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Abstract – Compressed Sensing(CS) is a mathematical approach for data acquisition in which the signals are compressible and sparse 
w.r.t. to an orthonormal basis. These sparse signals are reconstructed from very less measurements. CS technique Is widely used in 
Magnetic Resonance Imaging (MRI) where the doctors suggest the patients to undergo MRI scans for diagnosing their body parts. During 
the prolonged MRI Scan, the exact slice of the MRI cannot be achieved due to the difficulties faced by the patient or irregular changes in 
the body position of the patient. The idea is to reduce the exposure time of the patient’s body against the MRI scan by considering only 
fewer samples. Is it possible to Reconstruct the signal by making use of a fewer number of samples that are less than the Nyquist rate? 
Yes, it is possible to reconstruct the signal by making use of the Compressed Sensing or sampling Technique. Compressed sensing is a 
new framework for signal acquisition and representation in a compressible manner less below the Nyquist sampling rate. In this article, 
Sampling and reconstruction are dealt here thoroughly as part of the research activity. Compressive Sensing Matching pursuit (CoSaMP) 
is a novel technique for optimization. It is an iterative approximation method for sparse and incomplete signal recovery. CoSaMP 
method along with Different transform techniques is used for reconstruction. The FFT_CoSaMP, DCT_CoSaMP and DWT_CoSaMP are 
proposed methods for MR Image Reconstruction, where DWT-based CoSaMP along with different wavelet families give the best results 
when compared to other CS-based techniques w.r.t. PSNR, SSIM and RMSE analysis. 
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1. INTRODUCTION

Compressed sensing (CS) [1] has become an interest-
ing topic in these days for research in the field of math-
ematical, statistical, electrical and computer sciences, 
and engineering [2-5]. CS works on the basic fact that 
signals are represented by using a few non-zero coeffi-
cients in an appropriate dictionary or basis.  As all of us 
know to capture a two-dimensional raw image of 256 
X 256 size, each pixel will take around 8 bits of storage, 
the amount of storage required is 256 X 256 X 3 X 8, 
i.e., approximately, 1.5 Mb of memory. But as we ob-
served, the image is stored in terms of KB. The reason 
is that image is stored in the compressed form only in 
terms of 15kb or 50 kb size approximately for example. 
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When you try to open the image, the image is getting 
reconstructed by making use of some reconstruction 
algorithms. So that it is possible to look into the im-
age in its original reconstructed form. The idea here is 
to minimize the number of sensors that are necessary 
to capture the raw image since the raw image is go-
ing to be compressed in its storage level. The notion 
behind the reduction of the number of sensors is to 
choose a less quantity of samples during the image 
acquisition. The number of samples captured violates 
the Nyquist theorem [11,32]. The Nyquist rate says 
that the sampling rate must be at least a minimum of 
two times the maximum frequency of the signal for 
the exact recovery of the signal. In contrary to this, the 
CS technique samples the signal at a level far lesser 
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than the Nyquist rate and it can be restored with high 
possibility. To compress the signal during the acquisi-
tion is the idea behind the compressed sensing and 
the compressed signal is reconstructed by making use 
of CS techniques.

Compression techniques which aim to get the con-
cise representation of a signal with tolerable distortion. 
Some of the signal compression techniques are JPEG, 
MP3, JPEG2000, MPEG. In all these techniques, the 
whole signal is captured and duplicate signal data is 
removed stage by stage.

Donoho [4] challenged the traditional method of ac-
quiring the whole signal and compressing it. He footed 
his first step into the area of Compressed Sensing or 
Compressive Sampling (CS). CS is a technique of re-
constructing signals well from a fixed set of far fewer 
non-linear measurements bearing some incoherent 
characteristics [5,6,7]. Many real-time signals are char-
acterized as sparse in some transforming domains 
like FFT, DCT, DWT. Since sparse signals exhibit very 
few non-zero coefficients, they can be represented by 
some linear measures. Non-linear approximations can 
approximate the recovery of such signals from a very 
less number of coefficients. Hence compressed sensing 
achieves a large reduction in the sampling of the signal 
and its recovery is achieved by using highly nonlinear 
methods.

Let's consider a signal x which is said to be sparse if 
and only if much of the entries in it are zeros.  The ben-
efit of having most of the zeros in the signal is that we 
can ignore them since there is no loss in signal compo-
nents. Signal of length N exhibiting S number of non-
zero entries, then N-S entries will be zero. Sparsity of 
percentage is given by %sparsity = (N-S)/N*100. The 
sparse signal can be reconstructed from the compres-
sive measurements with the help of the greedy tech-
nique. 

This paper discusses the signal acquisition difficul-
ties in many scenarios. We are looking for incomplete 
signal quantities for the recovery of sparse Magnetic 
Resonance Images(MRIs). Wavelet transforms (WT) 
will be seen much like image compression algorithms. 
It represents much more sparsity of the signal under 
multiple decomposition levels than other transforma-
tion domains. It takes O(n) computations for reversing 
the signal to its original form. We can re-form the image 
to its original level if all wavelet sub-bands are roughly 
sparse [40]. 

2. PROBLEM STATEMENT WITH COMPRESSED 
SENSING. 

Compressed sensing is a new platform for acquiring 
signals. CS involves two unique things namely Spar-
sity and Incoherence which involve three important 
aspects such as sparse representation, measurement 
matrix and signal recovery via Compressed Sensing 
technique. 

Fig. 1. Representation of Compressed Sensing 
model for s = 4 number of samples.

Figure 1 describes the block diagram for the CS tech-
nique where x be the input signal which is sparse in 
nature. The sparsity can also be achieved by making 
use of the transform domain. The sparsification of the 
image is projected onto the measurement matrix Ψ. 
The measurement matrix is obtained from the randn() 
in MATLAB 2020, where n in randn() denotes Normal 
Gaussian Distribution for random value generation. 
Consider a signal f € RN which is sparse in some domain 
Ψ which can be transformed by an NXN matrix Ψ = {Ψ1, 
Ψ2, Ψ3 - - - ΨN}. Set Ψ is the orthonormal vector bases 
and X be the coefficient sequence.

(1)

(2)

(3)

Here y is called as measurement vector of size M, A 
is measurement matrix M X N and f is K-sparse signal 
of size N. K represent the total number of nonzero el-
ements of signal f provided K<<M<<N. For Example, 
measurement matrix A can be an identity matrix, scalar 
matrix, random matrix or deterministic measurement. 
e is a noise Vector.

3. TRANSFORMATION DOMAINS

There are so many transform domains that trans-
form the domain of the signal from one domain to 
another, say for example, from a frequency domain 
to a special domain. The Discrete Cosine Transforms 
(DCT) [23, 24, 26], Fast Fourier Transforms (FFT) [25] 
and Discrete Wavelet Transforms (DWT) [27, 28] are 
among the some of the transform domains. The idea 
behind these transformations is that we can approxi-
mate the signal in terms of its coefficients. The coef-
ficients are in the form of low significant components 
and high significant components. The low significant 
components are the smooth areas of the image and 
the high significant components are the abrupt areas 
of the image. Low significant components hold much 
information about the signal/image and are highly re-
quired. These are called low-frequency components. 
The high significant components are less significant, 
less required and finally discarded. In the case of FFT, 
the low-frequency components are existing at 4 dif-
ferent corners of the image and their concertation 
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diminishes towards the center of the image consist-
ing of high-frequency components. FFT is described 
by the phase and magnitude of the signal. FFT brings 
about energy compaction.  In DCT, they are existing 
only at the upper left corner of the image and their 
concentration diminished towards the other three 
corners of the image. While in the case of DWT, it 
brings the transformation into 4 different sub-bands. 
They are High High (HH), High Low (HL), Low High (LH) 
& Low Low (LL). The LL components none other than 
our low-frequency components are exhibiting much 
information about the image. Wavelet transforms are 
used to identify both frequency and special compo-
nents of the signal. Therefore, wavelet transformation 
is called multiresolution analysis. It is also called the 
next version of the Short Term Fourier Transforma-
tion (STFT). In a wavelet, the window itself is used as a 
wavelet. Here the window can be moved and can also 
be scaled. In wavelet, two types of windows are avail-
able namely wavelet window (wavelet function (ψ)) 
and scaling window (scaling function (Φ)).

DCT [24] and it's inverse of the equation for a 2D in-
put signal f (x, y) is shown below by equations (4) and 
(5) respectively.

(4)

(5)

where C(u) = C(v) = 1/√ (2)) for u, v = 0. Otherwise, C(u) 
= C(v) = 1. p (x, y) is the element in the image repre-
sented by the matrix of size M X N. DCT is applied on 
block size N. F(u, v) is the transformed Image of f(x, y). In 
DCT, sine components are put in intact. The inverse of 
DCT is used for converting the transformed signal D(i,j) 
into the original signal f(i, j). 

FFT [33] and its inverse are given by the following 
equations (6) add (7) respectively. 

(6)

(7)

Where i= √(-1), e^iω=sin(ω)+i cos(ω). F(ω) is the FFT 
transformed signal, ω is the frequency and f(x) denotes 
the input image and x represents the time. The inverse 
of FFT is used for converting the transformed signal 
into the original signal.

The Wavelet transforms [34,35] is given by the follow-
ing equation as follows.

(8)

(9)

FHighPass (m,n) represents the high pass filter to pass 
through high-frequency components and FLowPass (m,n) 
represents the low pass filter to pass through low-fre-
quency components. * is the conjugate symbol. 'Ψ' rep-
resents the wavelet function given by equation (8) and 
‘Φ’ represents the scaling function given by equation 
(9). The input signal is represented by f(x).

4. RELATED WORK 

There are several reconstruction algorithms based 
on Compressed Sensing [20]. One among the CS Tech-
niques is Orthogonal Matching Pursuit (OMP) which is 
a greedy or iterative method for solving compressed 
sensing problems. The greedy algorithm provides some 
sort of iterative estimation of the signal coefficients 
until a halting criterion met. The greedy algorithms 
provide performance guarantees when analyzed with 
convex optimization techniques [8]. OMP and Itera-
tive Thresholding are the older methods of greedy ap-
proaches. OMP [9] starts by identifying the column of 
A correlated with the measurement matrix. This step 
is repeated in the algorithm by correlating the column 
with signal residuals. These signals are obtained by tak-
ing away the partial estimates of the signal from the 
original measurement vector. The stopping criterion is 
the number of iterations that limit the total number of 
nonzero in input signal f, such that y=Af. Where A is the 
measurement matrix.  Iterative Thresholding [10] is a 
direct method. The signal is initially estimated as f’=0.  
The gradient descent step is iterated followed by hard 
thresholding till a stopping criterion happens.  

The objective quality analysis for the reconstruction 
is calculated and verified by using SSIM (Structural Sim-
ilarity index), PSNR (Peak Signal Noise Ratio), and RMSE 
(Root Mean Square Error). 

The PSNR [29] is given by the equation (10),

(10)

where f is the maximum signal component of the 2-di-
mensional signal.

MSE [30] is nothing but the Mean Squared Error which 
is given equation (11),

(11)

Here m and n are dimensions of the 2D signal. f is the 
estimated signal and g is called an actual signal.

RMSE [31] is given by equation (12),

(12)

where y is the estimated signal and y is the actual signal.

Finally, SSIM [30] is given by equation (13),

(13)
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Here l(a,b)=(2μaμb +C1) / (μa
2+μb

2 + C1), 
c(a,b)=(2σaσb +C2)/( σa

2+σb
2+C2), s(a,b) = (σab+C3 ) 

/ (σaσb+C3).

Here where μa, μb, σa, σb, and σab are the means, stan-
dard deviations, and cross-covariance for 2 dimension-
al signals a, b. If p = q = r = 1 (the default for Exponents), 
C1 and C2 are constants and C3 = C2/2.

5. COSAMP

The CoSaMP [32, 35] is a Compressed Sensing Tech-
nique based on OMP.  It should accept the following 
conditions. 

1. It should proceed with a minimum number of 
samples. 

2. It should proceed by considering the samples 
from all different sampling schemes. 

3. It should accept all the samples that are amal-
gamated with the noise and should be robust.

5.1 ORthONORMAl bASES

Let consider a set B. B is having a set of vectors i.e B 
= {v1, v2,……..vk}  and each of these vectors have the 
length 1. ||vi||=1for i=1,2, …k. or ||vi||2 = 1 or vi∙vi = 1 for 
i = 1,2,3……k. All these vectors in B have magnitude or 
length 1 i.e. they are normalized and are unit vectors. The 
dot product of any two vectors in the set is 0 i.e. vi∙ vj =0 
for i≠j. All of these vectors are orthogonal to each other.

All of these sets have magnitude or length 1 and are 
orthogonal to each other. They are normalized and or-
thogonal. So the set B is called as an orthonormal set. 
Ortho means every member of the set is orthogonal and 
everything is normalized. If there is some subspace V,

V=span(v1, v2, v3, …….vk), then B is an orthonormal 
basis for V. CoSaMP has received broad attention in 
these days due to one of Compressed Sensing tech-
nique. The CoSaMP algorithm accepts a vector of K-
sparse signal.

a. It should accept the measurement matrix.

b. It should also accept the stopping criterion as 
the number of iterations increases, the signal 
quality diminishes and this is identified as the 
stopping criterion.

The CoSaMP is a greedy matching pursuit algo-
rithm. Let A be the m X N sampler matrix with con-
stant Restricted Isometry Constant (RIC) δ2s<= c [3]. 
RIC characterizes matrices which are appearing to be 
orthonormal and are extensively used in the field of 
compressed sensing. Let y=Af + e be the observed 
vector of samples with arbitrary signals of K-sparse 
amalgamated with e noise. With precision parameter 
έ, CoSaMP produces k-sparse estimation that is ful-
filled by the equation (14).

Here, fs/2is the (s/2) sparse estimate to f. The running 
time O(ω .log (||f||2 / έ)) where ω bounds the cost of the 
matrix vector multiplied with A. ||f||2 is l2 normalization. 
c<1 and C>1 are whole constants. CoSaMP algorithm is 
given below.

5.2 COSAMP: AlgORIthM

Input: A, y, s (k-sparse signal), where y= Af+e, K non-
sparse signal components and e is the noise. 

Output: f``: k sparse approximation of f.

Variable initialization : let f00, y0y, t0

Condition: while stopping criterion does not hold, do

1. Increment the number of repetitions: tt + 1
2. Compute an intermediates: δA*y0
3. Identify the main substitutions: Bsup p(δ2s)
4. Support merger:BtB ∪ sup p(ft-1)
5. Signal estimation by least squares: 

b|Bt(AT
t)+Btb|Bc0

6. Prune to obtain the next estimation: ftbk

7. Update the samples:y0y – Aft

End while
f`ft

6. PROPOSED METHODS

The proposed CoSaMP based methods for the recon-
struction of Magnetic Resonance Images (MRI) include 
FFT based CoSaMP (FFT_CoSaMP), DFT based CoSaMP 
(DCT_CoSaMP) and DWT based CoSaMP (DWT_ CoS-
aMP). The analysis, experimentation and comparative 
study of these proposed methods have been done in 
section 6.1 below.

6.1 ExPERIMENtAtION AND ItS RESultS 

The comparative study of different compressed sens-
ing techniques is done with the Proposed techniques. 
Our proposed techniques are giving good results com-
pared to other techniques as depicted in table 1, table 
2 and table 3 for PSNR, SSIM and RMSE respectively. 
The PSNR value of the proposed methods would be 
like FFT_CoSaMP of 36.01, DCT_CoSaMP of 36.33 and 
DWT_CoSaMP of 37.16 (db4), 36.12(coif3) and 38.5 
(Sym8) for a measurement matrix of 210 X 256 of in-
put image size of 256 X 256 as in table 1. These PSNR 
values are validating that our proposed DWT_CoSaMP 
method is the best compared to other methods. Simi-
larly, SSIM value 0.81 of the proposed method DWT_
CoSaMP is better  as compared to other CS Based tech-
niques like FFT_CoSaMP of 0.7, DCT_CoSaMP of 0.73 
and other methods of CS as in table 2. In Case of DWT_ 
CoSaMP, the SSIM value for Coif3 is 0.68, for db4 of 0.71 
and for haar of 0.81 for a measurement matrix of 210 X 
256 of the input image size of 256 X 256. In the same 
way, RMSE value of the proposed method DWT_CoS-
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aMP 0.44 achieves good results when compared to 
other CS-based techniques like FFT_CoSaMP is 0.66, 
DCT_CoSaMP is 0.55 and other methods as shown in 
table 3.

The System Requirements for conduction of simula-
tion experiment on CoSaMP based CS technique will 
consist of system of Windows 10 Operating System, 
secondary memory of 500GB, 2.2 GHz speed, RAM is 6 
GB, and MATLAB software 2020.

table 1. PSNR based comparison for CoSaMP 
named Compressed Sensing technique

Sl. 
No. References Method PSNR

1
Improved CoSaMP 

Reconstruction Algorithm 
Based on Residual Update[12]

COSaMP 25.93

2
A Study on Image 

Reconfiguration Algorithm of 
Compressed Sensing [13]

St.OMP 28.3

3
Adaptive gradient-based block 

compressive sensing with 
sparsity for noisy images [14]

AGbBCS SP 23..73

4 Variable atomic number MP for 
Image restoration [15] CoSaMP 35.5875

5
An Improved Off-Grid 

Algorithm Based on CoSaMP 
for ISAR Imaging[[35]

CoSaMP 30.01

6

Constrained Backtracking 
Matching Pursuit Algorithm 
for Image Reconstruction in 

Compressed Sensing[36]

CBMP 34.04

7 Proposed method

FFT_CoSaMP 36.01

DCT_CoSaMP 36.33

DWT_CoSaMP

37.16 (DB4)

38.12 (Coif3)

38.5 (Sym8)

Table 1 depicts the comparison of PSNR values that 
were experimented with some research articles under 
different Compressed Sensing techniques. Among all 
the references, the proposed methods FFT_CoSaMP, 
DCT_CoSaMP and DWT_CoSaMP achieve better PSNR 
results concerning referenced results.

Similarly, Table 2 illustrates the comparison of SSIM 
values that were experimented with some other re-
search articles under different compressed sensing tech-
niques. Among all the references, the proposed method 
FFT_CoSaMP, DCT_CoSaMP and DWT_CoSaMP give the 
best SSIM results concerning referenced results.

In the same way, Table 3 demonstrates the compari-
son of RMSE values that were experimented with various 
research articles under different compressed Sensing 
techniques. Among all these references, the proposed 
method FFT_CoSaMP, DCT_CoSaMP and DWT_CoSaMP 
give good results concerning referenced results. 

table 2. SSIM based comparison for CoSaMP 
named Compressed Sensing technique

Sl. 
No. References Method SSIM

1
Diffuse optical tomography 

image  reconstruction via 
greedy algorithm [16]

CoSaMP 0.5443

2
Quantitative Comparison Of 
Reconstruction Methods For 

Compressive Sensing MRI [37]
CoSaMP 0.8

3

Recovery from compressed 
measurements using Sparsity 

Independent Regularized 
Pursuit, Signal Processing[38]

SIRP 0.75

4

Sparse recovery based 
compressive sensing 

algorithms for diffuse optical 
tomography[17]

CoSaMP 0.74

5
CS-based MRI image 

reconstruction via quantitative 
Comparison [18]

CoSaMP 0.79

6
DCT based CS recovery 
Strategies’ in medical 

imaging[19]

DCT based 
Method 0.80

7 Proposed method

FFT_CoSaMP 0.7

DCT_CoSaMP 0.73

DWT_CoSaMP 0.81

Table 4 shows the analysis of various measurement 
matrices for the Thorax MRI image reconstruction. The 
measurement matrices of higher dimensions give com-
paratively worthy results than the lower dimensions of 
the measurement matrix. Here the dimensions 210X256 
are the best measurement matrix for our experimental 
simulations. For the measurement matrix 210 x 256, 
DFT based CoSaMP gives PSNR of 54.95, SSIM of 0.69 
and RMSE of 0.45. For the same 210 X 256 measure-
ment matrix, the FFT-based CoSaMP gives the PSNR of 
52.5, SSIM of 0.66 and RMSE of 0.45. But in the case of 

table 3. RMSE based comparison for CoSaMP 
named Compressed Sensing technique

Sl. 
No. References Method RMSE

1
A novel compressive sampling 

method for ECG wearable 
measurement systems[39]

DBBD +DCT 3.8

2

Sparse Reconstruction 
Off-grid OFDM Time Delay 

Estimation Algorithm Based on 
Bayesian Automatic Relevance 

Determination[21]

FFT 
Expectation 

maximization 
(EM) 

algorithm

3.1

3

An improved statistical 
iterative algorithm for sparse-

view and limited-angle CT 
image reconstruction [22]

Median 
and Wiener 

filtering 
algorithms

0.91

4 Proposed method

FFT_CoSaMP 0.66

DCT_CoSaMP 0.55

DWT_CoSaMP 0.44
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DWT-based CoSaMP, for the same measurement matrix 
of 210 XX 256, PSNR is 57.63, SSIM is 0.71 and RMSE is 
0.33. Under different wavelet families, DWT-based CoS-
aMP with db4, haar, sym8, and coif3 gives the PSNR val-
ues 54.16, 53.12, 55.18, and 55.12 respectively.

table 4. Analysis of measurement matrix for MRI 
image reconstruction for the thorax image.

CS technique 
for thorax

Measurement 
matrix PSNR SSIM RMSE

DCT based 
CoSaMP

5 X 256 27.1 0.05 11.25

30X256 35 0.13 4.75

55X256 37.12 0.21 3.52

80X256 40.1 0.29 2.82

105X256 42.23 0.37 1.6

130X256 46.23 0.46 1.75

155X256 47.8 0.54 1.02

180X256 50.23 0.6 0.75

210X256 54.95 0.69 0.45

FFT based 
CoSaMP

5 X 256 27.2 0.1 10

30X256 33.62 0.15 3.52

55X256 38.12 0.286 2.13

80X256 42.67 0.39 1.75

105X256 44.12 0.47 1.62

130X256 46.2 0.52 1.52

155X256 47.5 0.56 1.23

180X256 48.6 0.59 0.75

210X256 52.5 0.66 0.45

DWT based 
CoSaMP

5 X 256 24.5 0.02 15.75

30X256 26.8 0.12 11.53

55X256 32.1 0.24 6.89

80X256 42.9 0.38 1.98

105X256 46.23 0.48 2.05

130X256 49.1 0.56 1.12

155X256 51.1 0.59 0.89

180X256 52.8 0.36 0.52

210X256 57.63 0.71 0.33

210 X 256

db4 54.16 - -

haar 53.12 - -

sym 55.18 - -

coif3 55.12 - -

Fig. 2. MRI images of a) Brain, b) Lungs
 c) Thorax d) Thighs

Figure 2 shows different MRI images like a) Brain, b) 
Lungs c) Thorax d) Thighs The experiential results are 
tabulated above for the measurement matrix of 210 X 
256. The tabulated values show the better reconstruc-
tion and analysis of MRI images. The average values at 
the bottom of the table 5 for PSNR, SSIM and RMSE give 

the better analysis and approximation and  reconstruc-
tion of the image. And figure 3 shows the simulated 
graphs of PSNR, SSIM, RMSE values against different 
measurement matrices of Table 4.

In our experimental work, about 250 MRI images are 
used for experimentation by making use of a measure-
ment matrix of 256 X 210. Among 250 images, 35 im-
ages are filtered and discussed in this research work. 
The below tabulation shows the statistical values of the 
FFT_CoSaMP, DCT_CoSaMP, and DWT_CoSaMP.  The 
images used for experimentation are of some cancer-
ous and non-cancerous human brain MRI images. The 
cancerous images are named as Yes and non-cancerous 
images are named as No.

Other than human brain images, we have used some of 
the other MRI images of human lungs, Thighs, and Tho-
rax. The outcome for these images concerning their PSNR, 
PSNR, SSIM, and RMSE are tabulated in Table 5. Here the 
thorax MRI image is giving good results concerning PSNR, 
SSIM and RMSE values when compared to other MRI im-
ages. And also the average values for the same are com-
puted, tabulated and compared as in Table 5.

Sl. No.
MRI Image  

No- NonCancerous 
Yes-Cancerous

PSNR

FFt_ 
CoSaMP

DCt_ 
CoSaMP

DWt_ 
CoSaMP

1 No 1 28.97 30.02 32.83

2 No 2 26.34 27.27 32.54

3 No 3 22.86 24.57 32.91

4 No 4 30.96 31.86 36.12

5 No 5 27.1 27.92 33.15

6 No 6 24.53 25.4 29.41

7 No 7 33.29 34.27 36.27

8 No 8 33.3 34.25 36.28

9 No 9 30.33 31.57 39.72

10 No 10 30.4 32.03 36.99

11 No 11 30.09 32.6 36.87

12 No 12 23.27 24.85 29.19

13 No 13 25.76 28.81 31.59

14 No 14 25.78 27.18 34.18

15 No 15 25.46 26.89 33.27

16 No 16 27.06 28.07 33.33

17 No17 20.28 22.54 29.47

18 No 18 27.45 28.61 32.25

19 No 19 26.05 27.21 29.36

20 No 20 23.24 24.88 28.44

21 No 21 29.16 31.03 33.89

22 No 22 23.59 24.63 28.14

23 No 23 26.02 27.18 30.68

24 No 24 25.81 27.08 34.1

25 No 25 26.41 29.1 33.04

26 No 38 24.74 25.26 38.42

27 No 94 28.2 29.07 37.49

table 5. The proposed CS Techniques FFT_
CoSaMP, DCT_CoSaMP, DWT_ CoSaMP have been 

experimented with for 250 images and only 35 
images are shown in the table images of Brain, 

Lungs, Thorax and Legs.
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Sl. No.
MRI Image  

No- NonCancerous 
Yes-Cancerous

SSIM

FFt_ 
CoSaMP 

DCt_ 
CoSaMP 

DWt_ 
CoSaMP

1 No 1 0.5 0.5 0.67

2 No 2 0.45 0.44 0.58

3 No 3 0.34 0.35 0.51

4 No 4 0.38 0.38 0.6

5 No 5 0.42 0.41 0.51

6 No 6 0.45 0.45 0.58

7 No 7 0.6 0.6 0.65

8 No 8 0.6 0.6 0.65

9 No 9 0.25 0.25 0.53

10 No 10 0.34 0.34 0.49

11 No 11 0.35 0.37 0.6

12 No 12 0.46 0.47 0.57

13 No 13 0.62 0.65 0.71

14 No 14 0.45 0.45 0.57

15 No 15 0.38 0.39 0.47

16 No 16 0.39 0.38 0.5

17 No17 0.47 0.49 0.01

18 No 18 0.42 0.43 0.64

19 No 19 0.51 0.54 0.57

20 No 20 0.59 0.61 0.7

21 No 21 0.59 0.61 0.52

22 No 22 0.42 0.43 0.54

23 No 23 0.62 0.63 0.73

24 No 24 0.45 0.45 0.57

25 No 25 0.6 0.62 0.71

26 No 38 0.42 0.4 0.73

27 No 94 0.34 0.33 0.58

28 No 95 0.32 0.33 0.5

29 No 96 0.36 0.36 0.56

30 Yes 102 0.62 0.54 0.83

31 Yes 103 0.66 0.66 0.73

32 Yes 128 0.7 0.7 0.8

33 Lungs 0.76 0.79 0.81

34 Thighs 0.56 0.57 0.59

35 Thorax 0.66 0.69 0.71

 Average 0.487 0.5 0.59

Sl. No.
MRI Image  

No- NonCancerous 
Yes-Cancerous

RMSE

FFt_ 
CoSaMP 

DCt_ 
CoSaMP 

DWt_ 
CoSaMP

1 No 1 7.91 6.92 5.17

2 No 2 6.34 6.75 4.26

3 No 3 9.43 4.63 3.82

4 No 4 5.41 6.59 4.3

5 No 5 7.26 5.51 4.23

6 No 6 6.72 6.89 5.3

28 No 95 28.88 31.44 39.66

29 No 96 29 30.64 38.35

30 Yes 102 28.08 28.36 37.26

31 Yes 103 28.28 29.35 32.9

32 Yes 128 32.58 34.44 37.67

33 Lungs 30.87 32.96 34.01

34 Thighs 34.71 36.86 40.1

35 Thorax 55.46 55.02 57.62

 Average 28.98 30.02 34.72

table 6. The CoSaMP based CS technique along 
with Different types of dictionaries like DFT, FFT and 

DWT have experimented for four different images 
of the Brain, Lungs, Thorax and Legs.

MRI 
image Proposed Method PSNR SSIM RMSE

Brain

FFT_CoSaMP 31.2 0.698 4.52

DCT_CoSaMP 33.2 0.623 6.20

DWT_CoSaMP 36.6 0.754 4.83

Lungs

FFT_CoSaMP 30.87 0.754 6.44

DCT_CoSaMP 32.96 0.787 6.44

DWT_CoSaMP 34.2 0.808 5.12

Thorax

FFT_CoSaMP 52.5 0.665 0.66

DCT_CoSaMP 54.95 0.646 0.66

DWT_CoSaMP 57.63 0.665 0.44

Thighs

FFT_CoSaMP 34.7 0.56 3.75

DCT_CoSaMP 36.76 0.57 3.76

DWT_CoSaMP 40.26 0.58 2.475

7 No 7 6.32 5.23 4.7

8 No 8 8.31 7.32 5.39

9 No 9 6.82 6.81 2.63

10 No 10 6.52 6.31 3.91

11 No 11 7.23 5.5 5.01

12 No 12 9.51 7.29 3.71

13 No 13 8.72 9.23 6.88

14 No 14 6.32 6.23 3.96

15 No 15 6.23 7.21 4.26

16 No 16 7.12 8.61 5.23

17 No17 8.56 7.69 4.28

18 No 18 7.26 6.23 5.36

19 No 19 7.12 6.23 2.35

20 No 20 5.63 5.64 4.32

21 No 21 9.23 7.25 4.5

22 No 22 7.91 6.29 5.23

23 No 23 7.23 5.23 3.85

24 No 24 9.63 7.63 6.32

25 No 25 7.52 4.23 3.25

26 No 38 6.85 5.98 4.35

27 No 94 6.35 3.54 3.54

28 No 95 7.51 6.81 2.6

29 No 96 6.32 6.23 4.65

30 Yes 102 10.71 6.6 3.5

31 Yes 103 7.98 6.25 5.91

32 Yes 128 4.91 4.81 3.21

33 Lungs 6.44 6.44 5.12

34 Thighs 2.5 2.5 2.5

35 Thorax 0.45 0.45 0.33

 Average 7.38 6.31 4.29
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Fig. 3. PSNR, SSIM and RMSE based Simulated Graphs for the reconstruction of Thorax Image.

7. CONCLUSION AND FUTURE ENHANCEMENT

For restoration of MRI images, based on different 
traditional methods and proposed Compressed Sens-
ing methods such as FFT_CoSaMP, DCT_CoSaMP and 
DWT_CoSaMP, DWT_CoSaMP is giving best results 
concerning SSIM, RMSE and PSNR statistical values.  

When DWT_CoSaMP is passed with different dictionar-
ies of Wavelets families like coif3, db4 haar and sym8, 
the result is said to be likely good for all the families of 
wavelet transforms. For Further future scope, CS-based 
methods of reconstruction will be applied for the in-
vestigation of music and speech signals by making use 
of different types of sparse dictionary parameters. 
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