which is an ob-
vious advantage. Improvements that could be brought
to the existing, re-used objects would also improve the
‘older’ applications that use the same objects.

It is interesting to note that the OOP paradigm has
shifted the emphasis of software design from algo-
rithms to data (object, class) definitions [30-32]. The
object-oriented approach can be summarized in three
steps. The system is first decomposed into a num-
ber of objects characterizing the problem space. The
properties of each object are then defined by a set of
methods. Possibly, the commonality between objects
is established through inheritance. Actions on these
objects and access to encapsulated data can be done
randomly rather than in a sequential order. Moreover,
reusable and extensible class libraries can be created
for general use. These are the features which make OOP
very attractive for the development of software, in par-
ticular for interactive software.

Fig. 7. Graphics Engine as a combined software/
hardware solution

It should be mentioned that OOM does not directly
reduce the cost of software development; however, it
markedly improves the quality of the code by assuring
consistent object interfaces across different applications.
Estimated software construction times are often incor-
rect. Time and resource allocation tend to be largely un-
derestimated in software projects, not uncommonly by
factors of 2 to 5, especially where innovative features are
to be developed. Unfortunately, for software construc-
tion planning we do not have an underlying engineering,
scientific or mathematical model to calculate the soft-
ware development time required, when starting a new
software development process. The theoretical basis of
how to best construct software does not exist. The ability
to plan project costs, schedule milestones, and diagnose
risk is ultimately based on experience, and could be only
valid for a very similar application done in the past and
applying the same development environment.

It is also important to ensure the production of por-
table code, i.e. a code that can run without need of ad-
aptation on computing platforms other than its ‘native’
platform. Porting, adapting software to a computer sys-
tem other than the one for which it was originally de-
signed, can be a tedious and costly process. Portability
can be improved by adopting standards supported by
various hardware/system platforms. For example, one
may adopt the OpenGL standard which is supported by
graphic boards. This ensures that only a small kernel of
code must be modified before recompilation for anoth-
er hardware platform. A graphics engine typically pro-
cesses floating-point input data to generate graphics. An
example of graphics data models are lines and polygons.
Hence, one assumes that line drawing and polygon fill-
ing are functions provided by the graphics engine, and
one needs not be concerned with developing low-level
graphics routines. One can therefore focus on generat-
ing the data sets needed to ‘feed’ the graphics engine.

To develop the visualization software, our approach
must be ‘multi-disciplinary’ in the sense that it puts to-
gether an application engineer and a computer special-
ist in order to develop different application layers, as
shown in Figure 8. The software development environ-
ment needs to enable evolution of the software under
development and has to provide a framework for port-
ing applications across different hardware/operating
systems/windowing systems. Also, it has to simplify the
process of creating interactive graphical applications,
enabling the application engineer to have the applica-
tion software layer under control and hide the lower
software layers of the system, as depicted in Figure 8.
Thus, the object-oriented approach is appropriate to in-
troduce necessary abstraction levels and for organizing
the inherent complexity present in the development of
the scientific visualization software.

The fundamental concept in OOM is the “object”; it
is the elementary ‘building block’ for mapping scien-
tific and engineering concepts to their software equiva-
lents. The object is an abstract construct, which ap-

24 International Journal of Electrical and Computer Engineering Systems28 International Journal of Electrical and Computer Engineering Systems

proximates (in a simplified manner) the understanding
of the real concept under consideration, which is often
quite complex. Consider, for example, how physics of
fluid flows is described in terms of numerical equations
and how these equations are modeled by software ob-
jects. These objects are useful because they are identifi-
able elements with a well-defined purpose: each object
performs a given function by encompassing a certain
mathematical or physical ‘intelligence’ For example, an
object modeling a second-order differential equation,
or an object modeling the viscosity of a liquid at a given
temperature, etc. such that it can be ‘reused’ by the soft-
ware engineer with no need to understand the internal
working details of the object. The obvious reused ob-
ject in real life is a car. We need it to go from one place to
another, but we do not need to know how it is built. We
use it, and this is the way software engineers are sup-
posed to reuse objects.

The fundamental concept in OOM is the “object”; it is
the elementary ‘building block’ for mapping scientific
and engineering concepts to their software equiva-
lents. The object is an abstract construct, which ap-
proximates (in a simplified manner) the understanding
of the real concept under consideration, which is often
quite complex. Consider, for example, how physics of
fluid flows is described in terms of numerical equations
and how these equations are modeled by software ob-
jects. These objects are useful because they are iden-
tifiable elements with a well-defined purpose: each
object performs a given function by encompassing a
certain mathematical or physical ‘intelligence’ For ex-
ample, an object modeling a second-order differential
equation, or an object modeling the viscosity of a liquid
at a given temperature, etc. such that it can be ‘reused’
by the software engineer with no need to understand
the internal working details of the object. The obvious
reused object in real life is a car. We need it to go from
one place to another, but we do not need to know how
it is built. We use it, and this is the way software engi-
neers are supposed to reuse objects.

The software model is a fundamental element in
OOM software development. The model describes the
knowledge mapped in the software in a formal, unam-
biguously defined manner. Such a precise specification
is both a documentation and a communication tool be-

Fig. 8. Software components distribution

tween developers and users; recall that the term ‘devel-
oper’ includes application analysts, software designers
and coding programmers (see Figure 9).

In the software development process, the analyst cre-
ates an abstract model that will be partially or fully imple-
mented. The designer uses that model as a basis to add
specific classes and attributes to be mapped onto one or
more OOP languages. The designer specifies the detailed
data structure and functional operations/processes,
which are required by the application specification

Fig. 9. Software model as communication media in
the software development process

Finally, the programmer receives the analyst’s and
the designer’s models for implementation into source
code. The source code is compiled to produce the ex-
ecutable software. Software modeling is then an itera-
tive and incremental process which maps abstract con-
cepts into formal constructs that eventually become
reusable software entities.

In OOM, the object model comprises a data model and
a functional model. Specification of an object includes a
description of its behavior and the data necessary and
sufficient to support its expected functionality. The data
model describes pertinent data structures, relations be-
tween the objects and the constraints imposed on the
objects. The functional model describes objects’ behav-
ior in terms of operations. From the data model point of
view, the primary concern is to represent the structures
of data items important to the scientific visualization
process and the associated relationships.

3. THREE EUROPEAN PROJECTS

The three European projects ALICE, LASCOT and SER-
KET are given as examples in which the evolving com-
puter software technologies have been researched and
demonstrated to address the evolution of the visualiza-
tion software in engineering and for information visu-
alization in general.

A. Alice – QFView – towards the transparent visual-
ization of numerical and experimental data sets

25Volume 1, Number 1, June 2010 29Volume 1, Number 1, May 2010

The development of QFView in the ESPRIT-IV “ALICE”
project (EP-28168) extended author’s research towards
using the World Wide Web for designing and building
up distributed, collaborative scientific environments
[33, 34]. QFView was developed in a web-oriented cli-
ent-server architecture (e.g. Java, JDBC) which allowed
openness and modularity, as well as improved flexibil-
ity and integration of visualization components (current
and future). A core element was creation of a central da-
tabase where very large data sets were imported, clas-
sified and stored for re-use. The distributed nature of
QFView allows the user to extract, visualize and compare
data from the central database using World Wide Web
access. QFView integrates experimental and compu-
tational data processing (e.g. flow field mappings with
flow field visualization), see Figure 10.

Fig. 10. QFView Web Interface

B. LASCOT –Visualization as a decision-making aid

The LASCOT project [35] is part of the EUREKA/ITEA
initiative. The Information Technology European Ad-
vancement (ITEA) program for research and develop-
ment in middleware is jointly promoted by the Public
Authorities in all EU Members States and some large
European industrial companies.

Fig. 11. LASCOT 3D graphical user interface

The goal of LASCOT was to design, develop and demon-
strate the potential benefits of distributed collaborative de-

cision-support technology to the “future cyber-enterprise in
the global economy” demonstrating the following issues:

•	 Support access to traditional information systems and
to Web data;

•	 Enable situation assessment and provide decision-
support facilities as well as simulation and validation
facilities to support business decisions;

•	 Include current, enhanced-as-required security tools;

•	 Make use of visualization technology for critical tasks
such as decision-making and knowledge management;

•	 Produce an online learning application to facilitate
embedding of the platform by the users.

C. SERKET – Security situation awareness

The SERKET project [36] explored a solution to the is-
sue of security in public areas and events by develop-
ing an innovative system whereby dispersed data from a
variety of different devices are automatically correlated,
analyzed and presented to security personnel as ‘the
right information at the right time’. The aim was to de-
sign and develop an open-software platform that can be
deployed at low cost.3D software development in SER-
KET is centered on the visualization and presentation
engine, with special attention placed on the application
of X3D (eXtensible 3D) and XML (eXtensible Markup Lan-
guage) standards. The graphical middleware correlates,
combines, annotates and visualizes sensor data and re-
lated metadata (the application context is security). Us-
ing sensor data analyzed by other processing and data
fusion components, the graphical middleware builds
3D scenes which represent the objects detected by the
sensors and the operational status of sensors at their
locations. Objects in the 3D scenes are annotated with
metadata and/or with links to metadata describing the
security context in relation to the displayed 3D objects.
The 3D display of the situation removes ambiguous
and provides a highly understandable overview of the
situation to the security end-user, who is able to switch
between different levels of viewing details and select
desired viewpoints at each level (locations of video cam-
eras define the available viewpoints). The 3D model of
situation-security awareness is parameterized in space
and time as shown in Figure 13.

Fig. 12. The SERKET application

26 International Journal of Electrical and Computer Engineering Systems30 International Journal of Electrical and Computer Engineering Systems

Fig. 13. The SERKET architecture overview

Fig. 14. Example of an Integrated Modeling Environment [37]

4. TOWARDS INTEGRATED MULTI-DISCIPLINARy
ENVIRONMENTS

Today’s trend in software development is towards
more intelligent, multi-disciplinary systems. Such sys-
tems are expected to capture engineering intelligence
and put in the hands of the engineer advanced tools for
designing new products or performing investigations.
The Integrated Modeling Environment (IME) [38] con-
cept is quite recent, yet its roots can be found in 1st-
generation CAD-CAM tools. An IME system attempts to

offer to the engineer a homogeneous working environ-
ment with a single interface from which various simu-
lation codes and data sets can be accessed and used.
In the fluid mechanics application area, an IME system
needs to integrate the latest CFD and EFD ‘good work-
ing practice’; the system must be constantly updated
so that at any time it runs on the most-recent software/
hardware platform, see Figure 14.

31Volume 1, Number 1, May 2010

An IME system consists of an Internet portal from
which the investigator is able to access information/
knowledge /databases and processing functions, at any
time and wherever they are located/stored. He/she has
access to accurate and efficient simulation services, for
example to several CFD solvers. Calculations can be per-
formed extremely fast and cheaply where solvers are
implemented as parallel code, and grid computing re-
sources are available. Results obtained can be compared
with separate experimental results and other computa-
tions; this can be done efficiently by accessing databases
that manage large collections of archived results. The
possibilities for benchmarking and exchanging knowl-
edge and opinions between investigators are virtually
infinite in an IME environment. Clearly though, a pre-
requisite for an IME environment to work is its adoption
by its user community, which agrees on a specific codex
that enables and guarantees openness and collabora-
tion. Typically, an IME system will open Web-access to:

•	 Computational Services: selection of simulation
software and access to processing and storage
resources,

•	 Experimental Services: access to experimental
databases with a possibility to request new
measurements,

•	 Collaborative Services: chat and video-
conferencing, with usage of shared viewers (3D
interactive collaboration).

Visualization is required to support many tasks in IME
software. This poses the problem of building/selecting
data models that can be used by visualization compo-
nents to present the information correctly to the users,
whilst offering to them tools for real-time interaction
in a natural, intuitive manner. The IME can include wall-
displays connected to high-performance, networked
computing resources. Such systems and architectures
are no longer a mere vision: they are becoming real-
ity, which opens new challenges for scientific visualiza-
tion software researchers and developers. In Figure 15
and Figure 16 large multi-tiled display walls driven by
a system for parallel rendering running on clusters of
workstations (e.g. Chromium [39]) can adequately sat-
isfy the requirements of high resolution large-scale vi-
sualization systems.

Fig. 15. Scientific visualization with Chromium

Fig. 16. NASA Space Station on display wall

5. CONCLUSION

Innovation in visualization systems poses simultane-
ous challenges of: building better, faster and cheaper
computer-aided solutions to ever more complex scien-
tific, engineering and other multi-disciplinary problems;
developing sophisticated methodologies and algo-
rithms; harnessing the power of upcoming technologies;
re-using and leveraging the power of legacy systems and
solutions; and working in increasingly shorter design and
production cycles.

The paper addresses author’s research over many years,
in which the continuous intention was to combine engi-
neering and computer science domains, trying to con-
tribute to the improvements in software development
methodology for constructing scientific visualization
software, whose role in the multidisciplinary engineering
environment today has become an obvious prerequisite.
The paper describes the problem of advancing the state-
of-the-art of scientific visualization systems using object-
oriented methodologies and programming techniques,
which are found appropriate for designing and building
interactive visualization systems that meet all the require-
ments placed on them by engineering disciplines: cor-
rectness, accuracy, flexibility, performance, as well as by
computer science disciplines: compatibility, reusability,
portability. In particular, we have shown the three Euro-
pean project examples whose high degree of interactivity
and user-friendliness can be achieved with such software
solutions. More importantly, we have provided evidence
that scientific visualization has deeply changed the very
nature of the investigative process itself by allowing the
researcher to explore and view the physical world in an
intuitive, interactive and deeply illuminating manner.

The next generation engineering visualization tools
will more and more associate semantic information to 3D
models. They will engage web-based software standards
like X3D (eXtensible 3D) and Semantic Web, in order to
enhance visualization and manipulation of the graphical
content in a distributed engineering network. The envis-
aged software architecture will support ontologies: to
interface knowledge-based systems, to promote a web-
based software solution and to enable automation of
perpetual engineering tasks.

27Volume 1, Number 1, June 201030 International Journal of Electrical and Computer Engineering Systems

Fig. 13. The SERKET architecture overview

Fig. 14. Example of an Integrated Modeling Environment [37]

4. TOWARDS INTEGRATED MULTI-DISCIPLINARy
ENVIRONMENTS

Today’s trend in software development is towards
more intelligent, multi-disciplinary systems. Such sys-
tems are expected to capture engineering intelligence
and put in the hands of the engineer advanced tools for
designing new products or performing investigations.
The Integrated Modeling Environment (IME) [38] con-
cept is quite recent, yet its roots can be found in 1st-
generation CAD-CAM tools. An IME system attempts to

offer to the engineer a homogeneous working environ-
ment with a single interface from which various simu-
lation codes and data sets can be accessed and used.
In the fluid mechanics application area, an IME system
needs to integrate the latest CFD and EFD ‘good work-
ing practice’; the system must be constantly updated
so that at any time it runs on the most-recent software/
hardware platform, see Figure 14.

31Volume 1, Number 1, May 2010

An IME system consists of an Internet portal from
which the investigator is able to access information/
knowledge /databases and processing functions, at any
time and wherever they are located/stored. He/she has
access to accurate and efficient simulation services, for
example to several CFD solvers. Calculations can be per-
formed extremely fast and cheaply where solvers are
implemented as parallel code, and grid computing re-
sources are available. Results obtained can be compared
with separate experimental results and other computa-
tions; this can be done efficiently by accessing databases
that manage large collections of archived results. The
possibilities for benchmarking and exchanging knowl-
edge and opinions between investigators are virtually
infinite in an IME environment. Clearly though, a pre-
requisite for an IME environment to work is its adoption
by its user community, which agrees on a specific codex
that enables and guarantees openness and collabora-
tion. Typically, an IME system will open Web-access to:

•	 Computational Services: selection of simulation
software and access to processing and storage
resources,

•	 Experimental Services: access to experimental
databases with a possibility to request new
measurements,

•	 Collaborative Services: chat and video-
conferencing, with usage of shared viewers (3D
interactive collaboration).

Visualization is required to support many tasks in IME
software. This poses the problem of building/selecting
data models that can be used by visualization compo-
nents to present the information correctly to the users,
whilst offering to them tools for real-time interaction
in a natural, intuitive manner. The IME can include wall-
displays connected to high-performance, networked
computing resources. Such systems and architectures
are no longer a mere vision: they are becoming real-
ity, which opens new challenges for scientific visualiza-
tion software researchers and developers. In Figure 15
and Figure 16 large multi-tiled display walls driven by
a system for parallel rendering running on clusters of
workstations (e.g. Chromium [39]) can adequately sat-
isfy the requirements of high resolution large-scale vi-
sualization systems.

Fig. 15. Scientific visualization with Chromium

Fig. 16. NASA Space Station on display wall

5. CONCLUSION

Innovation in visualization systems poses simultane-
ous challenges of: building better, faster and cheaper
computer-aided solutions to ever more complex scien-
tific, engineering and other multi-disciplinary problems;
developing sophisticated methodologies and algo-
rithms; harnessing the power of upcoming technologies;
re-using and leveraging the power of legacy systems and
solutions; and working in increasingly shorter design and
production cycles.

The paper addresses author’s research over many years,
in which the continuous intention was to combine engi-
neering and computer science domains, trying to con-
tribute to the improvements in software development
methodology for constructing scientific visualization
software, whose role in the multidisciplinary engineering
environment today has become an obvious prerequisite.
The paper describes the problem of advancing the state-
of-the-art of scientific visualization systems using object-
oriented methodologies and programming techniques,
which are found appropriate for designing and building
interactive visualization systems that meet all the require-
ments placed on them by engineering disciplines: cor-
rectness, accuracy, flexibility, performance, as well as by
computer science disciplines: compatibility, reusability,
portability. In particular, we have shown the three Euro-
pean project examples whose high degree of interactivity
and user-friendliness can be achieved with such software
solutions. More importantly, we have provided evidence
that scientific visualization has deeply changed the very
nature of the investigative process itself by allowing the
researcher to explore and view the physical world in an
intuitive, interactive and deeply illuminating manner.

The next generation engineering visualization tools
will more and more associate semantic information to 3D
models. They will engage web-based software standards
like X3D (eXtensible 3D) and Semantic Web, in order to
enhance visualization and manipulation of the graphical
content in a distributed engineering network. The envis-
aged software architecture will support ontologies: to
interface knowledge-based systems, to promote a web-
based software solution and to enable automation of
perpetual engineering tasks.

28 International Journal of Electrical and Computer Engineering Systems32 International Journal of Electrical and Computer Engineering Systems

ACKNOWLEDGMENT

This paper would not have been created if the long-
lasting research and development activity of Dean Vu-
cinic had not been supported by the European Com-
mission (EC) for the ALICE project (EP-28168) (1988-
2001) and the Belgian national authorities (IWT) in
collaboration with the EC for the ITEA projects LASCOT
(2003-2005) and SERKET (2006-2007), what is gratefully
acknowledged by the author.

REFERENCES

[1] M. Göbel, H. Müller, B. Urban, Visualization in
scientific computing. Vienna; New York: Springer-
Verlag, 1995.

[2] D. Vucinic, M. Pottiez, V. Sotiaux, C. Hirsch, “CFView
- An Advanced Interactive Visualization System
based on Object-Oriented Approach,” in AIAA 30th
Aerospace Sciences Meeting Reno, Nevada, 1992.

[3] D. Vucinic, “Development of a Scientific
Visualization System”, in Department of
Mechanical Engineering, PhD Thesis: Vrije
Universiteit Brussel, 2007.

[4] J. D. Foley, Computer graphics: principles and
practice, 3rd ed.: Addison-Wesley Publ., 2006.

[5] A. B. Hanneman, R. E. Henderson, “Visualization,
Interrogation, and Interpretation of Computed

Flow Fields – Numerical Experiments,” in
AIAA Modeling and Simulation Technologies
Conference, Denver, CO: AIAA-2000-4089, 2000.

[6] “Ensight, CEI Products Overview - extreme
simulation software”, in http://www.ensight.
com/product-overview.html: Computational
Engineering International (CEI) develops, markets
and supports software for visualizing engineering
and scientific data, 2007.

[7] E. Duque, S. Legensky, C. Stone, R. Carter, “Post-
Processing Techniques for Large-Scale Unsteady
CFD Datasets”, in 45th AIAA Aerospace Sciences
Meeting and Exhibit Reno, Nevada, 2007.

[8] S. M. Legensky, “Recent advances in unsteady flow
visualization”, in 13th AIAA Computational Fluid
Dynamics Conference Snowmass Village, CO,
1997.

[9] D. E. Taflin, “TECTOOLS/CFD - A graphical interface
toolkit for network-based CFD”, in 36th Aerospace
Sciences Meeting and Exhibit Reno, NV, 1998.

[10] “CFView a visualization system from Numeca,”
http://www.numeca.com, 2007.

[11] P. P. Walatka, P. G. Buning, L. Pierce, P. A. Elson,
“PLOT3D User’s Manua,” NASA TM-101067 March
1990.

Fig. 17. Architecture overview of the ontology based visualization [40]

33Volume 1, Number 1, May 2010

[12] R. Haimes, M. Giles, “Visual3 - Interactive unsteady
unstructured 3D visualization”, in 29th Aerospace
Sciences Meeting Reno, NV, 1991.

[13] “ParaView – Parallel Visualization Application”, in
http://www.paraview.org, 2004.

[14] B. J. Whitlock, “Visualization with VisIt”, California,
Lawrence Livermore National Laboratory: http://
www.llnl.gov/visit/home.html, 2005.

[15] J. Walton, “NAG’s IRIS Explorer”, in Visualization
Handbook, C. R. J. a. C. D. Hansen, Ed.: Academic
Press, 2003.

[16] C. Upson, “Scientific visualization environments
for the computational sciences”, in COMPCON
Spring ‘89. Thirty-Fourth IEEE Computer Society
International Conference: Intellectual Leverage,
Digest of Papers., 1989, pp. 322-327.

[17] D. Foulser, “IRIS Explorer: A Framework for
Investigation”, Computer Graphics, vol. 29(2), pp.
13-16, 1995.

[18] “OpenDX is the open source software version of
IBM’s Visualization Data Explorer”, http://www.
opendx.org/, 2007.

[19] “PV-WAVE, GUI Application Developer’s Guide”,
USA: Visual Numerics Inc., 1996.

[20] W. Schroeder, K. W. Martin, B. Lorensen, The
visualization toolkit, 2nd ed. Upper Saddle River,
NJ: Prentice Hall PTR, 1998.

[21] W. Hibbard, “VisAD: Connecting people to
computations and people to people”, in Computer
Graphics 32, 1998, pp. 10-12.

[22] “Fluent for Catia V5, Rapid Flow Modeling for PLM”,
http://www.fluentforcatia.com/ffc_brochure.pdf,
2006.

[23] B. J. Cox, A. J. Novobilski, Object-oriented
programming: an evolutionary approach, 2nd ed.
Reading, Mass.: Addison-Wesley Pub. Co., 1991.

[24] A. Goldberg, D. Robson, Smalltalk-80: the
language. Reading, Mass.: Addison-Wesley, 1989.

[25] B. Meyer, Reusable software: the Base object-
oriented component libraries. Hemel Hempstead:
Prentice Hall, 1994.

[26] B. Meyer, Eiffel: the language. New York: Prentice
Hall, 1992.

[27] B. Meyer, Object-oriented software construction.
London: Prentice-Hall International, 1988.

[28] L. J. Pinson, R. S. Wiener, Objective-C : object-
oriented programming techniques. Reading,
Mass.: Addison-Wesley, 1991.

[29] B. Stroustrup, The C++ Programming Language,
Special Edition ed.: Addison Wesley, 1997.

[30] G. D. Reis, B. Stroustrup, “Specifying C++ concepts”,
in Conference record of the 33rd ACM SIGPLAN-
SIGACT symposium on Principles of programming
languages, Charleston, South Carolina, USA: ACM
Press, 2006.

[31] B. Stroustrup, “Why C++ is not just an object-
oriented programming language”, in Addendum
to the proceedings of the 10th annual conference on
Object-oriented programming systems, languages,
and applications (Addendum), Austin, Texas,
United States: ACM Press, 1995.

[32] R. Wiener, “Watch your language!,” Software, IEEE,
vol. 15, pp. 55-56, 1998.

[33] D. Vucinic, J. Favaro, B. Sünder, I. Jenkinson, G.
Tanzini, B. K. Hazarika, M. R. d’Alcalà, D. Vicinanza,
R. Greco, A. Pasanisi, “Fast and convenient access
to fluid dynamics data via the World Wide Web”,
in ECCOMAS European Congress on Computational
Methods in Applied Sciences and Engineering 2000,
Barcelona, Spain, 2000.

[34] D. Vucinic, M. R. Barone, B. Sünder, B. K. Hazarika, G.
Tanzini, “QFView - an Internet Based Archiving and
Visualization System”, in 39th Aerospace Sciences
Meeting & Exhibit, Reno, Nevada, 2001.

[35] “LASCOT project - home page”, in http://www.bull.
com/lascot/index.html, Bull, Ed., 2005.

[36] “SERKET project - home page,” http://www.
research.thalesgroup.com/software/cognitive_
solutions/Serket/index.html, Ed.: Thales Research
& Technology, 2006.

[37] M.-J. Jeong, K. W. Cho, K.-Y. Kim, “e-AIRS:
Aerospace Integrated Research Systems”, in The
2007 International Symposium on Collaborative
Technologies and Systems (CTS’07), Orlando,
Florida, USA, 2007.

[38] C. M. Stone, C. Holtery, “The JWST integrated
modeling environment”, 2004, pp. 4041-4047,
Vol.6.

[39] G. Humphreys, M. Houston, Y.-R. Ng, R. Frank, S.
Ahern, P. Kirchner, J. T. Klosowski, “Chromium:
A Stream Processing Framework for Interactive
Rendering on Clusters”, in SIGGRAPH, 2002.

[40] D. Vucinic, M. Pesut, A. Aksenov, Z. Mravak,
C. Lacor, “Towards Interoperable X3D Models
and Web-based Environments for Engineering
Optimization Problems”, in International
Conference on Engineering Optimization, Rio de
Janeiro, Brazil, 2008.

29Volume 1, Number 1, June 201032 International Journal of Electrical and Computer Engineering Systems

ACKNOWLEDGMENT

This paper would not have been created if the long-
lasting research and development activity of Dean Vu-
cinic had not been supported by the European Com-
mission (EC) for the ALICE project (EP-28168) (1988-
2001) and the Belgian national authorities (IWT) in
collaboration with the EC for the ITEA projects LASCOT
(2003-2005) and SERKET (2006-2007), what is gratefully
acknowledged by the author.

REFERENCES

[1] M. Göbel, H. Müller, B. Urban, Visualization in
scientific computing. Vienna; New York: Springer-
Verlag, 1995.

[2] D. Vucinic, M. Pottiez, V. Sotiaux, C. Hirsch, “CFView
- An Advanced Interactive Visualization System
based on Object-Oriented Approach,” in AIAA 30th
Aerospace Sciences Meeting Reno, Nevada, 1992.

[3] D. Vucinic, “Development of a Scientific
Visualization System”, in Department of
Mechanical Engineering, PhD Thesis: Vrije
Universiteit Brussel, 2007.

[4] J. D. Foley, Computer graphics: principles and
practice, 3rd ed.: Addison-Wesley Publ., 2006.

[5] A. B. Hanneman, R. E. Henderson, “Visualization,
Interrogation, and Interpretation of Computed

Flow Fields – Numerical Experiments,” in
AIAA Modeling and Simulation Technologies
Conference, Denver, CO: AIAA-2000-4089, 2000.

[6] “Ensight, CEI Products Overview - extreme
simulation software”, in http://www.ensight.
com/product-overview.html: Computational
Engineering International (CEI) develops, markets
and supports software for visualizing engineering
and scientific data, 2007.

[7] E. Duque, S. Legensky, C. Stone, R. Carter, “Post-
Processing Techniques for Large-Scale Unsteady
CFD Datasets”, in 45th AIAA Aerospace Sciences
Meeting and Exhibit Reno, Nevada, 2007.

[8] S. M. Legensky, “Recent advances in unsteady flow
visualization”, in 13th AIAA Computational Fluid
Dynamics Conference Snowmass Village, CO,
1997.

[9] D. E. Taflin, “TECTOOLS/CFD - A graphical interface
toolkit for network-based CFD”, in 36th Aerospace
Sciences Meeting and Exhibit Reno, NV, 1998.

[10] “CFView a visualization system from Numeca,”
http://www.numeca.com, 2007.

[11] P. P. Walatka, P. G. Buning, L. Pierce, P. A. Elson,
“PLOT3D User’s Manua,” NASA TM-101067 March
1990.

Fig. 17. Architecture overview of the ontology based visualization [40]

33Volume 1, Number 1, May 2010

[12] R. Haimes, M. Giles, “Visual3 - Interactive unsteady
unstructured 3D visualization”, in 29th Aerospace
Sciences Meeting Reno, NV, 1991.

[13] “ParaView – Parallel Visualization Application”, in
http://www.paraview.org, 2004.

[14] B. J. Whitlock, “Visualization with VisIt”, California,
Lawrence Livermore National Laboratory: http://
www.llnl.gov/visit/home.html, 2005.

[15] J. Walton, “NAG’s IRIS Explorer”, in Visualization
Handbook, C. R. J. a. C. D. Hansen, Ed.: Academic
Press, 2003.

[16] C. Upson, “Scientific visualization environments
for the computational sciences”, in COMPCON
Spring ‘89. Thirty-Fourth IEEE Computer Society
International Conference: Intellectual Leverage,
Digest of Papers., 1989, pp. 322-327.

[17] D. Foulser, “IRIS Explorer: A Framework for
Investigation”, Computer Graphics, vol. 29(2), pp.
13-16, 1995.

[18] “OpenDX is the open source software version of
IBM’s Visualization Data Explorer”, http://www.
opendx.org/, 2007.

[19] “PV-WAVE, GUI Application Developer’s Guide”,
USA: Visual Numerics Inc., 1996.

[20] W. Schroeder, K. W. Martin, B. Lorensen, The
visualization toolkit, 2nd ed. Upper Saddle River,
NJ: Prentice Hall PTR, 1998.

[21] W. Hibbard, “VisAD: Connecting people to
computations and people to people”, in Computer
Graphics 32, 1998, pp. 10-12.

[22] “Fluent for Catia V5, Rapid Flow Modeling for PLM”,
http://www.fluentforcatia.com/ffc_brochure.pdf,
2006.

[23] B. J. Cox, A. J. Novobilski, Object-oriented
programming: an evolutionary approach, 2nd ed.
Reading, Mass.: Addison-Wesley Pub. Co., 1991.

[24] A. Goldberg, D. Robson, Smalltalk-80: the
language. Reading, Mass.: Addison-Wesley, 1989.

[25] B. Meyer, Reusable software: the Base object-
oriented component libraries. Hemel Hempstead:
Prentice Hall, 1994.

[26] B. Meyer, Eiffel: the language. New York: Prentice
Hall, 1992.

[27] B. Meyer, Object-oriented software construction.
London: Prentice-Hall International, 1988.

[28] L. J. Pinson, R. S. Wiener, Objective-C : object-
oriented programming techniques. Reading,
Mass.: Addison-Wesley, 1991.

[29] B. Stroustrup, The C++ Programming Language,
Special Edition ed.: Addison Wesley, 1997.

[30] G. D. Reis, B. Stroustrup, “Specifying C++ concepts”,
in Conference record of the 33rd ACM SIGPLAN-
SIGACT symposium on Principles of programming
languages, Charleston, South Carolina, USA: ACM
Press, 2006.

[31] B. Stroustrup, “Why C++ is not just an object-
oriented programming language”, in Addendum
to the proceedings of the 10th annual conference on
Object-oriented programming systems, languages,
and applications (Addendum), Austin, Texas,
United States: ACM Press, 1995.

[32] R. Wiener, “Watch your language!,” Software, IEEE,
vol. 15, pp. 55-56, 1998.

[33] D. Vucinic, J. Favaro, B. Sünder, I. Jenkinson, G.
Tanzini, B. K. Hazarika, M. R. d’Alcalà, D. Vicinanza,
R. Greco, A. Pasanisi, “Fast and convenient access
to fluid dynamics data via the World Wide Web”,
in ECCOMAS European Congress on Computational
Methods in Applied Sciences and Engineering 2000,
Barcelona, Spain, 2000.

[34] D. Vucinic, M. R. Barone, B. Sünder, B. K. Hazarika, G.
Tanzini, “QFView - an Internet Based Archiving and
Visualization System”, in 39th Aerospace Sciences
Meeting & Exhibit, Reno, Nevada, 2001.

[35] “LASCOT project - home page”, in http://www.bull.
com/lascot/index.html, Bull, Ed., 2005.

[36] “SERKET project - home page,” http://www.
research.thalesgroup.com/software/cognitive_
solutions/Serket/index.html, Ed.: Thales Research
& Technology, 2006.

[37] M.-J. Jeong, K. W. Cho, K.-Y. Kim, “e-AIRS:
Aerospace Integrated Research Systems”, in The
2007 International Symposium on Collaborative
Technologies and Systems (CTS’07), Orlando,
Florida, USA, 2007.

[38] C. M. Stone, C. Holtery, “The JWST integrated
modeling environment”, 2004, pp. 4041-4047,
Vol.6.

[39] G. Humphreys, M. Houston, Y.-R. Ng, R. Frank, S.
Ahern, P. Kirchner, J. T. Klosowski, “Chromium:
A Stream Processing Framework for Interactive
Rendering on Clusters”, in SIGGRAPH, 2002.

[40] D. Vucinic, M. Pesut, A. Aksenov, Z. Mravak,
C. Lacor, “Towards Interoperable X3D Models
and Web-based Environments for Engineering
Optimization Problems”, in International
Conference on Engineering Optimization, Rio de
Janeiro, Brazil, 2008.

