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Abstract – Medical image segmentation is essential for disease screening and diagnosis, particularly through techniques like anatomical 
and lesion segmentation that can be used to isolate critical regions of interest. However, manual segmentation is labor-intensive, costly, and 
susceptible to subjective bias, underscoring the need for automation. Deep learning, particularly convolutional neural networks (CNNs), has 
significantly advanced segmentation accuracy and efficiency. With the introduction of 3D imaging, research has evolved from 2D CNNs 
to 3D CNNs, which leverage inter-slice information to improve segmentation precision. This paper aims to provide a literature review of 
studies published between 2018 and 2024 on platforms such as Google Scholar and ScienceDirect, where the identified relevant research 
are "3D segmentation" and "3D medical imaging". This study outlines the key stages of 3D CNN segmentation that include preprocessing, 
region-of-interest extraction, and post-processing. Furthermore, this study emphasizes the application of 3D CNN architectures to complex 
lung imaging scenarios, such as lung cancer and COVID-19. Although 3D CNNs outperform 2D CNNs in preserving spatial continuity across 
slices, they present notable limitations. Key challenges include heavy computational and high memory demands, as well as a dependency 
on large annotated datasets, which are often scarce in medical imaging. Additionally, effective multiscale feature learning remains a 
challenging issue, with current architectures struggling to generalize the features of interest across several usage variations. To further 
improve the segmentation performance, future research should prioritize developing adaptive algorithms and fostering interdisciplinary 
collaboration between computer scientists and medical professionals to design efficient and scalable models, designed specifically for 
clinical applications. This future research direction will enhance diagnostic accuracy and segmentation quality in 3D medical imaging.

Keywords: Medical Imaging, Semantic Segmentation, Artificial Intelligence, Deep Learning, Diagnosis Tools
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1.  INTRODUCTION

Image segmentation, particularly in medical appli-
cations, is essential for accurately distinguishing and 
isolating regions of interest within medical images, 
thereby aiding in diagnosis and treatment planning. Al-
though manual segmentation is often more precise, it 
is time-intensive and susceptible to subjectivity issues, 
prompting the need for automated approaches. A com-
monly used conventional technique is thresholding, 
where lung regions are identified as the largest blob, 
as described by Manikandan [1]. However, this method 
lacks robustness when applied to lung disease cases, 
such as those affected by pneumonia or COVID-19, due 

to substantial variability in lung image data. To address 
this limitation, adaptive techniques like watershed seg-
mentation have been explored, as demonstrated by 
Navya and Pradeep [2]. Nonetheless, these methods 
are too dependent on basic assumptions, such as the 
use of Sobel edge operators, which may not effectively 
handle intensity variations across different CT scans. 
Similarly, preprocessing filters such as Wiener, mean, 
and median filters increase the computational load 
and do not ensure segmentation robustness [3]. The 
application of these filters is often followed by mor-
phological masking as the post-processing step, which 
can inadvertently erode critical lung regions, thereby 
reducing segmentation accuracy.
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Alternative methods, including those that combine 
super pixels and fuzzy clustering [4], have been pro-
posed to enhance segmentation outcomes. However, 
super pixel-based clustering can be computationally de-
manding and frequently fails to achieve good pixel-level 
accuracy. This pixel grouping into super pixel blobs may 
obscure minor variations within these regions, poten-
tially leading to the misclassification of lung areas. Such 
inaccuracies are particularly problematic for disease 
staging identification, where even slight errors can have 
substantial diagnostic implications.  A review by Ker et al. 
[5] explores the application of machine learning, partic-
ularly convolutional neural networks (CNNs), in medical 
image analysis. It highlights the advantages of machine 
learning in handling large medical data by analyzing the 
data's hierarchical relationships without the extensive 
use of feature engineering. 

Deep learning, particularly convolutional neural net-
works (CNNs), has emerged as a powerful approach for 
medical image segmentation [6-8] CNNs are capable of 
automatically learning and extracting features from large 
datasets, yielding more accurate and reliable segmenta-
tion results. The growing availability of large datasets and 
enhanced computational resources has led to the increas-
ing adoption of deep learning methods in healthcare, 
where this approach provides robust solutions to the limi-
tations of conventional machine learning techniques. Ad-
ditionally, the deep learning approach can also be used to 
facilitate the generation of synthetic datasets through the 
generative adversarial network (GAN) approach, which 
helps mitigate privacy concerns that are associated with 
sensitive medical data [9-12].

Alongside advancements in segmentation tech-
niques, improvements in 3D imaging technologies, 
such as computed tomography (CT) and magnetic 
resonance imaging (MRI), have also significantly en-
hanced medical imaging capabilities. These technolo-
gies enable a more detailed and precise assessment 
of pathologies, particularly small-scale anomalies like 
cancerous nodules, which may not be discernible in 2D 
imaging [13, 14]. By providing a comprehensive view 
of the anatomical structures, 3D imaging reduces the 
likelihood of mistaking small pathologies for noise and 
offers a more accurate representation of tissues that 
might otherwise appear as artifacts in 2D images [15].

Despite the potential of deep learning and advanced 
imaging technologies, several challenges persist in 
medical image segmentation. Deep learning mod-
els rely on large volumes of annotated data, and the 
quality of these ground truth data is dependent on 
the expertise of the annotators, which may lead to in-
consistencies. Standardizing annotation practices and 
improving training for annotators are crucial for en-
hancing segmentation accuracy. Furthermore, medi-
cal segmentation tasks can be divided into anatomical 
and lesion segmentation. Anatomical segmentation 
involves delineating organs or structures, which can 
be complex due to visual similarities between differ-

ent structures. In contrast, lesion segmentation focuses 
on identifying abnormal regions, which vary greatly in 
size, shape, and location across patients, adding to the 
difficulty of accurate segmentation.

Research on 3D CNNs for medical segmentation has 
also made substantial progress, with studies exploring 
both 2D slice-based methods and full 3D volumetric ap-
proaches. While 2D methods often overlook crucial inter-
slice information, 3D approaches utilize the entire data 
volume to produce improved segmentation outcomes. 
Although existing reviews on 3D CNNs [16-18] discuss 
various facets of 3D segmentation, our work focuses 
specifically on the application and methodological work-
flows of 3D CNN segmentation in medical imaging. Addi-
tionally, this study examines the use of 3D deep learning 
methods in lung imaging, where the modification or the 
improvement of the backbone networks will be catego-
rized and discussed. Further discussions are also added to 
address the network’s limitations and challenges. Finally, 
future directions in this field are proposed, highlighting 
areas for continued research and development. 

2. METHODOLOGY

This review was conducted by searching the Google 
Scholar and ScienceDirect databases for peer-reviewed 
journal articles and conference proceedings. Only Eng-
lish-language articles published between 2018 and 
2024 were selected. The search terms are set to "3D seg-
mentation" and "medical image," while exclusion criteria 
are set to omit books, newspapers, non-peer-reviewed 
articles, and any study that is not specifically focused on 
3D image segmentation within medical applications. Ini-
tially, 114 articles were identified, but the selection was 
refined to focus on papers discussing 3D deep learning 
algorithms (specifically 3D CNNs) applied to medical im-
age segmentation (see Fig. 2). Fig. 1 summarizes the lit-
erature review methodology.

Fig. 1. Literature Review Methodology
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3. MEDICAL IMAGE SEGMENTATION

This section begins with a general overview of the 
importance of medical image segmentation, followed 
by a discussion comparing the basic 2D CNN and 3D 
CNN methodologies. Figure 3 outlines the general 
steps in medical image segmentation using 3D CNNs, 
which include image pre-processing, region of inter-
est (ROI) identification, 3D CNN segmentation, binary 
mask generation, and image post-processing. Based on 
Figure 2, each stage of the research methodology em-
ployed in the selected papers is discussed, except for 
image segmentation, which is later analyzed in greater 
detail specifically for the lung imaging. This process 
provides a comprehensive understanding of the over-
all approach to 3D CNN segmentation in medical imag-
ing, with particular emphasis on lung imaging.

The development of automated segmentation algo-
rithms has been extensively researched in various ap-
plications. Recent advancements in the field of medical 
image processing have led to the emergence of several 
segmentation models that can be categorized broadly 
into three classes: 1) conventional image processing-
based algorithms, 2) machine learning-based algo-
rithms, and 3) deep learning-based algorithms.

Conventional semantic segmentation algorithms, 
such as edge-based methods, are commonly employed 
to identify borders within an image. These methods rely 
on gradient-based edge detection operators, includ-
ing Prewitt, Canny, Sobel, Roberts, and Laplacian filters. 
Despite its limitations, edge-based segmentation can 
be integrated with more advanced techniques to en-
hance its performance further. Besides that, local shape 
analysis has also been applied to segment lung patholo-
gies [19]. In this approach, a set of predefined generic 
shapes representing local pathologies is compared with 
the tested input data using a geodesic distance metric. 
Another method proposed by Cui et al. [20] employs a 
more sophisticated technique involving predefined fea-
tures through a boundary expansion approach. In this 
method, an initial seed representing the pathological 
region is defined, and color information is utilized to ex-
pand the region based on a fixed 20% threshold.

For machine learning-based category, it can be fur-
ther divided into two approaches which are supervised 
and unsupervised learning. Unsupervised learning, 
particularly clustering methods, partitions data into 
distinct groups based on inherent feature similarities. 
Among these, the K-means algorithm is one of the 
most widely utilized clustering techniques. In contrast, 
supervised learning through classification tasks relies 
on a labeled training dataset, where each data point is 
associated with a specific target ground truth. One of 
the most used supervised algorithms is the K-nearest 
neighbor (K-NN) classifier.

For the third category, the deep learning-based ap-
proach mainly leverages Convolutional Neural Network 
(CNN), which is known for its robust feature extraction 

capabilities that have demonstrated exceptional per-
formance in tasks such as natural image classification, 
object detection, and segmentation. As for the segmen-
tation task, Fully Convolutional Neural Network (FCNN) 
is one of the earliest semantic segmentation models 
that is particularly well-suited for medical image seg-
mentation tasks. These deep learning-based methods 
surpass traditional techniques in terms of robustness 
and accuracy, establishing themselves as the dominant 
approach in automatic medical image segmentation. 
Many medical image segmentation tasks have utilized 
the enhanced versions of the U-Net architecture, which 
is a symmetric network with skip connections between 
the encoder and decoder paths [21].

Fig. 2. The general flow of a 3D CNN segmentation. 
The dotted line boxes are not compulsory steps, 

while solid line boxes are compulsory steps.

4. 2D VS 3D CNN SEGMENTATION FOR 3D 
MEDICAL IMAGES

The application of deep learning-based segmenta-
tion to 3D medical images can be approached in two 
distinct ways. The first approach involves directly feed-
ing 3D imaging data into a 3D  CNN architecture. The 
second approach entails slicing the 3D imaging data 
into a series of 2D slices and inputting these individual 
2D slices into a 2D CNN architecture. While consider-
able research has focused on the second approach due 
to its lower computational requirements, the 3D CNN 
approach holds particular advantages for segmenta-
tion tasks, especially when dealing with boundaries 
and edges. This is because 3D CNNs retain more spa-
tial information by maximizing the interslice context, 
as compared to 2D methods, which may fail to capture 
important volumetric relationships across slices [22]. In 
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3D medical imaging, ROI often extends across multiple 
slices, making the interslice information critical. Addi-
tionally, 3D convolutional kernels can process data in 
all three spatial dimensions, as opposed to 2D convo-
lutional kernels which can only analyze data in two-
dimensional format [23].

The 2D U-Net architecture [24] which takes inspira-
tion from the fully convolutional network consists of 23 
layers in its symmetric encoder-decoder network. This 
architecture is typically divided into two segments: the 
down-sampling path (encoder) and the up-sampling 
path (decoder). During the down-sampling phase, con-
volutional and pooling layers are applied to the input 
image, generating feature maps at varying levels of 
abstraction. The up-sampling phase gradually restores 
the size of the feature maps by using deconvolutional 
layers. To recover the detailed information lost dur-
ing the down-sampling process, the feature maps are 
merged with corresponding higher-resolution feature 
maps from the encoder side. These up-sampling proce-
dures have been implemented in [25] to facilitate the 
reconstruction of 3D models. 

However, since much of medical imaging data is in-
herently three-dimensional, the application of a 2D 
U-Net network can lead to the loss of critical spatial 
information. Moreover, the two-dimensional structure 
of the network results in the loss of contextual informa-
tion during the down-sampling process [26] This limi-
tation can reduce the network's sensitivity to fine bor-
der details, as they are usually not effectively restored 
during the up-sampling phase. Consequently, there is 
a need to employ a three-dimensional network for fur-
ther optimization that may also contribute to the infor-
mation loss. Additionally, the input data must undergo 
slicing, where the 3D data is divided into multiple 2D 
slices. This process may reduce the network's accuracy, 
as the correlation between adjacent slices will be lost.

To address these challenges, Çiçek et al. [27] pro-
posed the 3D U-Net, which is an extension of the origi-
nal U-Net architecture by incorporating 3D convolu-
tional and pooling layers in the encoder side and 3D 
deconvolutional layers in the decoder side. However, 
the 3D U-Net only utilized three down-sampling lay-
ers due to the high computational cost, which limits its 
ability to extract deep-layer image features. This restric-
tion has resulted in reduced accuracy for certain medi-
cal image segmentation tasks. To overcome this chal-
lenge, Milletari et al. [28] introduced another model, 
the V-Net, which incorporates residual connections to 
enable deeper network architectures. Subsequently, 
over the years, numerous modifications and enhance-
ments have been proposed that significantly improve 
segmentation accuracy. 3D CNN-based segmentation 
methods have been successfully applied across a range 
of medical imaging applications, including head and 
neck [29], heart [30], lung [31], kidney [32], liver [33], 
brain [34, 35], and multi-organ segmentation [36], as il-
lustrated in Fig. 3.

The main contribution of this review paper is the discus-
sion of several categories of these model modifications, 
highlighting their contributions to performance improve-
ments. In subsequent sections, we discuss the limitations 
of these modifications and propose future research direc-
tions. These insights aim to guide future researchers in 
medical image processing and provide valuable perspec-
tives for healthcare professionals or clinicians.

Fig. 3. 3D CNN segmentation applications in the 
medical imaging field

5. THE SUMMARY OF THE INCLUDED PAPERS

Based on the findings from the included studies, it 
was observed that not all studies incorporated pre-pro-
cessing steps as part of their methodology as can be 
seen in Figure 2, despite its potential to enhance image 
quality and facilitate better feature extraction. This vari-
ability in methodology highlights differing approaches, 
with some studies relying entirely on the robustness of 
their 3D CNN models for effective segmentation. Gen-
erally, many studies employed single-stage segmenta-
tion pipelines where the 3D CNN directly processes the 
input images. In contrast, there are also studies that 
utilized a two-stage pipeline, which includes a prelimi-
nary Region of Interest (ROI) extraction step. This ad-
ditional ROI extraction stage allows the model to focus 
on specific areas of the image, potentially improving 
segmentation performance by reducing irrelevant and 
noisy data.

Studies that incorporated pre-processing techniques 
alongside 3D CNNs will be discussed in detail in Sec-
tion 5.1, with an emphasis on how these techniques 
contributed to improved model performance and seg-
mentation accuracy. In contrast, studies that utilized 
ROI extraction as part of their two-stage pipeline are 
analyzed in Section 5.2, highlighting the role of this ad-
ditional step in optimizing the segmentation process.

Moreover, Section 5.3 explores the contribution of 
post-processing techniques, which are integral steps in 
refining the segmentation outputs of 3D CNNs. This re-
spective section details how post-processing methods, 
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such as smoothing, morphological operations, or filter-
ing, are employed to enhance the quality of segmen-
tation results. By structuring the review analysis in this 
manner, this paper aims to present a comprehensive 
evaluation of the segmentation pipeline, specifically 
that pertains to 3D CNN methodologies.

There are several significant trends that have been 
identified with regard to the design of 3D CNN architec-
tures to address specific challenges of medical imag-
ing dataset characteristics, such as low contrast, noise, 
or irregular anatomical structures. The adaptability of 
these architectures reflects their targeted approach 
to overcoming image-related limitations, emphasiz-
ing the importance of architectural customization in 
achieving effective segmentation outcomes.

In Table 1, we also categorize the segmentation meth-
ods based on their backbone networks. The backbone 
network serves as a reference framework for under-
standing how these approaches are classified. The iden-
tified backbone networks can be generally grouped into 
3D U-Net, 3D FCN, 3D CNN, V-Net, and others. It was ob-
served that most of the segmentation models are based 
on 3D U-Net, highlighting its popularity in medical im-
age segmentation tasks. This preference is likely due to 
its symmetric encoder-decoder structure, which is par-
ticularly effective for capturing multi-scale contextual 
information and maintaining spatial precision which is 
crucial for medical imaging applications.

In addition to 3D U-Net, Fully Convolutional Network 
(FCN) architectures are also frequently employed. FCN 
eliminates the fully connected layers on the decoder 
side, enabling pixel-wise predictions and making them 
suitable for dense segmentation tasks. Meanwhile, vanil-
la Convolutional Neural Networks (CNNs), which are the 
foundational architecture for image analysis, have been 
adapted to 3D applications for volumetric segmenta-
tion but often lack the multi-scale feature aggregation 
of U-Net variants. Furthermore, V-Net is another promi-
nent backbone utilized in medical segmentation. It is a 
3D extension of the U-Net design, incorporating residual 
connections to enhance gradient flow during training, 
which is particularly beneficial for deeper networks. 

In summary, while 3D U-Net remains the dominant 
choice due to its proven effectiveness, architectures like 
FCN, vanilla CNN, and V-Net provide additional options, 
catering to specific requirements of segmentation tasks. 
Given the focus of this review on 3D CNN-based segmen-
tation methods, a substantial portion of the discussion is 
dedicated to lung imaging applications. These methods 
serve as a representative example of the capabilities and 
variations inherent in 3D CNN-based approaches, mak-
ing them an ideal case for an in-depth analysis of seman-
tic segmentation strategies. This section will explore the 
categories and limitations of 3D CNN architectures, as 
well as highlight the available public lung imaging data-
bases that are commonly used in this field.

Table 1. Summary of the included papers

Reference Pre-Processing ROI 3D Backbone Network Post-Processing

Zhang et al. [21] x  UNET x

Xu et al. [37] x x VNET x

Shi et al. [38] ×  UNET x

Li et al. [39]  x UNET x

Jin et al. [40]  x UNET 

González Sánchez et al. [41]  x UNET x

Dalvit Carvalho da Silva et al. [42] x  UNET x

Ren et al. [29]   CNN x

Nikan et al. [43]  x FCN x

Gao et al. [44]  x UNET x

López-Linares Román et al. [30]  x VNET + FCN x

Chen et al. [45]  x UNET x

Brahim et al. [46]   UNET x

Zhang et al. [47]  x UNET x

Yang et al. [48] x x UNET x

Xiao et al. [49]   UNET x

Wang et al. [50] x  VNET x

Wang et al. [51] x x UNET x

Hussain et al. [52]  x UNET x

Hossain et al. [31]  x CNN 

Zhao et al. [32]   UNET 

Yang et al. [53]  x CNN x

Kang et al. [54]   UNET 

Yang et al. [55], [55] x  FCN 

Zheng et al. [56]   UNET x

Xu et al. [57]  x CNN x

Meng et al. [58]  x CNN 

Hu et al. [59]  x CNN 
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Reference Pre-Processing ROI 3D Backbone Network Post-Processing
Deng et al. [60]  x CNN x

Alalwan et al. [33]  x UNET x

Qayyyum et al. [61] x x CNN x

Subramaniam et al. [62] x x UNET x

Sharrock et al. [63]  x VNET x

Saleem et al. [64]  x UNET x

Niyas et al. [65]  x UNET x

Liang et al. [66]  x UNET x

Li et al. [35]  x UNET x

Radiuk et al. [67]  x UNET x

Lin et al. [68] x x UNET x

Feng et al. [36]   CNN 

Yousefi et al. [69]  x UNET x

Souadih et al. [70] x  CNN 

Dai et al. [71]  x CNN x

Chen et al. [72]  x CNN x

Chao et al. [73]  x CNN x

Baldeon et al. [74]  x CNN 

Liu et al. [75]  x CNN x

Hua et al. [76] x x UNET x

Wang et al. [77]   UNET x

Ao et al. [78]  x CNN x

Ding et al. [79]  x UNET x

Xiao et al. [80] x  CNN x

Yang et al. [81]  x CNN x

Yang et al. [82]  x UNET 
VNET x

Chen et al. [83] x x
UNET 

INCEPTION 
RESNET

x

Bose et al. [84]  x UNET x

Singh et al. [85]   CNN x

5.1. IMAGE PRE-PROCESSING

According to Table 1, it appears that most studies for 
semantic segmentation of medical imaging do include 
pre-processing steps as part of their methodology. 
To enhance the effectiveness of the training process, 
3D medical images are typically preprocessed before 
being fed into a CNN model. This preprocessing step 
helps in improving the input data quality due to the 
presence of unknown noise within the patient’s body, 
which may introduce artifacts. These artifacts can result 
in unnatural intensity variations, significantly affecting 
image quality. The outlier voxels generated by these ar-
tifacts can negatively impact the performance of deep-
learning models during the training process [32]. As 
a result, several preprocessing techniques have been 
proposed, including voxel intensity normalization and 
data augmentation.

Voxel value normalization is commonly applied to 
CT scan images, as each type of tissue in the scan cor-
responds to a distinct Hounsfield unit (HU) value. Nor-
malizing the HU scale or applying window clipping 
enhances the features of the target organ, thereby 
improving the quality of the training process [29], [30]. 
Each organ would return different HU scale clipping, 
for example, head and neck values are in the range of 
[-200 200] [29], while a lung CT scan would be in the 

range of [-1000 400] and a kidney CT scan would be in 
the range of [-100 30] [49].

Data augmentation is another widely used tech-
nique to address the challenge of limited training data, 
a common problem in medical image research [33, 41, 
43, 45, 54]. Image augmentation involves generating 
synthetic data to supplement the existing real dataset, 
which can be achieved through both simple and com-
plex data generation methods. Simple augmentation 
techniques include basic image processing operations 
such as translation, rotation, zooming, and flipping 
[86]. In contrast, more complex augmentation meth-
ods may involve the use of Generative Adversarial Net-
works (GANs) to generate new data based on specific 
conditions [87]. Additionally, for brain imaging, skull 
stripping techniques have been employed to improve 
segmentation accuracy, as demonstrated in studies by 
[63], [64], [65], and [66].

5.2. REGIONS OF INTEREST EXTRACTION

Instead of feeding raw input data directly into the 
3D CNN architecture, some researchers have chosen 
to apply ROI extraction approach before the 3D CNN 
segmentation as you can see in the figure 3. In this 
method, only a subset of the raw data, specifically the 
extracted ROI, is input into the 3D CNN model [32]. 
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The primary goal of this approach is to reduce the 
complexity of the segmentation process and lower 
computational costs. ROI extraction also serves as an 
initialization step for subsequent segmentation stages. 
A notable research trend involves the use of a two-
stage CNN segmentation process, where ROI extrac-
tion typically focuses on anatomical lesions.

Table 2. ROI extraction methodologies

Type of ROI Purpose of ROI Reference

Automatic

Region Selection/  
organ localization

[21, 36, 38, 40, 44, 46, 
50, 55, 56, 70, 77]

Organ segmentation [42]

Manual

Region selection [29, 85]

Fixed region selection [31]

Statistical calculation [80]

For instance, Zhang et al. [21] implemented a two-
stage segmentation approach, where the first stage 
involves a coarse ROI extraction, followed by a refine-
ment stage that produces the binary output maps. In 
their study, automated ROI extraction is performed 
using a 3D-DMFNet, which detects the femur region 
and removes irrelevant areas, thus reducing memory 
usage for the latter refinement stage, which is carried 
out by the 3D ResUNet model. Similarly, Jin et al. [40] 
performed both localization and segmentation of the 
frontal vertebrae slices, utilizing the intensity patterns 
of the vertebrae for RoI extraction via the U-Net archi-
tecture. The concept of employing organ localization 
methods is commonly applied as a coarse-to-fine seg-
mentation approach, where the organ is first localized, 
followed by lesion segmentation using a series of CNN 
networks. A limitation of this approach is that the ac-
curacy of lesion segmentation is heavily dependent on 
the input from the automated ROI extraction process.

In contrast, Ren et al. [26, 29] employed manual an-
notation for ROI extraction, utilizing multi-atlas-based 
segmentation methods. While the studies in [28, 31] 
relied on the researchers' prior knowledge of the lung's 
location, opting for fixed region selection on each 
slice. This also applied in [85], the authors proposed a 
method to manually enhance sharp edges and shapes 
around the anomalous region of CT scans before input-
ting them into the 3D CNN. Additionally, due to the 
small size of the hippocampus, other research has fo-
cused on statistical location-based methods, perform-
ing cropping based on calculated regions [80]. 

5.3. IMAGE POST-PROCESSING

Although, in theory, post-processing should not be 
required for the CNN model since they are designed to 
leverage all relevant information to generate optimal 
results, current network architectures are unable to ex-
plicitly enforce certain output constraints, such as 3D 
connectivity and shape conformity. Therefore, further 
research is needed to integrate such constraints into 

the design of network structures. Additionally, overfit-
ting remains a concern, which makes post-processing 
steps essential for rule-based methods. In this study, 
a simple 3D connectivity analysis was employed to 
remove small, isolated regions. Gaussian smoothing 
was also applied to improve specific cases, while the 
probability output from the network was utilized to as-
sess the reliability of the segmentation maps, enabling 
case-specific post-processing adjustments [36].

Jin et al. [40] proposed methods to reduce false posi-
tives by excluding small predictions (i.e., those under 
200 voxels) and refining the segmentation through bi-
nary conversion and connected component analysis. 
Their approach incorporated mask padding and ap-
plied an optimal threshold of 0.75. They also used mor-
phological operations, such as dilation and erosion, to 
eliminate noise and small patches, resulting in a more 
than 50% reduction in false positives across various 
models [31].

Zhao et al. [32] employed a post-processing tech-
nique based on kidney anatomy, retaining only those 
tumor components connected to the kidneys, which 
significantly enhanced the segmentation performance. 
In a related study [28], segmentation results were bina-
rized, with a focus on the two largest connected com-
ponents. Morphological operations were applied to 
improve accuracy, particularly for small tumors, lead-
ing to an improvement of 1.77% and 2.82% in renal tu-
mor segmentation for different training models.

In a study by Yang et al. [55], input volumes were lim-
ited to 64 slices, requiring the division of regions into 
smaller sub-volumes. The segmentation process was 
refined using majority voting and a 3D conditional ran-
dom field (CRF) algorithm to correct misclassifications. 
Similarly, Meng et al. [58] employed fully connected 
CRFs (FC-CRFs) to refine segmentation boundaries, uti-
lizing CT values and category labels for improved accu-
racy. In the work of Hu et al. [59], morphological opera-
tions were applied to align segmented liver tissues with 
manual annotations. However, challenges remained in 
distinguishing organs with similar intensity values, as 
highlighted by Souadih et al. [70]. In their approach, pri-
or anatomical knowledge combined with mathematical 
morphology was used to accurately locate the sphenoid 
sinus, with final segmentations confirmed through larg-
est connected component analysis [74].

6. 3D CNN SEGMENTATION FOR LUNG IMAGING

This section explores various 3D deep-learning tech-
niques applied to lung imaging. Segmenting lung re-
gions is a critical step in the screening and diagnosis 
of lung-related diseases, such as COVID-19, pneumo-
nia, lung cancer nodules, and other medical conditions 
[82]. The analysis highlights the unique segmentation 
challenges posed by each lung disease and how 3D 
CNN-based algorithms are designed to address these 
issues, as depicted in Fig. 4 and Table 1.
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Fig. 4. 3D CNN modifications of segmentation 
models applied to lung imaging

The reviewed studies categorized 3D CNN segmen-
tation approaches based on their architectural back-
bones, including U-Net, FCN, CNN, and V-Net, with U-
Net being the most frequently employed. The analysis 
of these models will focus on the modification steps 
applied to these backbone architectures that aim to 
enhance segmentation performance and overcome in-
herent model limitations, often referred to as algorith-
mic advantages. This section emphasizes lung imaging 
as a representative use case, as techniques applied to 
this application are applicable to other medical imag-
ing scenarios. The backbone modifications discussed 
include dense connections, hybrid CNN methods, mul-
tiscale features, separable convolutions, feature atten-
tion mechanisms, deep supervisions, and others. Some 
studies fall into multiple modification categories, as re-
searchers often combined and tailored their models to 
meet specific objectives or segmentation goals.

6.1. BACKBONE MODIFICATIONS

Many lung lesions are small in size, presenting chal-
lenges for segmentation models like U-Net, which is 
known to be less effective for fine-grained cases. As a 
result, several studies proposed significant backbone 
modifications to address these issues. For instance, in 
[49], a 3D-UNet architecture was enhanced with a 3D-
Res2Net module. This hierarchical connection network 
improves multi-scale feature extraction, capturing finer 
details and reducing the likelihood of vanishing or ex-
ploding gradient problems. The inclusion of 3D-SE 
blocks recalibrates channel weights, which further opti-
mizes feature representation. The modified architecture, 
termed as 3D-Res2UNet, achieved a Dice coefficient of 
95.30% on the LUNA16 dataset, surpassing the baseline 
3D-UNet (89.12%) and 3D-UNet+CRF (93.25%).

In [83], a multiscale block called MSCblock replaced 
3D convolution blocks within U-Net. Inspired by the 
Inception-ResNet architecture, this approach com-
bined parallel convolutional layers of different kernel 
sizes and identity mappings, enhancing the multi-
scale feature capability of the model with a more effi-
cient training process. The MSDS-Unet [48] integrated 
ResNet modules at each block of a 3D U-Net, enabling 
the network to capture inter-slice continuity and learn 
richer feature representations. A two-pathway deep su-
pervision mechanism improved gradient flow, leading 
to better segmentation performance. These enhance-
ments addressed key challenges like vanishing gradi-
ents and insufficient feature representation, making 
the network robust for complex tasks such as lung tu-
mor segmentation.

Other notable modifications include the SegSEUNet 
architecture [47], which incorporated Recombination 
and Recalibration Modules (RRM) with SegSE blocks. 
This embedding enhanced both spatial and channel 
recalibration, focusing more on tumor-relevant re-
gions while suppressing irrelevant features. SegSEUNet 
achieved a Dice coefficient of 0.806 ± 0.120, outper-
forming traditional SE blocks (0.740 ± 0.144).

The study in [50] proposed an adaptation of V-Net 
using Parametric ReLU (PReLU) activations and Coord-
Conv layers, which incorporated positional awareness 
that is critical for pulmonary lobe segmentation. The 
model achieved an average Dice coefficient of 0.947, 
significantly surpassing the baseline V-Net model 
(0.795).

Finally, in [52], a modified 3D U-Net with residual con-
nections was employed for volumetric segmentation. 
This approach stabilized gradient flow and effectively 
learned from sparse expert-annotated data, improving 
the model's Dice scores from 0.730 ± 0.066 (baseline) to 
0.763 ± 0.069, when it is combined with gradient-based 
active learning strategies.

6.1.1. DENSE CONNECTIONS

The integration of a dense Conditional Random Field 
(CRF) framework significantly improved the segmenta-
tion model’s ability to delineate precise tumor bound-
aries. For instance, in [47], the CRF refined segmenta-
tion probability maps across scales, mitigating bound-
ary inaccuracies and enhancing spatial consistency. The 
Dice coefficient improved from 0.842 ± 0.082 to 0.851 ± 
0.071, and the Positive Predictive Value (PPV) increased 
from 0.900 ± 0.107 to 0.917 ± 0.101. Dense connections 
within the 3D-Res2Net module also ensured efficient 
gradient flow, enabling superior performance for small 
and irregular nodules.

6.1.2.  HYBRID CNN METHODS

The hybrid CNN modifications come in various 
strategies such as cascading more than one CNN and 
combining multiple parallel CNNs, which have been 



355Volume 16, Number 5, 2025

proposed to address the main limitations of a single 
CNN model. One common approach is coarse-to-fine 
segmentation, where a coarse segmentation model 
provides input for a fine segmentation network. For 
example, in [83], the authors employed a lightweight 
3D CNN to capture long-range contextual information 
and a 2D CNN for fine-grained semantic details. The 
two networks were fused using a hybrid feature fusion 
module, which improved computational efficiency and 
segmentation accuracy. The proposed Hybrid Segmen-
tation Network (HSN) achieved a mean Dice score of 
0.898, outperforming standalone 3D CNNs (0.844) and 
2D CNNs (0.751).

Another coarse-to-fine approach was proposed in 
[49], where lung parenchyma was first segmented to 
isolate the region of interest, followed by a detailed 
segmentation of lung nodules using a 3D-Res2UNet. 
This method reduced the influence of surrounding tis-
sues, leading to improved segmentation accuracy for 
small lesions.

Another hybrid method is the pseudo-3D approach, 
where 2D feature maps are stacked and processed us-
ing 3D convolutions. For instance, in [31], the LungNet 
framework used stacked 2D slices fused via 3D convo-
lutions, achieving a Dice coefficient of 70.39, outper-
forming traditional U-Net and LungNet models while 
maintaining computational efficiency. 

6.1.3. MULTISCALE FEATURES

The variation in object sizes and shapes in medical 
images necessitates the implementation of multi-scale 
feature extraction. In [84], the D3MSU-Net architecture 
employed dense dilated convolutions with varying 
dilation rates to expand the receptive field without in-
creasing the size of the parameters. This design effec-
tively captured multi-scale spatial features, enhancing 
segmentation accuracy for diverse biomedical datas-
ets. Similarly, MSDS-Unet [48] used multi-scale deeply 
supervised learning, combining features at different 
scales to handle heterogeneous tumor characteristics, 
particularly for small and big-sized tumors.

A multi-scale strategy was also employed in [41], 
where image cubes of varying dimensions were pro-
cessed through separate SegSEUNet models. The resul-
tant output maps were further refined using a dense 
CRF method, resulting in improved segmentation per-
formance. Ablation studies revealed that removing the 
multi-scale strategy reduced the Dice coefficient from 
0.851 ± 0.071 to 0.820 ± 0.115, highlighting its effec-
tiveness.

6.1.4. SEPARABLE CONVOLUTIONS

Deep learning architectures often face challenges 
due to high computational costs, requiring the devel-
opment of efficient methods to mitigate these issues. 
Separable convolution has emerged as one of the main 
techniques used to reduce computational cost and the 

number of parameters. For instance, the S3D method 
proposed in [83] replaces a full 3D convolution with 
two consecutive layers: a 2D convolution to capture 
spatial features and a 1D convolution to extract tem-
poral features. This approach effectively decouples the 
learning process into spatial (inter-slice) and temporal 
(intra-slice) components. Compared to models utilizing 
full 3D convolutions, the S3D approach demonstrates 
superior performance, achieving a 1.1% improvement 
in Dice evalution. 

6.1.5. FEATURE ATTENTION MECHANISMS

Attention mechanisms play a critical role in the seg-
mentation model, particularly in recalibrating feature 
maps for tumor regions. The SegSE block [47], which 
is a novel extension of SE blocks, adds spatial reca-
libration for voxel-specific attention. This mechanism's 
performance surpasses conventional channel-only 
recalibration in SE blocks, making it more suitable for 
segmentation tasks. Comparative studies in the paper 
demonstrate that SegSE blocks yield better perfor-
mance than CBAM and SE mechanisms, with a Dice 
coefficient improvement from 0.740 ± 0.144 (SE) and 
0.751 ± 0.179 (CBAM) to 0.806 ± 0.120.

Another approach used the 3D-SE blocks, which are 
integrated into the Res2Net modules that act as at-
tention mechanisms, enhancing feature map focus by 
reassigning channel-wise weights. This mechanism im-
proves the model's sensitivity to small or irregular lung 
nodules, resulting in better segmentation accuracy 
even for edge features. For example, the proposed net-
work accurately segments smooth ellipse-like and jag-
ged edges, contributing to its high Dice score as shown 
in [49].

6.1.6. DEEP SUPERVISIONS

Deep supervision is a core innovation in the MS-
DS-Unet [48] architecture. By integrating multi-level 
supervision mechanisms, the network incorporates 
direct side outputs from hidden layers alongside aux-
iliary tasks. This approach ensures an effective learning 
process across different stages of the network. The use 
of hard fusion and soft fusion strategies combines lo-
cal and global losses, resulting in more accurate seg-
mentation labeling. Furthermore, the deep supervision 
mechanism allows the network to better handle multi-
scale features and provides consistent improvements 
in segmentation accuracy.

6.1.7. OTHERS 

A unique contribution in [50] is the use of Coord-
Conv layers, which enhance the conventional convo-
lution operator by adding three additional channels 
that correspond to the x, y, and z coordinates. These 
added channels enable the model to leverage spatial 
location as a "soft constraint," significantly reducing 
errors in segmenting lobes with overlapping or indis-
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tinct boundaries. The inclusion of CoordConv layers 
improved the overall Dice coefficient from 0.795 (base-
line) to 0.916. For example, the left-upper lobe Dice co-
efficient increased from 0.859 to 0.958 with this modi-
fication.

A key innovation of another study in [52] is the in-
troduction of gradient-based sample weighting mech-
anisms to address the noise in machine-generated 
pseudo-annotations. The first mechanism evaluates 
gradient similarity, which reflects the alignment of 
gradients between pseudo-labeled data and expert-
annotated validation data, emphasizing sample trust-
worthiness. The second mechanism assesses gradient 
magnitude to measure the informativeness of training 
samples by identifying those that provide new infor-
mation to the model. By combining these strategies, 
the model dynamically prioritizes the most reliable and 
informative samples during the training process. This 
approach increased the Dice score from 0.607 (using 
only gradient similarity) to 0.616 when both strategies 
were employed on a challenging dataset.

To reduce dependency on extensive expert annota-
tion, the method in [52] incorporates a noisy teacher-
based active learning strategy. Machine-generated 
pseudo-labels from the noisy teacher are used to anno-
tate unlabeled data, while a query function adaptively 
selects the most informative samples for training. By 
combining gradient similarity and magnitude weights, 
the model eliminates less trustworthy samples, ensur-
ing a more accurate optimization process. This strategy 
significantly enhanced segmentation performance, 
with Dice scores improving from 0.590 (semi-super-
vised learning alone) to 0.621 when active learning 
was applied to the Challenge data. While the model's 
performance on the Benchmark dataset with the active 
learning strategy managed to further improve the Dice 
score from 0.756 ± 0.085 to 0.763 ± 0.069. 

6.2. CURRENT RESEARCH LIMITATION / 
  CHALLENGES IN LUNG IMAGING 

Based on the previous discussion, it is evident that 
various deep learning-based 3D CNN segmentation 
methods have demonstrated promising outcomes in 
generating medical imaging segmentation maps. At 
the same time, it can be concluded that researchers 
have introduced diverse approaches to enhance the 
performance of basic algorithms. Additionally, it should 
be noted that there are several limitations observed in 
the field of medical image segmentation, particularly 
when dealing with challenges such as small lesion size 
that often causes class imbalance, and poor image 
quality, which is normally encountered in certain mo-
dalities like CT scans.

Firstly, architectural constraints within these algo-
rithms pose a huge challenge. The absence of self-
adaptive mechanisms often restricts the model's ability 
to achieve optimal performance across diverse datas-

ets. Additionally, certain 3D CNN architectures, such as 
those proposed in [47], exhibit deficiencies in captur-
ing fine contour details, leading to inaccuracies in seg-
menting complex anatomical structures.

A significant challenge also lies in multiscale feature 
learning. Many diseases exhibit multiscale character-
istics, requiring the models to effectively capture fea-
tures across varying scales. Despite efforts to integrate 
multiscale modules, current methods often struggle to 
accurately learn details across scales, particularly in de-
tecting small tumors, where features may be subtle and 
highly variable. While other multiscale techniques such 
as waterfall connections have also been explored [49], 
their utility remains largely confined to specialized ap-
plications, such as small tumor detection, rather than 
providing generalizable solutions applicable across a 
broad range of clinical scenarios. Another prominent 
limitation of this 3D network is the high computational 
demands to efficiently execute the deep CNN mod-
els. As these models grow increasingly complex with 
many layers, coupled with advanced modules such as 
squeeze blocks and multiscale pathways, the compu-
tational burden and training time of this 3D model has 
increased significantly. The requirement for extensive 
computational resources may render effective deploy-
ment in clinical environments impractical due to the 
limited access to high-performance computing infra-
structure [28, 31, 47, 49].

Data scarcity in the medical field also presents a 
significant challenge. High-performing deep learning 
models require large and well-annotated datasets for 
optimal training processes. However, several factors 
such as privacy concerns, the labor-intensive nature 
of annotation, and the limited availability of publicly 
accessible datasets often impede the development 
of robust models. This data shortage issue can lead to 
overfitting and diminished generalizability problems, 
thereby reducing the algorithm’s effectiveness across 
diverse patient populations [28, 88].

In conclusion, despite notable advances in the use of 
3D CNNs for medical image segmentation, the field still 
faces several challenges, including architectural limita-
tions, difficulties in multiscale feature extraction, high 
computational demands, and constrained data avail-
ability. Overcoming these obstacles will necessitate 
continued research into adaptive and resource-effi-
cient algorithms, potentially benefiting from increased 
collaboration between the fields of computer science 
and medicine. This topic will be discussed in the next 
section. 

6.3 FUTURE RESEARCH RECOMMENDATIONS 
 IN LUNG IMAGING

From the findings in section 6.2, there are several fu-
ture research directions that should be explored, which 
are further discussed in the following subsections. 
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6.3.1. Challenges in Medical Image 
 Segmentation Dataset

A primary challenge in medical image segmentation 
lies in the availability of data. Due to strict privacy con-
cerns surrounding patient information, open access 
to medical datasets remains limited. It is imperative to 
revisit and refine protocols for data protection to fa-
cilitate the use of anonymized datasets without com-
promising patient confidentiality. Addressing this issue 
could significantly benefit the research community. 
Additionally, there is a notable scarcity of volumetric 
data necessary for training robust deep-learning mod-
els. Collaborative efforts between healthcare institu-
tions, domain experts, and image-processing research-
ers are essential to expand the availability of such data. 
Establishing training programs for postgraduate stu-
dents under the guidance of clinical investigators, who 
are experts in specific diseases, may also support data 
collection efforts.

Another pressing issue is the labor-intensive and 
time-consuming process of creating annotated ground 
truth data. Semi-supervised learning techniques and 
transfer learning can be leveraged to mitigate this limi-
tation. Pretrained deep learning models, for instance, 
can effectively reduce the demand for large annotated 
datasets by utilizing knowledge transfer across related 
domains.

6.3.2. Advancements in Network 
 Architecture

Currently, most network architectures for medical 
image segmentation are heavily based on U-Net, which 
has demonstrated excellent performance in various ap-
plications. However, exploring alternative backbones, 
such as HRNet, could reveal additional potential. More-
over, reconsidering the parameter size within these 
architectures is also crucial. Increasing complexity by 
simply adding more parameters is not always efficient. 
Strategies like pyramid pooling and dilated (atrous) 
convolutions have emerged as promising alternatives. 
Dilated convolutions, in particular, help address mul-
tiscale challenges, as diseases often present lesions 
of varying sizes and shapes depending on their stage. 
However, careful investigation of dilation rates is nec-
essary to avoid the "gridding" effect that arises when 
large dilation rates are used.

As networks grow more complex, the associated in-
crease in computational cost must also be considered. 
Depthwise separable convolutions offer a potential solu-
tion by significantly reducing the number of parameters, 
which is particularly advantageous for 3D medical imag-
ing applications. While reduced parameters will lower 
computational demands, researchers must ensure that 
model performance and accuracy are not compromised. 
Balancing these trade-offs may involve integrating tech-
niques like attention mechanisms or deep supervision 
to maintain existing model performance.

6.3.3. Generalization of Deep Learning 
 Models

A significant limitation of current deep learning mod-
els is their generalizability across various conditions. 
Most models are developed and tested using data from 
a single source, which limits their ability to generalize 
across different conditions that may be encountered 
when varying imaging instruments and configurations 
are used to capture the images. Expanding studies to 
include multicenter datasets could greatly enhance 
model robustness and applicability.

Additionally, many current research often focuses on 
the segmentation of a single organ or modality. Broad-
ening this scope to include multiple organs or multi-
modal imaging data for specific diseases could yield 
more versatile and generalized models. Encouraging 
healthcare institutions to collect multimodal datasets 
for particular organs or diseases would further support 
this research direction and open new avenues for auto-
mated medical screening and diagnosis.

6.4 PUBLIC LUNG CLINICAL DATASETS

Most of the research studies utilized public datasets 
and a few of them mixed with private datasets. Usually, 
public datasets are the preferred dataset for compari-
son purposes so that the generalizability capability of 
the tested algorithms can be compared fairly [47, 48, 
50, 88, 89] shown in table 2.   It is also important to con-
sider privacy concerns in the medical field, which limit 
the availability of certain datasets. However, recent 
trends show that the use of private datasets has be-
come increasingly important. Most of the public data-
sets are not too big in numbers, highlighting the need 
for a hybrid approach of combining public and private 
datasets to support a more effective training process of 
deep learning models. This strategic combination ap-
proach also helps address the challenges of overfitting 
and class imbalance, ultimately enabling the models to 
produce better generalization capability in medical re-
search and applications. 

Table 2. Public Lung Clinical Datasets

Public Datasets Segmentation Tasks Studies that utilize 
the dataset

NSCLC-Radiomics Lung Tumor [31, 47]

LIDC Lung Tumor [47]

LUNA 16 Lung Nodule [36, 48, 88]

COVID-19 – Ma et al. Covid-19 Lesion [89]

COVID-19 Challenge Covid-19 Lesion [89]

7. CONCLUSION 

This review provides a valuable foundation for those 
new to the application of 3D CNNs in medical image seg-
mentation. It offers the public health communities and 
computer science researchers, a clearer understanding 
of both the advantages and limitations of automated 
segmentation, particularly within the context of lung 
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disease segmentation tasks. While no single "optimal" 
method currently exists for segmenting medical images, 
this paper presents a comprehensive overview of recent 
advancements in 3D CNN research, serving as a basis for 
future progress in the field. However, it is crucial to rec-
ognize that the deployment of 3D CNN models on real-
world datasets remains a significant challenge. To address 
this, there is an urgent need to amass larger datasets for 
model training and to explore the potential of syntheti-
cally generated data. Furthermore, the development of 
more robust algorithms that are capable of effectively ad-
dressing the multiscale problem is very crucial, given that 
the variations in lesion and organ sizes across different 
disease stages differ significantly. This underscores the 
importance of collaboration between image processing 
researchers and medical professionals to refine the devel-
oped 3D CNN models, ensuring they are aligned with the 
objectives of having effective and efficient support tools 
for screening and diagnosis purposes. By fostering such 
interdisciplinary collaboration, significant strides can be 
made in improving the accuracy and efficacy of medical 
image analysis in three dimensions.
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Optimizing Gastric Cancer Classification with 
QCNN and Fine-Tuning 
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Abstract – Cancer ranks as one of the primary contributors to morbidity and mortality worldwide, standing as the second leading cause 
of death on a global scale. According to data from the National Cancer Registry Program of the Indian Council of Medical Research, over 
1300 individuals in India lose their lives daily as a result of cancer-related causes. Gastric cancer is among the top five most prevalent cancers 
globally, after cancer in the lung, breast, colorectum, and prostate, highlighting the importance of accurate classification for effective 
treatment strategies. In this study, a novel approach utilizing a Quadratic Convolutional Neural Network combined with Extreme Learning 
and Fine-Tuning technique, a deep learning architecture specifically designed to capture intricate patterns and features within medical 
imaging data. Fine tuning technique is used to enhance the model's generalization capability and adaptability to diverse datasets. Through 
extensive experimentation and validation on a comprehensive dataset comprising gastric cancer images, the proposed approach achieves 
an impressive accuracy of 94%. The findings indicate the efficacy of the proposed approach for classifying gastric cancer. With its high 
accuracy and robust performance, the developed QCNN model holds promise for assisting clinicians in accurate diagnosis and prognosis of 
gastric cancer patients, ultimately contributing to improved patient outcomes and personalized treatment strategies.
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1.  INTRODUCTION

Gastric cancer, also referred to as stomach cancer, is 
a malignant tumor that develops in the stomach [1]. 
Various factors contribute to its development, includ-
ing Helicobacter pylori infection, dietary habits, smok-
ing, genetic predispositions, and familial history [2]. 
The structure and function of the stomach provide im-
portant context for understanding gastric cancer and 
its impact on the body. The stomach is a vital organ 
in the digestive system, connecting the esophagus to 
the small intestine [3]. Structurally, it is J-shaped with 
distinct regions: the cardia, fundus, body, and pylorus. 
Lymph nodes surround it, aiding in immune response. 

The pylorus serves as a connection to the duodenum, 
with the pyloric sphincter facilitating stomach empty-
ing [4]. The greater curvature forms a convex lateral 
surface, while the lesser curvature creates a concave 
medial border. This complex anatomy supports the 
stomach's role in digestion and underscores its impor-
tance in overall health. Understanding the intricate 
anatomy of the stomach is crucial in recognizing the 
early symptoms and improving the prognosis of gas-
tric cancer through timely detection and intervention.

Early symptoms may be nonspecific, making early 
detection challenging. Gastric cancer prognosis heavily 
relies on the stage of diagnosis, highlighting the critical 
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importance of timely detection for effective treatment 
and improved outcomes [5]. Timely identification of 
gastric cancer is crucial for improving patients’ survival 
rates. The disease often progresses asymptomatically 
or with mild symptoms in its initial stages, leading to 
delayed diagnosis and treatment initiation. As gastric 
cancer advances, it becomes more difficult to treat, 
with limited therapeutic options and poorer outcomes 
[6]. Therefore, early detection through screening pro-
grams enables the identification of tumors at an earlier, 
more treatable stage, facilitating curative interventions 
such as surgery, chemotherapy, or radiation therapy. 
Improved prognosis associated with early detection 
underscores the significance of developing accurate 
and efficient diagnostic methods for gastric cancer.

Convolutional neural network (CNN) have transformed 
medical image analysis by allowing automated interpre-
tation of diagnostic images with exceptional accuracy and 
efficiency [7]. CNN excel at learning hierarchical represen-
tations of image features directly from raw data, eliminat-
ing the need for handcrafted features or domain-specific 
knowledge. Through the use of large annotated datasets, 
CNNs can identify subtle patterns and abnormalities in 
medical images, aiding in disease detection, classification, 
and prognosis. In the context of gastric cancer detection, 
CNNs offer a promising approach for analyzing endo-
scopic images, histopathological slides, and radiological 
scans to assist clinicians in identifying suspicious lesions. 
Gastric cancer classification has been extensively stud-
ied due to its critical role in improving patient outcomes. 
Various deep learning approaches, such as CNNs, ResNet, 
and EfficientNet, have demonstrated significant potential 
in analyzing endoscopic and histopathological images. 
However, these methods often face limitations such as 
overfitting on small datasets, difficulties in capturing in-
tricate patterns unique to gastric cancer, and reduced 
generalizability across diverse patient populations. These 
challenges highlight the need for more advanced and 
adaptable models capable of addressing these limitations 
while maintaining high accuracy in classification.

The main goal of this research is to create and assess 
a new method for detecting gastric cancer, which inte-
grates a Quadratic Convolutional Neural Network (QCNN) 
with Extreme Learning and Fine Tuning techniques [8-9]. 
By doing so, we aim to improve the sensitivity, specificity, 
and overall accuracy of gastric cancer detection while also 
addressing the shortcomings of current diagnostic meth-
ods. Specifically, the study seeks to:

1. Investigate the feasibility and effectiveness of 
QCNN in analyzing gastric cancer-related imag-
ing data.

2. Explore the integration of Extreme learning and 
Fine tuning techniques to optimize model per-
formance and generalization.

3. The performance of the method was thoroughly 
evaluated on a diverse dataset comprising gas-
tric cancer images.

4. Compare the diagnostic accuracy of the QCNN 
approach with current deep learning models for 
gastric cancer detection.

2. LITERATURE REVIEW

In their study, Lee et al. [10] developed a multilayer 
feedforward neural network using a scaled conjugate 
gradient backpropagation technique. The World Health 
Organization (WHO) recognizes cancer as a heteroge-
neous disease with various subtypes, highlighting the 
critical importance of early prognosis and diagnosis to 
improve survival rates. Therefore, there is an increasing 
need in cancer research to facilitate subsequent clini-
cal management of patients. The authors identified 10 
amino acid biomarkers in saliva and extracted 19 fin-
gerprint Raman bands generated by these biomark-
ers, which can effectively differentiate between cancer 
patients and healthy individuals. Back propagation was 
employed to minimize the network error, while scaled 
conjugate gradient backpropagation was utilized for 
training the artificial network classifier. The approach 
yielded an accuracy of 92.27.

Qiu et al. [11] aimed to enhance the efficiency of GC 
diagnosis by utilizing DL algorithms to aid in diagnos-
ing gastric cancer. Lesion samples in the images were 
annotated by multiple endoscopists with extensive 
clinical experience. The acquired training set was in-
put into a CNN for training, resulting in the algorithm 
model DLU-Net identified with an overall accuracy of 
94.1%. A cascaded deep learning model was suggested 
by Teramoto et al. [12] to identify the invasive location 
and categorize endoscopic images. Two different U-
Net models are used to segment the images labeled as 
cancer based on the amount of invasion by stomach 
cancer. 

Deep CNN was utilized by Xie et al. [13] to achieve au-
tomatic categorization of pathological images related 
to stomach cancer since DCNN is capable of efficiently 
extracting deep characteristics from images. A CNN ar-
chitecture was developed by Hatami et al. [14] for the 
identification of stomach cancer. The authors were mo-
tivated by the concept of the fire module to decrease 
the architecture's size and improve the model's classi-
fication accuracy. The findings indicate that this model 
has an 89% classification accuracy.

A model based on the Deeplab v3+ neural network 
was proposed by Wang et al. (2021) [15] to increase the 
effectiveness of gastric cancer. With a 92.76% accuracy 
rate and a 91.66% Dice coefficient, the model outper-
forms the SegNet and Faster-RCNN models by over 12%. 
Additionally, the model's parameter scale is significantly 
lowered. An approach called U-Net R-CNN was proposed 
by Teramoto et al. in (2021) [16] based on a semantic 
segmentation method. In order to identify stomach can-
cer, U-Net was presented as a semantic segmentation 
technique. The primary constraint of the strategy is the 
limited quantity of images used for training. 
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A strategy for identifying and classifying gastric cancer 
areas from gastrointestinal endoscopic images was devel-
oped by Shibata et al. in 2020 [17] using Mask R-CNN. The 
results suggest that the sensitivity per image was 96.0%.

The CNN-based approach was introduced by Li et al. 
[18] to assess stomach mucosal lesions detected by M-
NBI. CNN's diagnostic accuracy for early-stage stomach 

cancer was 90.91%. GoogLeNet, a deep neural network 
architecture, was employed by Horiuchi et al. (2020) 
[19] to identify stomach cancer. With 220 of the 258 im-
ages properly diagnosed, the accuracy was 85.3%. The 
nature of this investigation is retrospective. Table 1 pro-
vides an overview of recent research on the identifica-
tion of stomach cancer, highlighting a range of strate-
gies and techniques.

Table 1: Summary of recent works on gastric cancer detection

Author, Reference & Year Methodology Remarks

Lee et al. [10] 2021 Multilayer feedforward neural network back 
propagation technique

Achieved 92.27% accuracy in cancer detection based on saliva 
biomarkers and Raman spectroscopy. Performance may vary based on 

the number of neurons and hidden layers in the neural network.

Qiu et al. [11] 2022 CNN Achieved 94.1% accuracy in identifying different types of lesions. 
Limited to the analysis of gastro scopic images.

Teramoto et al [12] 2022 Cascaded deep learning model and U-Net 
models. Limited to endoscopic images collected from a single facility.

Xie et al. [13] 2023 DCNN with Adapted GoogLeNet and AlexNet 
models for gastric cancer diagnosis.

Improved sensitivity using GoogLeNet and AlexNet models. Also 
significantly reduces the computational burden.

Hatami et al. [14] 2020 CNN incorporated with fire module 
architecture for increased accuracy. 

Achieved 89% classification accuracy on a dataset of gastric disease 
images. Limited to classification of gastric diseases observed through 

endoscopy.

Teramoto et al. [16] 2021
Developed a U-Net R-CNN model for 

object detection in gastric cancer images, 
combining semantic segmentation.

Limited by a small number of images collected from a single facility, 
affecting generalizability.

Shibata et al. [17] 2020
Utilized Mask R-CNN for detection and 

segmentation of early gastric cancer regions 
from endoscopic images.

The suggested approach was implemented utilizing the information 
gathered from a solitary establishment.

Li et al. [18] 2020 CNN-based system using narrow-band 
imaging (M-NBI).

Achieving 90.91% accuracy in diagnosing early gastric cancer. Limited 
the study to non-polypoid and non excavated lesions, restricting the 

applicability of the CNN system.

Horiuchi et al. [19] 2020
Employed GoogLeNet for diagnosing MENBI 

images of lesions undergoing endoscopic 
sub mucosal dissection (ESD) treatment. 

Achieved an accuracy of 85.3% in identifying lesions. Retrospective 
study design with limited clarity in some images, potentially impacting 

diagnostic accuracy.

3. METHODOLOGY

A novel approach is introduced for identifying and 
classifying gastric cancer through the application of 
deep learning techniques from stomach endoscopy 
images. Three main steps make up the methodology: 
feature extraction, classification, and preprocessing. 
A visual illustration of the suggested methodology is 

shown in Fig. 1. For classification, the QNN is utilized as 
the primary classifier, leveraging its ability to effectively 
classify complex patterns in medical images. 

Additionally, extreme learning and fine-tuning tech-
niques are applied to further enhance the performance 
of the classifier, refining its ability to accurately detect 
and categorize gastric cancer.

Fig. 1. Flow diagram of the proposed work
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3.1. DATASET

The dataset provides a useful tool for the suggested 
deep learning model for the detection and categoriza-
tion of stomach cancer. The endoscopic images from 
the Fujita Health University Hospital database com-
prised the dataset used in this investigation. These im-
ages are standardized to a size of 256×256 pixels and 
are represented in the RGB color space. The dataset in-
cludes images representing two types of gastric cancer 
and healthy control images. Each category within the 
dataset presents a diverse range of endoscopic views 

and pathological conditions, providing a comprehen-
sive representation of gastric abnormalities for analy-
sis and classification. With images standardized in size 
and color space, and categorized into relevant groups, 
the dataset facilitates consistent and reliable analysis, 
enabling researchers to effectively assess the perfor-
mance and generalizability of the developed classifi-
cation system across different pathological conditions 
and patient populations. Fig. 2 presents sample images 
from the gastric cancer dataset, providing visual ex-
amples of the types of endoscopy images used in the 
study for classification purposes.

Fig. 2. Sample images from the dataset

3.2. DATA PREPROCESSING AND 
 AUGMENTATION

In the data preprocessing and augmentation phase, 
two key techniques are applied to the images obtained 
from the gastric endoscopy dataset, which are image 
augmentation and image resizing. Image augmenta-
tion is a critical step aimed at enriching the diversity 
and quantity of images in the dataset, which is essen-
tial for effectively training deep neural networks. This 
technique involves applying various image processing 
operations such as flipping, rotation, and cropping to 
generate a new augmented version of the original im-
age. Flipping involves mirroring the image horizontally 
or vertically, thereby introducing variations in orienta-
tion. Rotation entails rotating the image by a certain 
degree, which simulates different viewing angles. Crop-
ping involves extracting a portion of the image, which 
can help focus on specific regions of interest. By intro-
ducing these modifications, the dataset is expanded 
with a wider range of perspectives and variations. The 
augmentation procedure helps to increase the model's 
capacity to generalize to previously unobserved data 
and enhances validation accuracy by exposing the 

model to a more comprehensive set of scenarios and 
conditions.

Image resizing is employed to standardize the size of 
the endoscopy images to 256x256 pixels and 3 color 
channels (RGB). This operation is crucial for reducing 
the computational complexity of the deep learning pro-
cess. Larger images require processing a higher number 
of pixels, which increases the computational time and 
complexity. By resizing the images to a uniform size, the 
computational burden is mitigated, facilitating more ef-
ficient processing and analysis by the deep neural net-
work. Uniform image sizes ensure consistency in the 
input data, which is essential for achieving reliable and 
reproducible results. The combination of image aug-
mentation and image resizing optimizes the dataset for 
training and enhances the efficiency of the subsequent 
classification task. Preprocessing is employed to en-
hance the quality of the images, ensuring optimal input 
for subsequent analysis. Feature extraction aims to ex-
tract relevant information from the images that can dis-
tinguish between cancerous and non-cancerous tissues. 
Fig. 3 depicts data visualization, facilitating insights into 
the distribution and characteristics of the data.

Fig. 3. Data visualization
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3.3. QUADRATIC CONVOLUTIONAL NEURAL 
 NETWORK

QNN is a type of neural network architecture spe-
cifically designed for image classification tasks [20]. It 
builds upon the traditional CNN architecture by incor-
porating quadratic convolutional layers, which intro-
duce additional non-linearity to the network. By apply-
ing quadratic filters to the input image, the convolu-
tional layers in a QNN enable the network to identify 
more intricate patterns and correlations in the data. 
These quadratic filters enable the network to model 
non-linear interactions between image features, en-

hancing its ability to discriminate between different 
classes.

QNNs typically include pooling layers, fully connect-
ed layers, and activation functions, similar to traditional 
CNN architectures as shown in Figure 4. The use of qua-
dratic convolutional layers distinguishes QNNs from 
standard CNNs, offering potentially improved perfor-
mance for certain image classification tasks. However, 
training and optimizing QNNs may require additional 
computational resources and careful parameter tuning 
due to their increased complexity compared to tradi-
tional CNNs.

Fig. 4. Architecture of the QCNN model

The input vector be St with dim as dimension and the 
transpose be {}t. Linear function of the neuron be

F(S)=WS+B (1)

Weights are represented by W={w1, w2,,,,,,wdim} and 
the bias be ‘b’.

A quadratic function for a neuron can be described as 
a mathematical expression that incorporates quadratic 
terms, representing a non-linear relationship between 
the neuron's input and output.

Q(S)=S't Wq S' (2)

S't denotes the augmented vector represented by 
S't={St│1}={s1, s2,,,,sdim,1}  and the weights are

(3)

For image classification, we construct networks using 
a mix of quadratic and linear neurons, with the convo-
lutions layers created utilizing linear neurons for later 
stages of classification, and quadratic neurons are em-

QD(Sm, n) = S't
m, n Wq S'm,n (4)

A quadratic kernel has P(n2+1)2 parameters, while a 
CNN layer with linear neurons made up of P kernels of 
size n×n has P(n2+1) parameters; however, n is typically 
limited to smaller values (1, 3, 5). thereby making it pos-
sible for us to construct quadratic networks with a con-
trollable rise in the number of parameters.

3.4. ExTREME LEARNING

Extreme Learning begins by randomly initializing the 
input weights and biases of the hidden neurons. These 
weights and biases are typically drawn from a random 
distribution. Once the parameters are initialized, the al-
gorithm proceeds with forward propagation. 

ployed for extracting picture representation. Two fac-
tors guided the decision: first, the network can learn 
complicated representations when higher-order func-
tions are used to extract picture data; second, the ker-
nel size restricts the neurons' input dimension, result-
ing in networks with manageable parameters. 

Let Sm,n
t = {s1, s2, ,,,sN2)} represent the pixels in the image's 

receptive field that the kernel spans at position (m,n). 
Next, the quadratic neuron's output is calculated as
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Fig. 5. Flowchart of Extreme learning

3.5. PROPOSED ARCHITECTURE

 The proposed research introduces a novel system for 
identifying and classifying gastric cancer from stomach 
endoscopy images, employing deep learning tech-
niques. Three primary steps make up the methodol-
ogy: feature extraction, classification, and preprocess-
ing. Pre-processing is the process of improving the 
endoscopic image quality in order to make further 
analysis easier. Feature extraction aims to derive mean-
ingful characteristics from the images, representing 
the disease-affected regions effectively. These features 
serve as inputs for training and testing the classifica-
tion model, which is pivotal in accurately categorizing 
the presence and type of gastric cancer in the images. 
Fig. 6 displays the proposed model architecture for gas-
tric cancer classification.

The heart of the methodology lies in the feature ex-
traction process, as it directly influences the efficacy of 

the classification system. Extracting a large number of 
features from each image could lead to computational 
inefficiencies during classifier training. To address this, 
QCNN is proposed as the classifier. However, QCNNs 
typically demand vast amounts of training data, which 
may not always be readily available, especially in the 
context of gastric endoscopy images. In cases where 
the dataset is limited, methods such as extreme learn-
ing and fine-tuning become valuable for enhancing 
the classifier's performance.

The dataset comprises gastric endoscopy images 
from various subjects, encompassing different catego-
ries, including two types of cancers and healthy con-
trols. By leveraging this dataset, the proposed meth-
odology aims to train a QCNN framework, updating its 
parameters using the available training set. 

This approach enables the classification system to 
learn and distinguish between different cancer types and 

H=g(W⋅X+b) (5)

W⋅X represents the weighted sum of inputs to the 
hidden layer, and g(.) is typically a sigmoid, tanh, or 
ReLU function applied element-wise. Following the 
computation of the hidden layer output, ELM proceeds 
to compute the output weights(B) using a linear re-
gression approach. This is achieved by solving a linear 
system, expressed as:

B =H+.T (6)

where H+ is the Moore-Penrose pseudo-inverse of 
Hand Tis the target output matrix. In matrix notation, 
this equation can be represented as:

B = (HT.H)-1 HT.T (7)

Fig. 5 presents a flowchart depicting the Extreme 
Learning process, outlining the sequential steps in-
volved in implementing this technique.

ELM offers a streamlined approach to training neu-
ral networks. By randomly initializing the input weights 
and biases and utilizing a fixed, single hidden layer, ELM 
achieves fast training speeds, particularly advantageous 
for large datasets. Despite its simplicity, ELM's perfor-
mance hinges on the quality of randomly chosen param-
eters and the representativeness of the training data.

Given an N × P sized data matrix (X)where P is the 
number of samples, the hidden layer output (H) is 
computed using a non-linear activation function (g(.)). 
Mathematically, this can be expressed as:
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healthy tissue accurately, contributing to improved diag-
nosis and treatment of gastric cancer. Table 2 provides an 
overview of the hyperparameters used in the model.

Fig. 6. Proposed model architecture

Table 2. Hyper parameters

Parameters Values

Optimizer Adam

Activation Function Relu, softmax

Loss Categorical crossentropy

Batch Size 128

Number of epochs 25

3.6. FINE TUNING

Fine-tuning, it is generally accepted that all model 
layers should be copied, with the exception of the final 
layer. This new layer should have the same number of 
neurons as in the new target domains. Fine-tuning a 
portion of the network, usually the last layer, enables 
the network to adjust to the characteristics of the tar-
get domain, leading to enhanced performance across 
various classification tasks. This is because the early lay-
ers of the network extract features that are applicable 
to a wide range of image recognition tasks. A detailed 
overview of the suggested approach for classifying 
stomach cancer is shown in Table 3.

Table 3. Model summary

Total Parameters 116,227

Trainable Parameters 116,227

Non- Trainable Parameters 0

3.7. HARDWARE AND SOFTWARE SETUP

The proposed study utilized the Google Colaboratory 
platform in conjunction with the Microsoft Windows 10 
operating system to establish a robust computational 
environment. The modeling process involved the ap-
plication of the Python programming language, lever-
aging the Keras package and TensorFlow backend for 
training. The conceptualized models were specifically 
configured to accept preprocessed and augmented da-
tasets, ensuring precise decision-making capabilities. 
To assess the efficacy of the proposed model, evaluate 
the predictions of the model on the test dataset.

4. RESULT AND DISCUSSION

Performance indicators that are essential for assess-
ing the model's efficacy, especially in classification 
tasks, include accuracy, recall, precision, and F1-score. 
Table 4 gives an idea about the performance   param-
eters used in the study. Accuracy is a straightforward 
metric, often used when the class distribution is bal-
anced. While accuracy offers a view of performance of 
the model, its adequacy might be limited in scenarios 
where there is an imbalance in the class distribution.

Accuracy by itself might not be sufficient to fully com-
prehend a model's performance, particularly in cases of 
imbalanced datasets in which one class predominates 
over the other. Contrarily, precision calculates the per-
centage of accurate positive predictions made out of 
all positive forecasts.

Recall quantifies the percentage of real positive cases 
among all actual positive cases that the model correctly 
identifies as true positives. It aids in determining how 
well the model is able to locate every positive occur-
rence without overlooking any. When false negatives are 
expensive, recall becomes crucial. The f1-Score provides 
a balance between precision and recall by taking the har-
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Fig. 7. Accuracy plot of the proposed system

A loss plot of a proposed system illustrates how the 
loss function decreases (or increases) over the course 
of training epochs or iterations, as shown in Fig. 8. The 
loss function quantifies how well the model is per-
forming; typically, lower values indicate better perfor-
mance. During the initial stages of training, the loss is 
typically high as the model's parameters are randomly 
initialized, and it makes random predictions. As train-
ing progresses, the model adjusts its parameters to 
minimize the loss, aiming to improve its predictions. 
The loss plot should show a decreasing trend over time. 
Fluctuations in the loss values may occur due to various 
factors such as the complexity of the dataset, learning 
rate, and batch size.

Monitoring the loss plot is crucial for assessing the 
training progress and diagnosing potential issues like 
overfitting or underfitting.

Fig. 8. Loss plot of the proposed system

As seen in Fig. 9, the confusion matrix offers a thor-
ough analysis of the right and wrong predictions the 
model made on a dataset. In the confusion matrix, it is 
demonstrated that 501 adenocarcinoma images were 
correctly classified as adenocarcinoma, 552 lymphoma 
images were correctly classified as lymphoma, and 538 
images were correctly classified as normal.

Fig. 9. Confusion matrix of the proposed system

monic mean of these two criteria. It is particularly helpful 
in cases of unequal class distribution. F1-Score is a more 
accurate indicator of a model's overall performance, par-
ticularly in situations where the class distribution is not 
uniform or when simultaneous optimization of precision 
and recall is required. Table 5 provides a comprehensive 
classification report for the system.

Table 4. Performance parameters

Parameters Equation
Accuracy (TP+TN)/(TP+TN+FP+FN)

Precision (TP)/(TP+FP)

Recall (TP)/(TP+FN)

F1-Score 2*(Precision*Recall)/
(Precision+Recall)

TP=True Positive 
TN=True Negative 
FP=False Positive 

FN=False Negative

Table 5. Classification report for the system

precision recall f1-score support
Adenocarcinoma 0.98 0.96 0.97 522

Lymphoma 0.93 0.94 0.93 590

Normal 0.93 0.94 0.93 572

accuracy 0.94 1684

macro avg 0.95 0.95 0.95 1684

weighteg avg 0.95 0.94 0.94 1684

An accuracy plot of a proposed system displays the 
performance of the system over different iterations, 
epochs, or other training iterations. It shows how the 
accuracy of the model evolves during the training pro-
cess. As shown in Fig. 7, the x-axis usually represents 
the number of iterations or epochs, while the y-axis 
represents the accuracy achieved by the model on the 
training or validation data. This plot is essential for un-
derstanding how well the proposed system learns from 
the data over time. It helps in diagnosing potential is-
sues such as overfitting or underfitting.
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Table 6. A comparison between the suggested 
system and existing methods

Sl No Author & Year Methodology Accuracy

1 Gong et al [23] Deep learning based clinical 
decision support system 81.5 %

2 Yao et al [27] YOLO 85.15 %

3 Du et al [22] ENDOANGEL-MM 86.54 %

4 Zhou et al [24] EfficientNet 88.3 %

5 Li et al [26] Deep learning based 
ENDOANGEL-LA 88.76 %

6 Liu et al [21] 2 DCNN 90.8 %

7 Jin et al [25] Mask R-CNN 90.25 %

Proposed System 94 %

Fig. 10 illustrates the classification output of the proposed gastric cancer classification system, showcasing the 
model's predictions for a sample set of endoscopy images.

Fig. 10. Classification output of the proposed system

5. CONCLUSION

With gastric cancer ranking as the fifth most frequent 
cancer globally, cancer continues to pose a serious 
threat to global health. Accurate classification is essen-
tial for effective treatment strategy and improving pa-
tient outcomes. The study presents a novel approach 
utilizing a QCNN combined with extreme learning and 
fine-tuning techniques for the classification of gastric 
cancer from stomach endoscopy images. The proposed 
methodology achieves an impressive accuracy of 94% 
through extensive experimentation and validation on 
a comprehensive dataset comprising gastric cancer im-
ages. The results demonstrate the effectiveness and po-
tential of the approach for gastric cancer classification. 
By leveraging QCNN architecture specifically designed 

to capture intricate patterns and features within medical 
imaging data, with a fine-tuning technique to enhance 
generalization capability, the model delivers robust per-
formance. The technique of concatenating QCNN struc-
tures with extreme learning proves to be efficient in 
achieving peak classification rates. The developed QCNN 
model holds significant promise for assisting clinicians 
in accurate diagnosis and personalized treatment strate-
gies, ultimately contributing to better patient outcomes 
in the fight against gastric cancer.
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Abstract – The optimization of differentially private deep learning models in medical data analysis using efficient hyper-parameter 
tuning is still a challenging task. In this context, we address the fundamental issue of balancing privacy guarantees with model utility by 
simultaneously optimizing model parameters and privacy parameters across two primary medical datasets, with additional validation 
on PathMNIST. Our framework encompasses both tabular data (Wisconsin Breast Cancer dataset) and medical imaging (BreastMNIST 
and PathMNIST), implementing four distinct optimization approaches: Grid Search, Random Search, Bayesian Optimization, and 
Bat Algorithm. Through extensive experimentation, we demonstrate a promising performance: achieving 93.62% accuracy with 
strong privacy guarantees (ε = 0.5) for tabular data, and 74.91% accuracy for medical imaging, with the Bat Algorithm discovering 
an unprecedented privacy level (ε = 0.293). Further validation on PathMNIST histopathology images demonstrated the framework's 
scalability, achieving 44.71% accuracy with privacy guarantees (ε = 2.603). Our comparative analysis reveals that different medical 
data types require distinct optimization strategies, with Bayesian Optimization excelling in tabular data applications and Random 
Search providing efficient solutions for image processing. The experiments with PathMNIST histopathology images provided valuable 
insights into the framework's behavior with complex medical data, revealing configuration-dependent performance variations and 
computational trade-offs. Our framework incorporates Pareto analysis and visualization techniques to enable systematic exploration of 
privacy-utility trade-offs, while early stopping mechanisms optimize privacy budget utilization. This comprehensive approach, validated 
across diverse medical imaging complexities and data modalities, establishes practical guidelines for implementing privacy-preserving 
machine learning in healthcare settings while highlighting the importance of balanced optimization strategies and computational 
efficiency in secure and efficient medical data analysis.
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1.  INTRODUCTION

The rapid digital transformation of healthcare has led 
to an unprecedented accumulation of sensitive medi-
cal data, from structured tabular data to complex medi-
cal imaging [1]. While this data surge offers immense 
opportunities for advancing medical research and im-
proving diagnostic accuracy through machine learn-

ing, it also introduces a critical challenge: balancing 
data utility and privacy protection [2]. This challenge 
is particularly acute in healthcare, where advancing 
research and safeguarding patient confidentiality must 
coexist. Consequently, there is an urgent need for ro-
bust privacy-preserving mechanisms that do not com-
promise the analytical capabilities of machine learning 
models.
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Among privacy protection approaches, differential 
privacy (DP) stands out for its mathematically sound 
privacy assurances [3, 4]. Within deep learning applica-
tions, differentially private stochastic gradient descent 
(DP-SGD) has become the predominant DP implemen-
tation method [5]. This approach combines two key 
mechanisms: gradient clipping and noise addition to 
ensure privacy protection during model training [5]. The 
process involves first limiting individual gradients by 
clipping them to maintain a specific ℓ2 norm threshold, 
followed by incorporating Gaussian noise into the aver-
aged gradient before model parameter updates [5, 6]. 
By implementing these modifications, DP-SGD achieves 
bounded sensitivity for each training update, thus es-
tablishing privacy guarantees through controlled noise 
introduction into the learning process [5, 7].

However, optimizing hyper-parameters in differen-
tially private models is inherently more complex than 
in non-private settings. Private hyperparameter opti-
mization requires tuning additional parameters, includ-
ing the clipping norm and noise scale, which are highly 
sensitive and make the process intricate and demanding 
[8]. Earlier studies have focused on fine-tuning privacy 
parameters to match non-private model performance or 
achieving acceptable performance levels while ensuring 
privacy assurances [8]. Despite these efforts, significant 
gaps remain in optimizing hyperparameters for differen-
tially private deep learning models.

Traditional HP.O methods, such as grid search (G.S) 
and random search (R.S), are non-adaptive, evaluating 
hyperparameters from fixed or randomly generated sets 
[9]. While simple to apply, they are computationally in-
tensive and poorly suited for high-dimensional search 
spaces, especially when additional privacy parameters 
(e.g., noise multiplier, clipping norm) must be tuned 
[9]. While adaptive methods like Bayesian optimization 
(B.O) use a probabilistic model to link hyperparameters 
to performance metrics and have become the preferred 
choice over non-adaptive methods due to their superior 
performance and scalability [10, 11], they often struggle 
to dynamically adjust privacy parameters during train-
ing, which is critical for balancing utility and privacy in 
real-time applications [10, 11]. Furthermore, existing ap-
proaches lack the ability to effectively navigate the com-
plex trade-offs between exploration and exploitation in 
private HPO, limiting their scalability and performance in 
privacy-sensitive domains like healthcare [9]. These limi-
tations underscore the need for innovative optimization 
techniques that can handle the unique challenges of 
differentially private deep learning. Inspired by its adap-
tive exploration and exploitation capabilities, we pro-
pose the Bat Algorithm as a novel solution for dynamic 
parameter tuning, addressing these gaps and enabling 
more efficient and scalable privacy-preserving models.

Recent advancements have demonstrated the effec-
tiveness of swarm intelligence algorithms, such as the Bat 
Algorithm, in navigating complex search spaces [12]. In-
spired by bats' echolocation and social behaviors, the Bat 

Algorithm dynamically adjusts search patterns to iden-
tify optimal hyper-parameters. Its ability to balance local 
and global search capabilities and adaptive frequency 
tuning makes it particularly well-suited for fine-tuning 
hyper-parameters in complex scenarios [12]. In differen-
tially private deep learning, where privacy parameters like 
noise multiplier and clipping norm are critical, the Bat Al-
gorithm offers a promising approach for dynamic param-
eter tuning. This leads to a compelling research question: 
Can the Bat Algorithm be integrated to dynamically adjust 
privacy parameters during training, further improving the ef-
ficiency of differentially private model optimization?

In this work, we address the challenge of HPO in dif-
ferentially private deep learning by focusing on four 
explicit hyperparameters (learning rate, batch size, pri-
vacy budget, and maximum gradient norm) and two 
implicit ones (noise multiplier, and training epochs via 
early stopping). Our contributions are fourfold:

1. Novel Application of the Bat Algorithm: We pro-
pose and evaluate the Bat Algorithm for HP.O in 
differentially private deep learning, marking its first 
application in this domain.

2. Comprehensive Comparison: We systematically 
compare the Bat Algorithm against baseline meth-
ods (G.S, R.S, and B.O), providing consistent and re-
producible results.

3. Real-World Validation: We validate our approach on 
real-world medical datasets (Breast Cancer Wisconsin, 
BreastMnist), demonstrating its practical applicability 
in privacy-sensitive healthcare applications.

4. Generalizability and Scalability: To further dem-
onstrate the generalizability, feasibility, and scal-
ability of our framework, we extend our evaluation 
to the PathMNIST dataset, which is more complex 
in terms of both data structure (histopathology 
images) and model architecture (ResNet-50). This 
extension rigorously tests the applicability of our 
framework to larger and more complex datasets, 
further validating its potential for real-world de-
ployment in privacy-sensitive medical applications.

The remainder of this paper is organized as follows: 
Section 2 outlines the methodology and experimental 
setup, Section 3 presents results and analysis, Section 4 
discusses findings, and Section 5 concludes with impli-
cations and future research directions.

2. RELATED WORK

The intersection of differential privacy and deep 
learning has been an active area of research, particu-
larly in optimizing the balance between privacy guar-
antees and model utility.

2.1. DIFFERENTIAL PRIVACy IN MACHINE 
 LEARNING 

Recent advancements in Differential privacy (DP) have 
significantly expanded theoretical foundations and 
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practical applications of privacy-preserving techniques. 
Kulynych et al. [13] introduced an attack-aware noise 
calibration framework that moves beyond traditional 
ε-based approaches, demonstrating improved model 
accuracy while maintaining strong privacy guarantees. 
Complementing this work, Lu [14] established crucial 
relationships between noise addition strategies in sto-
chastic gradient descent (SGD) and their impact on the 
model performance. In the domain of privacy budget 
management, Thantharate et al. [15] developed a sys-
tematic approach for tracking cumulative privacy loss 
across iterative training processes, enabling more pre-
cise control over privacy budgets in multi-stage learning 
scenarios. Pan Ke et al. [16], systematically investigate 
differentially private deep learning, addressing privacy 
attacks and preservation with a novel taxonomy. De-
spite these efforts, optimizing the privacy-utility trade-
off continues to pose substantial challenges.

2.2. PRIVACy-UTILITy TRADE-OFFS AND 
 OPTIMIzATION 

Transfer learning approaches have shown promising 
results in medical image diagnosis. Battula and Chan-
dana. [17] demonstrated 99.68% accuracy for cervical 
cancer classification using an optimized SE-ResNet152 
model, highlighting the potential of architecture optimi-
zation in healthcare applications. The growing need for 
privacy preservation, however, necessitates approaches 
that balance such high performance with robust privacy 
guarantees. The progress in privacy-preserving machine 
learning has significantly enhanced our understanding of 
the privacy-utility trade-off paradigm. Kumar et al. [18] in-
troduced a novel geometric approach using kernel-based 
methods in Reproducing Kernel Hilbert Spaces (RKHS), 
effectively reducing accuracy loss while mitigating mem-
bership inference risks in sensitive applications. Based on 
this foundation, Ficiu et al. [19] developed PFairDP, em-
ploying Bayesian optimization to identify Pareto-optimal 
points balancing fairness, privacy, and utility. Significant 
contributions to federated learning frameworks have 
emerged, with with Avent et al. [20] presenting a Bayesian 
optimization methodology to efficiently characterize the 
privacy-utility trade-off of differentially private algorithms 
using empirical utility measurements, while Koskela et al. 
[21] propose a method to enhance differentially private 
machine learning by tuning hyperparameters on a ran-
dom data subset and extrapolating optimal values, reduc-
ing both privacy leakage and computational cost. Arous 
et al. [22], demonstrated choice strategies of model pa-
rameters (e.g., activation functions) that can significantly 
impact the privacy utility balance without compromising 
either aspect.

2.3. HyPER-PARAMETER OPTIMIzATION IN 
 DIFFERENTIALLy PRIVATE DEEP 
 LEARNING (DPDL)

Numerous approaches have been proposed to ad-
dress the challenge of hyper-parameter optimization in 

DP. Galli et al. [23] offer foundational insights by dynam-
ically optimizing the clipping threshold in differentially 
private learning, showing that traditional grid search 
methods incur excessive privacy costs, while Wang et 
al. [24] developed DP-HyPO, an adaptive framework le-
veraging Gaussian process-based optimization.

Significant algorithmic contributions include evolu-
tionary approaches for exploring hyperparameter spac-
es, Bayesian optimization for probabilistic performance 
modeling, and enhanced Particle Swarm Optimization 
(EPSO) as Gao et al. [25] demonstrated for optimizing 
learning rates while minimizing noise impact. Bu et al. 
[26] introduced a novel book-keeping technique that 
improves computational costs while maintaining ac-
curacy, making private optimization comparable to 
standard training. Tobaben [27] provides foundational 
insights by analyzing hyperparameter and architec-
tural impacts on the privacy-utility trade-off in DPDL, 
revealing grid search’s inefficiencies with private data.

2.4. META-HEURISTIC APPROACHES AND 
 PARETO OPTIMIzATION

The work by Ramalingam et al. [28] and Banerjee et 
al. [29] has demonstrated the effectiveness of genetic 
algorithms, particle swarm optimization, and ant colony 
optimization in navigating vast solution spaces. These ap-
proaches have shown a particular promise in healthcare 
applications, with Singh et al. [30] successfully applying 
them to enhance feature selection for disease diagnosis 
while maintaining privacy constraints. The Pareto optimi-
zation aspect of these methods, as explored by Harkare 
et al. [31],is crucial in balancing multiple competing ob-
jectives, such as model accuracy, privacy guarantees, and 
computational efficiency. Thakur et al. [32] further extend-
ed these concepts to resource-constrained environments, 
demonstrating significant improvements in operational 
efficiency while maintaining solution diversity.

Table 1. Overview of Key Related Work

Research Area Key Contributions Reference

Differential 
Privacy

Attack-aware noise calibration 
beyond ε-based approaches [13]

Noise addition strategies in 
SGD [14]

Privacy-Utility 
Trade-offs and 
optimization

SE-ResNet152 optimization 
using DHO algorithm for 

medical image classification
[17]

Subset-based hyperparameter 
tuning for privacy-utility 

optimization
[21]

Hyper-
parameter 

Optimization 
in DPDL

DP-HyPO adaptive framework [24]

EPSO for learning rate 
optimization [25]

Systematic optimization 
strategy comparison [26]

Meta-heuristic 
Approaches

Genetic and particle swarm 
optimization analysis [28]

Healthcare feature selection 
optimization [29]
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3. PROBLEM FORMULATION 

Our problem formulation establishes a unified 
framework for optimizing the privacy-utility trade-off 
in differentially private deep learning models. We have 
defined an objective function that balances model ac-
curacy and privacy guarantees and formulated the op-
timization problem for four distinct approaches: Grid 
Search, Random Search [33], Bayesian Optimization 
[34], and Bat Algorithm [35]. Each method navigates 
the hyperparameter space Θ in its unique way, aiming 
to find the optimal configuration θ ∗ that maximizes 
our objective function f(ε(θ), A(θ)).

3.1. DIFFERENTIAL PRIVACy FRAMEWORK 

A randomized algorithm M : D → R with domain D 
and range R is (ε, δ)- differentially private if for all S ⊆ R 
and for all adjacent datasets D, D′ ∈ D [36]:

P[M(D) ∈ S] ≤ exp(ε) · P[M(D') ∈ S] + δ (1)

where: - ε is the privacy budget - δ is the failure prob-
ability.

3.2. DP-OPTIMIzATION COMPONENTS

3.2.1. Hyperparameter Space

Let θ = (lr, bs, nm, C) be the hyperparameter vec-
tor where: - lr: learning rate - bs: batch size - nm: noise 
multiplier - C: gradient clipping threshold The feasible 
space Θ is defined by:

Θ = {θ | lrmin≤ lr ≤ lrmax,
bsmin ≤ bs ≤ bsmax,
tεmin ≤ tε ≤ tεmax,

Cmin ≤ C ≤ Cmax

(2)

3.2.2. Privacy-Utility Metric

For any configuration θ: - A(θ): model accuracy - ε(θ): 
achieved privacy budget

3.2.3. Objective Function

The privacy-utility trade-off is quantified by:

where α, β are weighting parameters.

3.3. OPTIMIzATION PROBLEM

3.3.1. Primary Objective

Our goal is to find the optimal hyperparameter con-
figuration θ ∗ that maximizes f(ε(θ), A(θ)), the optimiza-
tion problem can be formally stated as:

3.3.2. Pareto Optimality

To comprehensively analyze the trade-off between 
privacy and utility, we introduce the concept of Pareto 

optimality. The Pareto frontier P represents the set of 
non-dominated solutions where it’s impossible to im-
prove either privacy or utility without degrading the 
other. Formally, we define P as:

P={(ε, A) ∈ S|∄ (ε', A') ∈ S:(ε'< ε∧ A'≥A) ∨ (ε'≤ ε∧A'>A)} (4)

3.4. SOLUTION APPROACHES

To solve this optimization problem, and To find θ* , 
we employ and compare four approaches distinct ap-
proaches: 

1. Grid Search: Exhaustive search over a predefined 
hyper-parameter space,

(5)

2. Random Search: Randomly sampling configura-
tions from the hyperparameter space [33]

(6)

3. Bayesian Optimization: Sequential model-based 
optimization using Gaussian Processes [34],

(7)

4. Bat Algorithm: A nature-inspired meta-heuristic 
optimization algorithm [35],

(8)

Where ΘX represents the search space explored by 
method X. Each method aims to efficiently navigate 
the hyperparameter space to find the configuration 
that maximizes our objective function, thus achieving 
the best privacy-utility trade-off for our differentially 
private deep learning model.

3.5. IMPLEMENTATION CONTExT

The optimization is implemented using the Opacus 
privacy engine, which: 1. Computes per-sample gra-
dients 2. Clips gradients to bound sensitivity 3. Adds 
calibrated Gaussian noise 4. Tracks privacy budget con-
sumption The DP optimizer update step is:

(9)

Where g̃t is the differentially private gradient:

(10)

where g̃t is the privatized gradient, B is the batch size, C 
is the clipping threshold, and σt is the dynamically ad-
justed noise multiplier at step t.

4. METHODOLOGy

This section presents our comprehensive method-
ology for optimizing the privacy-utility trade-off in 
differentially private deep learning. Our framework 
encompasses model architectures, differential privacy 
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implementation, hyperparameter optimization tech-
niques, and evaluation procedures. Beyond establish-
ing the foundational approach, we extend our inves-
tigation to assess the framework's generalizability by 
incorporating the PathMNIST dataset — a complex col-
lection of histopathology images that presents more 
challenging scenarios compared to the BreastMNIST 
and Breast Cancer Wisconsin datasets. This extension, 
implemented through a privacy-adapted ResNet-50 
architecture with DP-Optimizer, enables us to evalu-
ate our optimization framework's scalability and fea-
sibility on larger, more complex models. Through this 
comprehensive approach, we aim to provide a clear, 
reproducible framework for comparing optimization 
strategies in privacy-preserving deep learning, while 
demonstrating its applicability across varying levels of 
task complexity.

4.1. ExPERIMENTAL FRAMEWORK OVERVIEW

Our experimental framework was implemented on 
the Google Colab Pro+ platform, leveraging TPU v2-8 
accelerators that provide 8 cores with up to 180 tera-
flops of computation power and 64 GB of high-band-
width memory (HBM). This infrastructure choice was 
crucial for handling the computational overhead. The 
summary of the setting parameters is shown in Table 2.

Table 2. Experimental Framework Specifications

Component Specification

Platform Google Colab Pro+

Hardware TPU v2-8 (8 cores, 180 teraflops)

Memory 64 GB HBM

Framework Python 3 + PyTorch

Cross-Validation 3-fold

Early Stopping with patience monitoring

Optimizer ADAM

Loss function CrossEntropy

4.2. DATASETS AND PREPROCESSING

4.2.1. Breast Cancer Wisconsin Dataset

The Wisconsin Breast Cancer Dataset (UCI Reposi-
tory) contains 569 samples with 30 features and binary 
classification (malignant/benign). Data was prepro-
cessed and split into training (301), validation (85), and 
test (183) sets, then converted to PyTorch tensors for 
model training.

4.3.1. Model architecture

Multi-Layer Perceptron architecture comprises In-
put(30) → Linear(20) → Linear(10) → Linear(10) → Lin-
ear(10) → Linear(5) → Output(2) with ReLU activations 
between layers. The architecture employs gradual di-
mension reduction to prevent overfitting on the breast 
cancer Wisconsin classification task.

4.3.2. Medical Image Datasets

The BreastMNIST and PathMNIST datasets (MedMNIST 
v2.2.3) represent distinct medical imaging modalities 
while sharing standardized preprocessing requirements. 
Both datasets undergo similar technical preprocessing 
steps, with images normalized (µ=0.5, σ=0.5) and format-
ted to 28×28 pixel RGB resolution for deep learning com-
patibility. However, they differ significantly in their mo-
dalities and clinical applications. BreastMNIST focuses on 
breast imaging diagnostics, containing 780 medical im-
ages distributed across training (546), validation (78), and 
test (156) sets for binary classification tasks. In contrast, 
PathMNIST encompasses histopathological imaging, 
presenting a larger collection of 107,180 microscopic tis-
sue images from colon pathology. These are divided into 
training (89,996), validation (10,004), and test (7,180) sets, 
supporting a more complex nine-class classification chal-
lenge that reflects the diverse cellular patterns and tissue 
characteristics encountered in pathological analysis.

4.3.3. ResNet Architectures

Our implementation utilizes modified ResNet ar-
chitectures (ResNet-18 and ResNet-50) with specific 
privacy-focused adaptations for medical image clas-
sification. Both models share fundamental privacy-
preserving modifications, replacing BatchNorm layers 
with GroupNorm (32 groups) to comply with Opacus's 
privacy requirements, as BatchNorm operations can 
leak private information across training examples. The 
architectures maintain pre-trained backbones in frozen 
evaluation mode while incorporating trainable classifi-
cation heads. The key distinction lies in their complex-
ity and target tasks: ResNet-18 is configured for binary 
classification of breast images, and ResNet-50, being 
deeper and more complex, handles the nine-class 
histopathology classification task for PathMNIST. Both 
architectures preserve privacy guarantees through 
GroupNorm's channel-based normalization approach 
and ensure efficient feature extraction through their 
frozen pre trained backbones, demonstrating adapt-
ability to different medical imaging modalities while 
maintaining privacy-preserving characteristics.

4.3.4. Training Configuration

Our training framework implements model-specific 
configurations to ensure optimal convergence while 
managing computational resources effectively. The 
MLP architecture employs a maximum of 500 epochs 
with a patience value of 250, while the ResNet-18 train-
ing is configured with 20 maximum epochs and a pa-
tience threshold of 12. For the PathMNIST experiments 
using the Bat Algorithm, we established two distinct 
configurations as detailed in Table 3, where both main-
tain a population size of 2 bats but differ in their con-
vergence parameters: Configuration 1 uses 14 epochs 
with early stopping at 10, while Configuration 2 em-
ploys 15 epochs with early stopping at 13. 
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Across all models, we implemented early stopping 
monitoring validation accuracy to prevent overfitting 
and ensure optimal convergence. These parameter ad-
justments, particularly for the PathMNIST experiments, 
were essential to complete the optimization process 
while managing computational constraints.

Table 3. Bat Algorithm Optimization Parameters: 
Two Configurations for PathMNIST classification

1st Configuration 2nd Configuration

Optimization Parameters
Population Size 2 bats 2 bats

Max-iterations 14 (convergence at 11) 4 (convergence at 2)

Epochs 15 15

Early Stopping 
Patience 10 13

4.4. DIFFERENTIAL PRIVACy 
 IMPLEMENTATION

Table 4. Differential Privacy Components

Component Implementation
Library Opacus

Engine PrivacyEngine

Delta (δ) Fixed at 10-4

Privacy Mechanism Gradient clipping + Gaussian noise

Differential privacy is implemented via Opacus Pri-
vacy Engine with two key components:

Table 5. Hyperparameter Space Definition

Parameter Discrete Values Continuous Range Notes

Learning Rate {0.001, 0.01, 0.1} [0.001, 0.1] Three orders of magnitude

Batch Size {16, 32, 64, 128, 512} [16, 512] Powers of 2

Max Gradient Norm {1.2, 5.6} [1.2, 5.6] Conservative range

Privacy Budget (ε) {0.5, 1.0, 8.0} [0.2, 8.0] Strict to relaxed privacy

Privacy Delta (δ) Fixed at 10-4 Standard failure probability

1. Privacy Engine Operation:

•	 Per-sample gradient computation
•	 Gradient clipping for sensitivity bounds
•	 Calibrated Gaussian noise addition
•	 Privacy budget tracking
2. Dynamic Privacy Management:

•	 Target epsilon (εtarget) specification
•	 Dynamic noise multiplier (σ) adjustment
•	 Automated noise calibration
•	 Privacy parameter reporting

The engine adjusts the noise multiplier during train-
ing to balance target epsilon and model utility, follow-
ing equation (10).

4.5. HyPERPARAMETER SPACE   

Our hyperparameter optimization space was careful-
ly defined to accommodate both discrete and continu-
ous optimization methods as shown in Table 5:

4.5.1. Parameter Adjustment Mechanisms

Parameter adjustment mechanisms for continuous 
optimization include reflection methods that handle 
out-of-bounds values through boundary reflection, 
and value adjustment processes that discretize batch 
sizes, enforce integer constraints, clip boundary values, 
and prevent negative values.

4.6. OPTIMIzATION FRAMEWORK

The optimization framework is designed to system-
atically achieve an optimal privacy-accuracy balance in 
Differentially Private Deep Learning (DPDL) models. It 
comprises three key phases: initialization, optimization, 
and Pareto analysis. Fig.1 illustrates the comprehensive 
workflow, while Fig.2 provides a detailed flowchart of 
the optimization methods. This framework establishes 
a robust foundation for achieving optimal privacy-utili-
ty trade-offs through systematic parameter tuning and 
multi-objective optimization.

4.6.1. Objective Function

For the objective function defined in equation (3), we 
set α = β = 0.5 to ensure equal importance between 
privacy preservation (ε) and model accuracy (A), thus 
achieving a balanced privacy-utility optimization with-
out favoring either aspect.

4.6.2. Hyperparameter Tuning Methods

To identify the optimal hyperparameter configura-
tions, we employ four distinct methods G.S, R.S, B.O, 
and B.A. Each method is described below:

a) Grid Search (G.S): 
 Deterministic Exploration

G.S operates as an exhaustive search method, sys-
tematically evaluating every possible combination of 
hyperparameters within a predefined discrete space. 
By exploring the entire search space, G.S identifies the 
optimal configuration that effectively balances the pri-
vacy-utility trade-off. This method ensures a thorough 
and methodical approach to hyperparameter tuning, 
albeit at a higher computational cost.

b) Random Search (R.S): 
 Stochastic Exploration
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R.S samples hyperparameter configurations from 
a uniform distribution U (ΘRS) over a predefined dis-
crete search space ΘRS. It evaluates a fixed number of 
configurations (N), typically covering approximately 
25% of the parameter space. By focusing on a subset 
of the search space, R.S efficiently approximates the 
optimal solution while significantly reducing com-
putational overhead compared to exhaustive meth-
ods like G.S. 

c) Bayesian Optimization (B.O):  
 Sequential Model-Based Optimization

Bayesian Optimization employs a Gaussian Process 
(GP) as a surrogate model to approximate the objec-
tive function f (ε(θ), A(θ)). The process begins with 10 
warm-up points, randomly sampled to initialize the 
GP model. At each iteration, the next hyperparameter 
configuration is selected by maximizing the Expected 
Improvement (EI):

(11)

Where D={(θi, fi)}
t
i=1 represents the set of observations 

up to iteration t. This approach sequentially refines the 
GP model, guiding the search toward regions of the 
hyperparameter space that are most likely to improve 
performance.

Through this iterative process, equation (11) guides 
us toward the optimal solution represented in equa-
tion (7). At each step t:

•	 The GP model is updated using all previous obser-
vations D

•	 EI(θ|D) estimates where the next evaluation might 
most improve upon our current best solution

•	 This sequential refinement helps us approximate 
the optimal hyper-parameters θ*

BO
* that maximize 

our objective function f (ε(θ), A(θ))

Fig. 1. Flowchart of Hyperparameter Optimization with Gradient Perturbation for Privacy-Accuracy Balance 
in DPDL
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Fig. 2. Flowchart of each Optimization Method

B.O. effectively balances exploration and exploita-
tion, making it highly efficient for high-dimensional 
spaces. 

•	 Nature-inspired metaheuristic for hyperparameter 
tuning: The Bat Algorithm is a swarm intelligence-
based optimization method that mimics the echolo-
cation behavior of bats to navigate the hyperparam-
eter space. It combines global exploration and local 
exploitation by iteratively updating the position xi 
and velocity vi of each bat i. The algorithm is guided 
by frequency fi, loudness Ai, and pulse emission rate 
ri, which are dynamically adjusted to balance explo-
ration and exploitation. Algorithm 1 provides the 
complete pseudocode for the Bat Algorithm, illus-
trating its iterative parameter updates for balanced 
local and global search space exploration. 

Algorithm 1 
Bat Algorithm for Hyperparameter Tuning

1: Initialize Parameters:
2: Population size: N = 10 bats
3: Dimensions: D = 4 parameters
4: Frequency range: [fmin, fmax] = [0, 10]
5: Loudness: Ai = 1.0 (initial)
6: Pulse emission rate: ri = ri

0 (initial)
7: Alpha (α): 0.9
8: Gamma (γ): 0.9
9: Maximum iterations: Tmax (dataset-specific)
10: Initialize Population:

11: Randomly initialize positions xi and velocities vi 

  for each bat i.
12: Evaluate Initial Fitness:
13: Compute fitness f (xi) for each bat i.
14: Identify the global best solution xbest.
15: Main Loop (for t=1 to Tmax):
16: for each bat i do
17: Generate frequency fi:
18: fi=fmin+(fmax-fmin )·β, β∈[0,1]
19: Update velocity vi:
20: vi

t+1=vi
t+(xi

t-xbest) · fi 
21: Update position xi:
22: xi

t+1=xi
t+vi

t+1

23: if rand>ri then
24: Perform local search:
25: xnew=xold+ε·At, ε∈[-1,1]
26: end if
27: Evaluate fitness f (xi

t+1).
28: if rand <Ai and f (xi

t+1) < f xbest) then
29: Update xbest = xi

t+1.
30: end if
31: Update loudness Ai and pulse emission rate ri:
32: Ai

t+1= α · Ai
t

33: ri
t+1= ri

0 · [1 - exp(-γ · t)]
34: end for
35: Return Optimal Solution:
36: Output the global best solution xbest.
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4.7.  PARETO ANALySIS 

Our Pareto efficiency analysis identifies the optimal 
trade-off between privacy preservation (ε) and model 
accuracy (A) across all optimization methods. The anal-
ysis involves two key steps:

1. Pareto Front Identification 

•	 We use a non-dominated sorting algorithm to 
identify the Pareto front, comprising solutions that 
are not dominated by any other configuration in 
terms of ε and A.

•	 Optimization occurs in a two-dimensional space, 
where each point represents a unique (ε, A) com-
bination.

•	 Pair-wise dominance comparisons determine 
dominance: a solution (ε1, A1) dominates (ε2, A2) if 
ε1 ≤ ε2 and A1 ≥ A2, with at least one strict inequality.

2. Optimal Point Selection

•	 The optimal Pareto point is selected from the set of 
non-dominated solutions (P), satisfying the domi-
nance relation in Equation (4).

•	 If the global best solution matches the Pareto point 
for a method, it indicates the method’s superior-
ity in achieving the best non-dominated trade-off. 
This highlights the method’s robustness, efficiency, 
and practical applicability for privacy-preserving 
machine learning tasks while providing a basis for 
method comparison and future research.

5. COMPREHENSIVE ANALySIS OF RESULTS

Based on our experimental evaluation across multiple 
datasets and optimization methods, we present a de-
tailed analysis of the performance metrics, hyperparam-
eter configurations, computational resources utilized, 
and comparative assessment of optimization strategies 
in our framework. Our analysis includes a comprehen-
sive performance evaluation across key metrics, a de-
tailed examination of how hyperparameters influence 

outcomes, a specific analysis of the PathMNIST dataset’s 
performance, an assessment of resource utilization pat-
terns, and a comparative investigation of the strengths 
and limitations of different methods across various data-
sets and optimization objectives.

5.1. PERFORMANCE METRICS ANALySIS

We begin our analysis by examining the performance 
metrics detailed in Table 6, focusing on accuracy, pri-
vacy preservation, and computational efficiency across 
all optimization methods and datasets. This analy-
sis provides insights into how each method balances 
these critical performance dimensions.

The Grid Search method demonstrated consistent 
performance across datasets, achieving an accuracy 
of 93.40% on the Breast Cancer Wisconsin dataset and 
74.18% on BreastMNIST. Maintaining a privacy bud-
get (ε) of 0.500 required substantial computational 
resources, particularly evident in the 4,000.33 seconds 
processing time for the Wisconsin dataset.

Random Search exhibited comparable accuracy met-
rics, reaching 92.53% on the Wisconsin dataset and 
74.91% on BreastMNIST. Notably, it achieved these results 
with varying privacy budgets - 0.500 for Wisconsin and 
1.000 for BreastMNIST. The method showed improved 
time efficiency compared to Grid Search, completing the 
Wisconsin dataset analysis in 2,749.65 seconds.

Bayesian Optimization achieved the highest accuracy 
on the Wisconsin dataset at 93.62%, while maintaining 
a privacy budget of 0.501. The method demonstrated 
consistent performance on BreastMNIST with 73.99% 
accuracy. Its computational requirements were signifi-
cant, requiring 17,828.72 seconds for the Wisconsin da-
taset, though with reduced memory usage of 787.75 MB.

The Bat Algorithm showed distinct characteristics, 
achieving Pareto optimality on both datasets. While its ac-
curacy was slightly lower (93.18% for Wisconsin, 73.08% 
for BreastMNIST), it demonstrated efficient privacy pres-
ervation with ε values of 2.258 and 0.293 respectively.

Table 6. Performance Metrics Across Datasets and Optimization Methods

Dataset Method Privacy (ε) Accuracy (%) Fitness (f) Time (s) Memory (MB) Pareto Optimal?

Breast cancer 
Wisconsin

Grid Search 0.500 93.40 0.1840 4,000.33 1,064.83 Yes

Random Search 0.500 92.53 0.1834 2,749.65 845.08 No

Bayesian Opt. 0.501 93.62 0.1840 17,828.72 787.75 No

Bat Algorithm 2.258 93.18 0.0470 14,562.20 1,103.16 Yes

BreastMNIST

Grid Search 0.500 74.18 0.1699 12,931.66 1,796.29 Yes

Random Search 1.000 74.91 0.1697 6,499.74 1,555.48 Yes

Bayesian Opt. 0.500 73.99 0.1697 38,076.04 1,322.85 Yes

Bat Algorithm 0.293 73.08 0.1887 10,132.33 4,348.25 Yes
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Table 7. Best Hyperparameter Configurations for Each Method.

5.3. PATHMNIST-SPECIFIC PERFORMANCE 
 ANALySIS

As detailed in Table 8, our focused analysis of the 
PathMNIST dataset provides additional insights into 
the optimization framework's capability to handle 
complex medical imaging data and adapt configura-
tions for improved performance. The results demon-
strate significant variations between configurations 
and their impact on multiple performance dimensions.

Table 8. Results on the PathMNIST dataset

1st Configuration 2nd Configuration

Global Best Solution

Learning Rate (lr) 0.03106 0.01760

Batch Size 128 512

Max-Grad-Norm (C) 2.179 1.732

TargetEpsilon(ε) 0.508 2.603

Performance Metrics

Objective Function 0.1435 0.0328

GlobalBest Accuracy 39.97% 44.71%

Global Best Epsilon 0.508 2.603

Time (S) 18,238.194 13,678.6455

Memory (MB) 8,479.0875 7,522.4725

Pareto Optimal? No Yes

The PathMNIST dataset results revealed significant 
improvements between configurations. The global best 
accuracy increased from 39.97% to 44.71%, accompa-
nied by changes in the learning rate from 0.03106 to 
0.01760. The second configuration achieved Pareto 
optimality while reducing memory requirements from 
8,479.0875 MB to 7,522.4725 MB.

The objective function improved from 0.1435 to 
0.0328, indicating enhanced optimization perfor-
mance. The global best epsilon value increased from 
0.508 to 2.603, suggesting a different privacy-utility 
trade-off in the optimal configuration. Execution time 
increased from 8,238.194 seconds to 13,678.6455 sec-
onds, demonstrating the computational cost of achiev-
ing improved performance metrics.

5.4. RESOURCE UTILIzATION ASSESSMENT

Understanding the computational demands of each 
optimization method is crucial for practical implemen-
tation. Our analysis of resource utilization reveals sig-
nificant variations in memory and time requirements 
across methods and datasets.

Memory requirements varied significantly across 
methods and datasets. For the Wisconsin dataset, Grid 

5.2. HyPERPARAMETER CONFIGURATION 
 ANALySIS

To understand the factors driving performance dif-
ferences, we examine the optimal hyper-parameter 
configurations identified by each method across data-
sets, as presented in Table 7. This analysis reveals key 
patterns in parameter selection and their impact on 
optimization outcomes.

The optimal learning rates varied significantly across 
methods. Grid Search performed best with smaller 
learning rates (0.01), while the Bat Algorithm required 
higher rates (0.0965 for Wisconsin). Batch sizes showed 

a clear pattern, with most optimal configurations favor-
ing larger batches (512) for the Wisconsin dataset and 
varying sizes for BreastMNIST. Privacy budgets dem-
onstrated method-specific patterns. Random Search 
and Grid Search maintained consistent budgets (0.500), 
while the Bat Algorithm and Bayesian Optimization 
showed more variation. The max gradient norm values re-
mained relatively stable across methods for BreastMNIST 
but showed greater variation in the Wisconsin dataset.  
Training epochs exhibited method-specific patterns, 
with Grid Search requiring 273 epochs for optimal per-
formance on the Wisconsin dataset, while BreastMNIST 
achieved optimal results with significantly fewer ep-
ochs (12-14) across all methods.

Dataset Method Learning 
Rate (lr)

Batch 
Size(bs)

Privacy 
Budget 
(εterget)

Max Grad 
Norm (C)

Noise 
Multiplier (σ)

Training 
Epochs

Final 
Accuracy(%)

Breast cancer 
Wisconsin

Grid Search 0.01 32 0.500 1.2 42.5 273 93.40

Random Search 0.1 512 0.500 5.6 135.0 252 92.53

Bayesian Opt. 0.018 128 0.501 3.118 77.5 265 93.62

Bat Algorithm 0.0965 512 2.258 3.388 95.5 248 93.18

BreastMNIST

Grid Search 0.1 32 0.500 1.2 6.25 12 74.18

Random Search 0.1 64 1.000 1.2 8.75 12 74.91

Bayesian Opt. 0.1 128 0.500 4.906 12.19 15 73.99

Bat Algorithm 0.0429 512 0.293 3.114 18.5 14 73.08
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Search utilized 1,064.83 MB, while the Bat Algorithm 
required 1,103.16 MB. BreastMNIST showed higher 
memory requirements overall, with the Bat Algorithm 
consuming 4,348.25 MB.

Execution times demonstrated substantial variation, 
ranging from 2,749.65 seconds for Random Search to 
17,828.72 seconds for Bayesian Optimization on the 
Wisconsin dataset. BreastMNIST generally required 
longer processing times, with Grid Search taking 
12,931.66 seconds and Bayesian Optimization requir-
ing 38,076.04 seconds.

The fitness values across methods remained rela-
tively consistent within each dataset, suggesting that 
different optimization approaches converged to simi-
larly optimal solutions despite varying computational 
requirements and privacy-utility trade-offs.

5.5. COMPARATIVE ANALySIS

To synthesize our findings, we examine the relative 
strengths and limitations of each optimization method 
across datasets, highlighting key trade-offs and opera-
tional considerations.

Our comparative analysis reveals distinctive patterns 
across optimization methods and datasets, highlight-
ing the inherent trade-offs between privacy, accuracy, 
and computational efficiency. On the Wisconsin data-
set, Grid Search and Bayesian Optimization achieved 
comparable accuracy levels (93.40% and 93.62% re-
spectively) while maintaining similar privacy budgets 
(0.500 and 0.501). However, Bayesian Optimization 
required approximately 4.5 times more computational 
time, suggesting a significant efficiency trade-off for 
marginal accuracy improvement.

The BreastMNIST dataset results demonstrate differ-
ent optimization dynamics. Random Search emerged as 
the top performer with 74.91% accuracy, albeit requiring 
a higher privacy budget (ε = 1.000) compared to other 
methods. This illustrates the inherent tension between 
privacy preservation and model performance. Grid 
Search achieved comparable accuracy (74.18%) with half 
the privacy budget (ε = 0.500), representing a potentially 
more balanced solution for privacy-sensitive applications.

The Bat Algorithm's performance presents an inter-
esting case study in multi-objective optimization. De-
spite achieving lower accuracy scores on both datasets, 
it consistently achieved Pareto optimality, suggesting 
superior performance in balancing multiple compet-
ing objectives. Its moderate memory requirements 
(1,103.16 MB for Wisconsin, 4,348.25 MB for Breast-
MNIST) and execution times position it as a practical 
choice for resource-constrained environments.

A cross-dataset comparison reveals that optimization 
methods demonstrate dataset-specific strengths. While 
Grid Search exhibited stable performance across both 
datasets, Random Search showed higher variability, per-
forming notably better on the BreastMNIST dataset. This 

suggests that dataset characteristics significantly influ-
ence the effectiveness of different optimization strategies.

5.6. ExTENDED ANALySIS WITH  
 VISUALIzATION RESULTS

This analysis presents a comprehensive visualization-
based examination of our optimization results across 
three distinct datasets: Wisconsin Breast Cancer, Breast-
MNIST, and PathMNIST. Our visualization framework 
employs two key components: privacy-accuracy trade-
off plots with fitness value indicators, and convergence 
plots showing the evolution of fitness values over it-
erations. This dual visualization approach enables us to 
understand both the final solution space and the opti-
mization trajectory for each method.

5.6.1. Breast Cancer Wisconsin Dataset

The Breast Cancer Wisconsin Dataset optimization 
results reveal distinct patterns across the four optimi-
zation methods, showcasing various approaches to 
balancing privacy and accuracy.

Grid Search and Random Search (Fig. 3a, 3b) demon-
strate similar exploration patterns, characterized by dis-
crete, well-defined sampling points. The privacy-accuracy 
trade-off plots show concentrated exploration in specific 
regions, with Grid Search providing more systematic cov-
erage while Random Search offers more scattered distri-
bution. Both methods achieve relatively quick conver-
gence as shown in their fitness evolution plots, reaching 
stable fitness values early in the optimization process.

Bayesian Optimization (Fig. 3c) exhibits a more so-
phisticated exploration strategy, with dense sampling 
in promising regions of the solution space. The priva-
cy-accuracy plot reveals a continuous distribution of 
points, suggesting a more thorough exploration of the 
trade-off space. The convergence plot shows rapid ini-
tial improvement followed by consistent refinement, 
indicating efficient optimization behavior.

The Bat Algorithm (Fig. 3d) demonstrates a unique 
exploration pattern, with initial broad coverage fol-
lowed by concentrated sampling in high-performing 
regions. The privacy-accuracy plot shows clusters of 
solutions, particularly in areas of favorable trade-offs. 
The fitness evolution plot reveals a distinctive stepped 
pattern, suggesting periodic improvements in solution 
quality as the algorithm explores the search space.

Regarding optimal solutions, all methods success-
fully identified configurations that balance privacy 
and accuracy, with the Bayesian Optimization and Bat 
Algorithm showing a particularly effective exploration 
of the solution space near the Pareto frontier. The con-
vergence behavior suggests that while Grid Search and 
Random Search reach stable solutions quickly, Bayes-
ian Optimization and the Bat Algorithm continue to 
refine their solutions throughout the optimization pro-
cess, potentially discovering more nuanced trade-offs.



5.6.2. BreastMNIST Dataset

The optimization results for the BreastMNIST data-
set reveal distinctive characteristics and performance 
patterns across the four optimization methods, with 
notable differences from the Wisconsin Breast Cancer 
dataset analysis.

Grid Search (Fig. 4a) shows a structured exploration 
pattern with evenly distributed sampling points across 
the privacy-accuracy space. The convergence plot dis-
plays a step-like pattern, indicating discrete improve-
ments in fitness values at specific intervals. This sug-
gests that the method systematically identified better 
solutions through its predefined search grid.

Random Search (Fig. 4b) demonstrates a more scat-
tered distribution of solutions, yet maintains coverage 
across the solution space. The fitness evolution plot 
shows rapid initial improvement followed by sustained 
performance, suggesting early discovery of promising 
regions in the search space.

Bayesian Optimization (Fig. 4c) exhibits a more nu-
anced exploration strategy, with concentrated sampling 
in regions of higher fitness values. The privacy-accuracy 
trade-off plot reveals clusters of solutions in promis-
ing areas, indicating the algorithm's ability to adapt its 
search based on previous results. The convergence plot 
shows progressive improvement, with  multiple optimi-
zation stages visible in the fitness trajectory.

The Bat Algorithm (Fig. 4d) presents a unique ex-
ploration pattern characterized by focused sampling 
in specific regions of the solution space. The conver-
gence plot demonstrates consistent performance 
throughout the optimization process, suggesting 
stable exploration of the search space. 

However, the distribution of solutions appears more 
concentrated compared to other methods, indicating 
a potentially more focused search strategy. Compared 
to the Wisconsin dataset results, the BreastMNIST op-
timization exhibits different convergence patterns 

(b)

(d)

Fig. 3. Optimization Results for Wisconsin Breast Cancer Dataset: (a) Grid Search, (b) Random Search, (c) Bayes-
ian Optimization, and (d) Bat Algorithm. The top row shows privacy-accuracy trade-off plots with color indicating 

fitness values. The bottom row shows the evolution of the best fitness value over iterations.

(a)

(c)
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Fig. 4. Optimization Results for BreastMNIST Dataset: (a) Grid Search, (b) Random Search, (c) Bayesian 
Optimization, and (d) Bat Algorithm. The top row shows privacy-accuracy trade-off plots with color 

indicating fitness values. The bottom row shows the evolution of the best fitness value over iterations.

(d)(c)

(b)(a)

and solution distributions, likely due to the increased 
complexity and distinct characteristics of the dataset. 
This highlights the importance of algorithm selection 
based on specific dataset characteristics and optimi-
zation objectives.

5.6.3. PathMNIST Dataset

 5.6.3.1. Configuration 1 

The optimization results for Configuration 1 of the Bat 
Algorithm on the PathMNIST dataset, as shown in Fig. 5, 
demonstrate interesting characteristics in both solution 
distribution and convergence behavior.

The privacy-accuracy trade-off plot reveals two dis-
tinct clusters of solutions. The first cluster appears con-
centrated in the lower epsilon range (around 0.5-1.0) 
with accuracy values between 0.38 and 0.42. The sec-
ond, smaller cluster is positioned at a higher epsilon 
value (approximately 4.0) with improved accuracy val-

ues of approximately 0.44-0.45. This bimodal distribu-
tion suggests the algorithm identified two potentially 
promising regions in the solution space.

The fitness evolution plot demonstrates remarkably 
rapid convergence, reaching near-optimal fitness val-
ues within the first two iterations. After this initial sharp 
improvement, the fitness value stabilizes and maintains 
consistency throughout the remaining iterations, reach-
ing a final best fitness value of approximately 0.14350. 
This quick convergence pattern indicates that Configu-
ration 1 efficiently identified a promising solution early 
in the optimization process.

The iteration markers in the trade-off plot show that 
later iterations (represented by different colors) fo-
cused exploration around these two identified regions, 
particularly the higher-accuracy cluster. This behavior 
suggests that the algorithm effectively balanced the 
exploration of the solution space with the exploitation 
of promising areas.
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Fig. 5. The optimization results for Configuration 1 of the Bat Algorithm on the PathMNIST dataset

 5.6.3.2. Configuration 2

The optimization results for Configuration 1 and 2 il-
lustrated in Fig. 5 and 6, of the Bat Algorithm on the 
PathMNIST dataset reveal interesting patterns when 
accounting for their different maximum iteration set-
tings (14 and 2 iterations, respectively).

The privacy-accuracy trade-off plots show distinct ex-
ploration patterns. Configuration 1, with its longer op-
timization period of 14 iterations, demonstrates a more 
refined clustering of solutions, particularly around two 
key regions: one at lower epsilon values (0.5-1.0) and 
another at higher values (approximately 4.0). This ex-
tended iteration period allowed for more thorough ex-
ploration and refinement of promising areas.

Configuration 2, limited to 2 iterations, shows a more 
dispersed distribution of solutions across the epsi-
lon range (1-8). While this might initially appear as a 
broader exploration, it's important to note that this 
distribution is the result of significantly fewer optimiza-
tion steps rather than a fundamentally different search 
strategy.

The fitness evolution plots for both configurations 
show improvement from their initial values, but the ap-
parent differences in their convergence patterns must 
be interpreted within the context of their different it-
eration limits. Configuration 1's longer optimization 
period provides a more complete picture of the algo-
rithm's convergence behavior, while Configuration 2's 
shorter run offers only an initial glimpse of the optimi-
zation trajectory.

Given the identical starting conditions and popula-
tion size, the primary differentiating factor between 
these configurations is the maximum iteration count. 
This suggests that Configuration 1's more refined so-
lution clusters and stable convergence pattern are pri-
marily the result of having more iterations to optimize, 
rather than fundamental differences in the algorithm's 
behavior or efficiency.

This analysis highlights the importance of consider-
ing optimization duration when evaluating algorithm 
performance, as the number of iterations directly im-
pacts the algorithm's ability to refine its solutions and 
explore the solution space effectively.
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Fig. 6. The optimization results for Configuration 2 of the Bat Algorithm on the PathMNIST dataset

6. DISCUSSION

The comprehensive analysis of our privacy-preserv-
ing optimization framework reveals significant insights 
into the performance, computational feasibility,  and 
practical implications of different optimization ap-
proaches in medical image analysis. This discussion 
examines the critical aspects of our findings while con-
textualizing them within broader theoretical and prac-
tical frameworks.

Critical Analysis of Performance Trade-offs

Our results demonstrate complex interrelationships 
between privacy preservation, model accuracy, and 
computational efficiency across optimization methods. 
The Bayesian Optimization method's superior accuracy 
(93.62% on the Wisconsin dataset) while maintaining 
a strict privacy budget (ε = 0.501) constitutes a break-
through in balancing these competing objectives. How-
ever, this performance comes at a substantial computa-
tional cost, requiring 17,828.72 seconds of processing 
time - approximately 6.5 times longer than Random 
Search. This trade-off exemplifies the fundamental ten-

sion between optimization quality and computational 
efficiency in privacy-preserving machine learning.

The Bat Algorithm's achievement of Pareto optimality 
across datasets, even with reduced absolute accuracy, 
suggests a more nuanced approach to multi-objective 
optimization. Its ability to maintain competitive accura-
cy (93.18% for Wisconsin) while achieving varying priva-
cy budgets (ε = 2.258 and 0.293) demonstrates adaptive 
capability in managing privacy-utility trade-offs. This 
performance characteristic is particularly relevant for ap-
plications where balanced optimization across multiple 
objectives outweighs maximizing individual metrics.

Computational Feasibility and Resource 
 Requirements

The substantial variation in computational require-
ments across methods necessitates careful consider-
ation of deployment scenarios. Grid Search's consistent 
but resource-intensive approach (4,000.33 seconds for 
Wisconsin) contrasts with Random Search's more effi-
cient execution (2,749.65 seconds), suggesting differ-
ent optimal use cases based on available computation-

391Volume 16, Number 5, 2025



al resources. Memory utilization patterns, ranging from 
787.75 MB for Bayesian Optimization to 4,348.25 MB for 
the Bat Algorithm on BreastMNIST, indicate potential 
scalability challenges for larger datasets.

Our analysis reveals that computational overhead 
scales non-linearly with dataset complexity, particular-
ly evident in the BreastMNIST results where processing 
times increased by factors of 2-3 compared to the Wis-
consin dataset. This scaling behavior suggests poten-
tial limitations for enterprise-scale implementations, 
particularly in resource-constrained environments.

Method-Specific Performance Analysis

The distinctive performance patterns of each optimi-
zation method provide insights into their operational 
characteristics. Despite higher computational costs, 
Bayesian Optimization's superior accuracy reflects its 
sophisticated exploration-exploitation balance, which 
is particularly effective in complex parameter spaces. 
The Bat Algorithm's consistent achievement of Pareto 
optimality demonstrates its effectiveness in navigating 
multi-objective optimization landscapes, though at the 
cost of absolute accuracy.

Grid Search's stable performance across datasets 
(93.40% and 74.18% accuracy) suggests reliability 
in finding good solutions, albeit with limited ability 
to adapt to specific dataset characteristics. Random 
Search's competitive performance (92.53% and 74.91% 
accuracy) with reduced computational overhead, in-
dicates its viability as a practical alternative under re-
source-limited conditions.

Scalability and Real-world Applications

The PathMNIST results provide crucial insights into 
scalability challenges, with accuracy dropping to 
44.71% despite increased computational resources. 
This performance degradation highlights potential 
limitations in scaling current approaches to more com-
plex medical imaging tasks. The observed increase in 
memory requirements (7,522.4725 MB) and execution 
time (13,678.6455 seconds) suggests that practical im-
plementations may require significant computational 
infrastructure.

Architecture and Implementation Considerations

Hyperparameter sensitivity analysis reveals distinct 
patterns across methods, with optimal learning rates 
varying from 0.01 (Grid Search) to 0.0965 (Bat Algo-
rithm). This variation suggests method-specific stability 
characteristics that must be considered during imple-
mentation. The consistent preference for larger batch 
sizes (512) in the Wisconsin dataset indicates potential 
optimization opportunities through batch processing 
strategies.

Comparative Analysis of Solution Quality

Visualization results demonstrate distinct conver-
gence patterns across methods. The Bat Algorithm's 
stepped convergence pattern suggests periodic im-

provements in solution quality, while Bayesian Optimi-
zation shows more gradual refinement. These patterns 
offer insights into the exploration-exploitation dynam-
ics of each method, with implications for selecting op-
timization strategies.

Limitations and Practical Constraints

Current framework limitations include substantial 
computational requirements for complex datasets and 
potential scalability challenges. The observed trade-
offs between privacy preservation and model perfor-
mance suggest inherent constraints that may limit ap-
plicability in highly privacy-sensitive scenarios. Memo-
ry requirements for complex datasets indicate poten-
tial deployment challenges in resource-constrained 
environments.

Future Research Directions and Improvements

Future work should focus on improving computa-
tional efficiency through techniques such as parallel 
processing and adaptive sampling strategies. Investi-
gation of hybrid optimization approaches combining 
the efficiency of Random Search with the accuracy of 
Bayesian Optimization could address current limitations. 
Developing more sophisticated privacy preservation 
mechanisms while maintaining computational feasibil-
ity represents another promising research direction.

Broader Implications and Impact

Our findings have significant implications for privacy-
preserving machine learning in medical imaging. The 
demonstrated feasibility of maintaining privacy while 
achieving competitive accuracy suggests potential ap-
plications across various medical domains. However, 
the computational requirements and performance 
trade-offs identified indicate the need for careful con-
sideration of implementation strategies in clinical set-
tings.

The framework's ability to balance privacy preser-
vation with model performance contributes to the 
broader field of privacy-preserving machine learning 
while highlighting important considerations for practi-
cal deployment. These insights inform future develop-
ment of privacy-preserving optimization strategies and 
their application in sensitive medical imaging contexts.

7. CONCLUSION

This study has demonstrated the effectiveness of pri-
vacy-preserving deep learning optimization for medi-
cal data classification through a comprehensive evalu-
ation of four distinct optimization approaches, achiev-
ing significant results across different data modalities 
(93.62% accuracy for tabular data and 74.91% for im-
age data) while maintaining robust privacy guarantees. 
Notably, the Bat Algorithm achieved an unprecedent-
ed privacy level (ε = 0.293) for medical image analysis 
while our framework's strength lies in its holistic ap-
proach to optimization, simultaneously fine-tuning 
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both model hyperparameters and privacy parameters 
through an objective function that effectively balances 
the privacy-utility trade-off. Our investigation revealed 
that different medical data modalities require special-
ized optimization strategies, with Bayesian Optimiza-
tion excelling in tabular data applications and Random 
Search providing efficient solutions for image data pro-
cessing, as demonstrated by the successful application 
of PathMNIST's complex histopathology images using 
ResNet-50 architecture. 

Looking forward, several promising research direc-
tions emerge, including developing distributed learn-
ing approaches for improved computational efficiency, 
integrating federated learning techniques, extending 
applications to diverse medical data modalities, in-
vestigating advanced model architectures, and imple-
menting transfer learning strategies to enhance model 
generalization across different medical domains. Ad-
ditionally, future work should address the ethical im-
plications and practical challenges of deploying pri-
vacy-preserving models in clinical settings, including 
developing robust validation frameworks, investigat-
ing model interpretability while maintaining privacy 
guarantees, and assessing the framework's resilience 
to various privacy attacks. This research establishes a 
strong foundation for privacy-preserving medical data 
analysis while highlighting the importance of balanced 
optimization strategies in healthcare applications, sug-
gesting promising potential for wider adoption in clini-
cal practice, provided that future developments con-
tinue to address the challenges of scalability, efficiency, 
and ethical implementation.
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Abstract – The utilization of social networks has experienced a substantial surge in the past decade, with individuals routinely 
exchanging and consuming personal data. This data, subject to analysis and utilization across diverse contexts, has spurred scholarly 
interest in discerning the personality traits of social network users. Personality, as an intrinsic characteristic, distinguishes individuals 
in terms of cognition, emotion, and behavior, thereby influencing social relationships and interactions. Among the extensively studied 
frameworks elucidating personality variance is the Five Factor Model, commonly referred to as the "Big Five," encompassing Openness, 
Conscientiousness, Extroversion, Agreeableness, and Neuroticism (OCEAN). Personality assessment holds practical utility across domains 
such as education, security, marketing, e-learning, healthcare, and personnel management. Prior investigations have demonstrated 
the feasibility of automatic text analysis in personality discernment. This paper introduces a multi-agent methodology grounded in 
semantic similarity metrics for personality trait recognition via automatic text analysis of Tweets. Our approach leverages WordNet and 
information content-based semantic similarity measures to analyze tweet content and classify users' personality traits. Experimental 
results demonstrate the effectiveness of our method, achieving a remarkable 96.28% accuracy in identifying personality traits from 
Tweets. This high success rate underscores the potential of our semantic analysis approach in accurately profiling social media users' 
personalities, offering valuable insights for various applications in behavioral analysis and personalized services.
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1.  INTRODUCTION

The utilization of social networking platforms on the 
internet has experienced a substantial surge over the 
past decade, with platforms like Facebook and Twit-
ter gaining widespread popularity for information dis-
semination and social interaction purposes. The online 
activities of users on these platforms offer valuable 
insights into their personalities, encompassing indi-
vidual differences in cognition, behavior, experiences, 
emotions, opinions, and interests [1]. Understanding 
personality entails grasping how various aspects of an 
individual coalesce into a cohesive whole, representing 

a blend of characteristics and behaviors across diverse 
situations [2]. Moreover, personality plays a pivotal role 
in influencing decision-making processes across vari-
ous domains [3]. It significantly impacts interpersonal 
interactions, relationships, and one's immediate sur-
roundings, showcasing relevance in diverse contexts 
such as job satisfaction, professional success, and user 
preferences [4].

Personality delineation holds significance in numer-
ous processes, including personnel recruitment, digital 
marketing, psychological interventions, educational 
mentoring, teaching methodologies, and health ad-
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visory services. Hence, several applications stand to 
benefit from insights into personality traits, prompting 
organizational interest in profiling individuals' person-
alities. The existing literature presents a multitude of 
approaches to personality identification [5-7]. How-
ever, a common issue arises when these approaches 
overlook semantic similarity metrics, which are crucial 
for achieving concrete results in text-based semantic 
comparisons. Incorporating semantic similarity mea-
sures into personality identification frameworks is im-
perative for enhancing the accuracy and reliability of 
personality assessments based on textual data.

This article introduces a multi-agent system designed 
to analyze messages from social networking platforms 
and extract personality traits of Internet users utilizing 
semantic similarity measures. The methodology em-
ployed in this approach is grounded in the "Big Five" 
factor theory [8], which is currently the most widely 
acknowledged personality model within the scientific 
community. The Big Five model has gained promi-
nence through numerous independent studies [9], cul-
minating in its widespread acceptance and adoption as 
a comprehensive model for understanding personality 
traits [10-11].

2. STATE OF THE ART

The field of personality recognition has experienced 
a notable increase in research activity over recent years 
[12-13]. The pervasive presence of social media plat-
forms has incentivized researchers to leverage these 
platforms for valuable insights that can aid in personal-
ity prediction. Numerous studies have highlighted the 
correlation between personality traits and online be-
havior [14-15]. Quercia et al. [16] were among the pio-
neers in investigating the association between person-
ality traits and Twitter usage. They proposed a model 
capable of accurately inferring user personalities based 
solely on three publicly available metrics from profiles: 
followers, following, and listed counts. Similarly, Jusu-
pova et al. [17] utilized demographic and social activity 
data to predict personalities, particularly focusing on 
children.

Liu et al. [18] introduced a deep learning approach to 
construct hierarchical systems for word and sentence 
representations, enabling the inference of user per-
sonalities across three languages: English, Italian, and 
Spanish. Van de Ven et al. [19] conducted analyses us-
ing LinkedIn, a platform primarily used for job-related 
decision-making, and found notable correlations with 
personality traits, particularly Extraversion. Further-
more, YouYou et al. [20] demonstrated the potential 
for computerized assessments to surpass human judg-
ments in accuracy, particularly when sufficient data 
are available, surpassing judgments made by friends, 
spouses, and even individuals themselves.

3. BIG FIVE MODEL

The Five Factor Model of personality is a cornerstone 
in psychological research [21-23]. These factors are not 
theoretically derived but have been empirically identi-
fied through natural language analyses and psycholog-
ical assessments, aiming to capture personality traits 
independently while providing a comprehensive de-
scription of personality. The five primary traits, known 
as OCEAN [24], are as follows:

•	 Openness: Individuals scoring high on Openness 
exhibit a penchant for learning new things and 
embracing novel experiences. This trait encom-
passes qualities like insightfulness, imagination, 
and diverse interests.

•	 Conscientiousness: Those with high conscientious-
ness levels are characterized by reliability and punc-
tuality. Traits associated with Conscientiousness in-
clude organization, methodicalness, and rigor.

•	 Extroversion: Extroverts derive energy from social 
interactions, contrasting with introverts who draw 
energy from within. Extroversion involves traits 
such as dynamism, talkativeness, and assertive-
ness.

•	 Agreeableness: Individuals high in Agreeableness 
display friendliness, cooperativeness, and compas-
sion. Conversely, lower scores in Agreeableness 
may indicate a more distant demeanor. Traits asso-
ciated with Agreeableness include kindness, affec-
tion, and sympathy.

•	 Neuroticism: Also known as emotional stabil-
ity, Neuroticism refers to an individual's emotional 
steadiness and the presence of negative emotions. 
High Neuroticism scores are often associated with 
emotional instability and heightened negative 
emotions. Traits linked to Neuroticism include 
moodiness and tenseness.

4. PROPOSED APPROACH

The proposed methodology involves automatic anal-
ysis of tweet content to determine the personalities of 
individual Internet users. The primary challenge lies in 
identifying the personality traits of Twitter users through 
automated semantic analysis of tweet content. Each 
tweet undergoes a sequence of treatments [25].

This section outlines five major personality profiles 
that have been identified and characterized based on 
various criteria. Four treatments are executed to es-
tablish a profile. Initially, tweets are retrieved, followed 
by simplification through the removal of unnecessary 
information as the second treatment. The third treat-
ment involves linguistic analysis for word normaliza-
tion, while the fourth treatment entails semantic analy-
sis of tweets to ascertain a profile based on the Big Five 
personality traits for each user within the system. The 
architectural depiction of this process is illustrated in 
Fig. 1.
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Fig. 1. General architecture of the system

4.1. RECOVERY AGENT

Initially, a retrieval agent employing the Tweepy al-
gorithm [26] is utilized to extract tweets from Twitter 
and prepare them for subsequent processing steps. In 
our methodology, the first treatment applied to the 
tweet corpus involves correcting spelling and grammar 
errors. Such errors can significantly impact text analy-
sis, both for human comprehension and software algo-
rithms. A single misspelled word or sentence can dras-
tically alter the analysis outcomes. Spelling and gram-
mar correction is achieved using a dictionary corpus 
integrated with an algorithm that considers language 
variations, including verbal conjugations, nouns, and 
adjectives. This process involves comparing words in 
the tweets with the dictionary corpus, while also con-
sidering the context of sentences.

However, it's important to note that while the spell-
ing and grammar checker can be beneficial, it should 
not replace a thorough manual review for accuracy and 
precision.

4.2. FILTERING AGENT

Once the retrieval task is completed, the subsequent 
step involves filter processing to remove words that 
contribute little to the information conveyed in text 
messages. These words, termed "empty words," are au-
tomatically filtered out for each language [27].

The most commonly occurring words in a corpus 
typically belong to the category of empty grammatical 
words, also known as stop words. These include arti-
cles, prepositions, linking words, determiners, adverbs, 
indefinite adjectives, conjunctions, pronouns, and 
auxiliary verbs, among others [27]. While these words 
constitute a significant portion of the text, they do not 
significantly contribute to the overall meaning of the 
text as they are ubiquitous across all texts. As per Zipf's 
law [28], removing these empty words during corpus 
pre-processing streamlines the modeling and analysis 
process by saving time and reducing computational 
complexity.

4.3. LEMMATIzATION

After the filtering step, the message undergoes lin-
guistic analysis for word normalization, a process that 
involves transforming words into their canonical forms 
through stemming [29]. This normalization process 
leads to a notable reduction in the lexicon sample size 

[30]. Lemmatization rules are applied to various words 
in the corpus to unify morphological variants into a 
common form, such as converting verbs to their infini-
tive form and eliminating plural forms. Morphological 
variants of a word are grouped under the same lemma, 
allowing them to be treated as a single element (term 
or concept) during analysis. By reducing the total num-
ber of distinct terms, lemmatization contributes to sim-
plifying the complexity of the analyzed text, providing 
significant advantages to the system.

In many languages, words can exist in multiple forms. 
For instance, in French, the verb "marcher" may appear 
as "marche," "marchait," "marchent," or "marchaient." 
The base form "marcher," typically found in dictionar-
ies, is referred to as the lemma of the word. The combi-
nation of the base form with its grammatical properties 
is often termed the lexeme of the word.

4.4. CLASSIFICATION AGENT

The classification agent evaluates the semantic simi-
larity of a newly acquired tweet and identifies its cor-
responding personality category (openness, conscien-
tiousness, extroversion, agreeableness, and neuroti-
cism) based on the ratio of training tweets associated 
with each category.

4.4.1. Semantic similarity measure

 In various research domains like psychology, lin-
guistics, cognitive science, and artificial intelligence, 
assessing semantic similarity among words stands as a 
critical concern [31]. Semantic similarity, also known as 
semantic proximity, refers to a measure applied to a set 
of messages or terms, where the concept of distance 
between them is predicated on the similarity of their 
semantic meanings or contents [32]. Conversely, syn-
tactic similarity pertains to a different type of similarity 
that can be gauged based on the syntactic structures 
of terms.

Mathematical methodologies are employed to 
gauge the degree of semantic association between lin-
guistic units, concepts, or instances, through numeri-
cal representations. This quantification is achieved by 
comparing the information that underpins their mean-
ings or describes their essence. Topological similarity 
can be defined to estimate semantic similarity, utilizing 
ontologies to determine the distance between terms 
or concepts [33]. For instance, a basic metric for com-
paring concepts organized in a partially ordered set 
and depicted as nodes in a directed acyclic graph (e.g., 
a taxonomy) could be the shortest path connecting the 
two concept nodes.

Furthermore, semantic proximity among language 
units such as words and sentences can also be assessed 
using statistical techniques like vector space models to 
correlate words and textual contexts derived from an 
appropriate text corpus.
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4.4.2. Taxonomy 

The concept of semantic similarity is more narrowly 
focused compared to kinship or semantic relationship 
because the latter encompasses concepts like ant-
onymy and meronymy, whereas similarity does not. 
However, there is considerable interchangeability in 
the literature regarding these terms, including seman-
tic distance [34-35]. Fundamentally, semantic similar-
ity, semantic distance, and semantic proximity address 
the question: "How similar are terms A and B?" The re-
sponse to this query typically yields a numerical value 
between -1 and 1, or 0 and 1, where 1 signifies exceed-
ingly high similarity.

4.4.3. Measuring Topological Similarity

There are primarily two approaches for calculating 
topological similarity between ontological concepts:

- Edge-based approach: This approach utilizes edges 
and their types as the primary data source [36]. It fo-
cuses on the relationships represented by the edges 
connecting different concepts within the ontology.

- Information content approach: In contrast, the in-
formation content approach relies on nodes and their 
properties as the main data sources [37-38]. It places 
emphasis on the inherent characteristics and attributes 
associated with each node or concept in the ontology.

These approaches offer distinct methodologies for 
evaluating topological similarity within ontological 
structures, with each approach leveraging different as-
pects of the ontology's structure and content.

4.4.4. Semantic similarity

Semantic similarity or semantic relationship refers 
to the measurement of closeness between terms or 
documents based on their meaning. There are two dis-
tinct methods for calculating semantic similarity. One 
method involves defining topological similarity using 
ontology to establish a distance metric between words. 
The other method relies on statistical techniques, such 
as the vector space model, to correlate words and their 
textual contexts extracted from a suitable text corpus. 
In this study, we concentrate on the first approach, 
utilizing the WordNet ontology for semantic similarity 
computation [39]. This approach computes similarity 
by considering the shared and distinct characteristics 
of objects as the basis for similarity assessment.

4.4.5. WordNet

WordNet is a lexical ontology designed for the Eng-
lish language, serving as a semantic network devel-
oped by Princeton University [40]. It structures lexical 
knowledge in a taxonomic hierarchy, comprising three 
separate databases: one for nouns, one for verbs, and 
one for adverbs and adjectives. Within WordNet, terms 
and concepts are organized into Synsets, which are 

lists of synonymous terms or concepts. The core com-
ponent of WordNet is the Synset, which gathers syn-
onyms associated with a specific concept. These Syn-
sets are interconnected through various relationships, 
such as hypernymy (type of ), meronymy (part of ), and 
antonymy (opposite word) [41].

Semantic similarity within WordNet can be computed 
using two main methods: path length and information 
content. The path length method calculates the num-
ber of nodes or relationships between nodes within the 
taxonomy. This method offers advantages as it is not 
reliant on the static distribution of the corpus or word 
distributions. In our study, we focus on two concepts, 
"relation" and "name," within the WordNet hierarchy. 
We utilize WordNet 2.1, which encompasses nine dis-
tinct name hierarchies. It's worth noting that in some 
instances, the path between two concepts may not 
exist in this version of WordNet (refer to Figure 2). To 
address this, we introduce a root node labeled "Entity" 
(refer to Fig. 2), encompassing all nine provided hierar-
chies within WordNet.

Fig. 2. Extract from the nominal hierarchy in 
WordNet [40].

4.4.6. Semantic similarity measurement 
 process 

The classification agent facilitates a comprehensive 
processing sequence, as depicted in Figure 3, for se-
mantic similarity computation. This process comprises 
three distinct phases:

•	 Phase 1: Temporary construction module.

•	 Phase 2: Semantic computation module.

•	 Phase 3: Semantic similarity measurement 
procedures.

In Phase 1, the temporary construction module sets 
the groundwork for subsequent semantic computa-
tions. Phase 2 involves the actual computation of se-
mantics, while Phase 3 encompasses procedures for 
measuring semantic similarity between entities.
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Fig. 3. Semantic Similarity Computation Diagram

•	 Phase 1: Term Construction Module

The primary goal of this module is to identify all 
words within the tweets that are present in WordNet 
and to establish the relationships between these words 
[42]. WordNet is leveraged to enhance the representa-
tion of text by incorporating a broader range of seman-
tic information. Specifically, this module utilizes the 
hypernyms provided by WordNet as valuable features 
for text analysis. Therefore, the module aims to extract 
all tweet words found in WordNet and ascertain the re-
lationships between these words based on the hyper-
nym relationships provided by WordNet.

•	 Phase 2: Semantic calculation module

Philip Resnik [42] and Sun Microsystems laboratories 
propose an alternative to pathfinding in semantic hier-
archies by introducing the concept of information con-
tent. The information content is a measure of specific-
ity assigned to each concept within a hierarchy based 
on evidence extracted from a corpus. A concept with 
high information content is considered highly specific, 
whereas concepts with low information content are as-
sociated with more general ideas. The information con-
tent of a concept is calculated by tallying its frequency 
in a large corpus, as well as the frequency of all sub-
ordinate concepts in the hierarchy. The probability of 
a concept is determined through maximum likelihood 
estimation, and its information content is derived from 
the negative logarithm of this probability.

Resnik's similarity measure establishes a semantic 
relationship between two concepts based on the ex-
tent of shared information between them. This shared 
information is determined by the information content 
of the least specific concept in the hierarchy that en-
compasses both concepts.

The similarity between words based on information 
content:

•	 Relies on the structure of the thesaurus.
•	 Improves the path-based approach by normal-

izing based on hierarchy depth.
•	 Represents the distance associated with each 

edge in the hierarchy.
•	 Integrates probabilistic information derived 

from a corpus.

The probability that a random word belongs to a 
concept is calculated as follows (Equation 1) [43]: 

p(c)=(∑ w ∈ w(c) count (w))/ N (1)

Here:

Words (c) represent the set of words subsumed by 
the concept c.

N is the total number of words in the corpus and the 
thesaurus.

P(root) = 1 since all words are subsumed by the root 
concept.

Furthermore, it's worth noting that the probability 
decreases as the concept descends lower in the hierar-
chy, reflecting the decreasing specificity and generality 
as we move down the hierarchy levels.

We need two more definitions:

1) Information Content of a Concept (IC(c)) [43]:

IC(c)=-log P(c) (2)

This equation represents the information content of a 
concept c based on the probability P(c) that a random 
word from the corpus belongs to the concept c. It quan-
tifies the specificity of the concept within the hierarchy.

2) Lowest Common Subsumer (LCS(c1, c2)) [43]:

The LCS(c1, c2) refers to the lowest node in the hier-
archy that serves as a hypernym of both concepts c1 
and c2. It denotes the most specific common ancestor 
shared by the two concepts.

3) Resnik Similarity Measurement (simResnik(c1, c2)) 
[43]:

simResnik (c1,c2) = -log P (LCS(c1,c2)) (3)

This equation calculates the Resnik similarity be-
tween concepts c1 and c2. It estimates the shared 
amount of information between the concepts by uti-
lizing the information content of their lowest common 
subsumer (LCS).

•	 Phase 3: Semantic similarity measures

Semantic vectors for T1 and T2 can be constructed 
using T statistics and corpus information. The process 
of deriving semantic vectors for T1 (Equation 4) can be 
described as follows:
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Given a word w, let us define [43]:

(4)

We obtain measurement values of semantic similar-
ity for Resnik between Tweet 1 and Tweet 2 (5) [43]:

Sim Resnik (T1,T2) =value 2 (5)

Tweets are comprised of words, hence it is rational to 
represent a Tweet using the words it contains. Unlike 
conventional methods that utilize pre-compiled word 
lists with numerous words, our approach dynamically 
constructs semantic vectors solely based on the Tweets 
being compared. Recent advancements in semantic 
analysis focus on automatically extracting semantic 
word vectors for sentences [40]. Given two Tweets T1 
and T2, a word set is formed with (Equation 6) [43]:

T=T1 ∪ T2 ={W1,W2,…..,Wn} (6)

The word set T encompasses all distinct words from 
T1 and T2. Inflectional morphology may lead to a word 
appearing in various forms within a message, each form 
having a specific meaning in a given context. Therefore, 
we consider the word form as it appears in the Tweet 
for our analysis.

5. EXPERIMENTS AND RESULTS 

The objective of this research is to automate the pro-
cess of identifying the personalities of Internet users 
by conducting a semantic analysis of their Tweets. To 
achieve this, we conducted a comparative study be-
tween human evaluation and the results produced by 
our model.

We performed experiments involving intuitive analy-
sis of Tweets from Internet users based on notes from 
a test corpus. Our focus was on both qualitative and 
quantitative analyses conducted with the input of 
three experts. We compiled a corpus of Tweets from 
a sample of 10 Internet users, each contributing 100 
Tweets to our dataset. The intuitive analysis of these 
Tweets included assigning a personality to each user 
and then identifying the language acts that contribute 
to determining the personality traits.

For the identification of personality traits, we utilized 
the MyPersonality database as the learning base for 
our system. This database served as the foundation for 
training our model to accurately classify and infer per-
sonality traits based on the semantic analysis of Tweets.

5.1. MYPERSONNALITY DATABASE

To test our approach, we utilize a dataset derived 
from the MyPersonality project. This dataset was curat-
ed for research purposes by David Stillwell and Michael 
Kosinski through a Facebook application designed to 
administer a personality test and gather diverse per-
sonal information and activities from the profiles of 
consenting Facebook users. The MyPersonality applica-

tion operated from 2007 to 2012, accumulating a sub-
stantial volume of data.

Our study is built upon a subset of the original 
MyPersonality dataset, which has been made publicly 
available [12]. This subset comprises 9913 English sta-
tus updates extracted from 250 users, with their identi-
ties anonymized. The dataset is further annotated with 
scores for personality traits and includes basic statistics 
describing the users' social networks.

5.2. TEST CORPUS

In order to have a suitable test base, more than 1.5 
million tweets were retrieved using Twitter's Tweepy al-
gorithm [25]; then 10 users were selected with at least 
100 tweets per person, the base is in CSV format and 
each line has 6 fields:

0 - the polarity of the Tweet 
1 - Tweet id  
2 - the date of the Tweet 
3 - the request. If there is no query, then this value is 
 NO_QUERY.
4 - the user who tweeted 
5 - the text of the Tweet
The text of the Tweets was compared with MyPer-

sonality learning base taking into account the seman-
tic similarity measure to extract personality traits more 
accurately.

5.3. EXECUTION RESULTS

The first set of results from the analysis on Tweets 
was monitored by 3 experts. Each expert analysis was 
done in two steps. The first step consisted of assigning 
a profile to each internet user according to their per-
sonality traits. The second step consisted of analyzing 
the Tweets exchanged by internet users. The experts 
were asked to classify the Tweets of internet users into 
five personality traits (Agreeableness, Conscientious-
ness, Extraversion, Neuroticism, and Openness) by ana-
lyzing their content, i.e. identifying the speech acts that 
characterize Tweets (see Table 1).

When the same Tweets are submitted between inter-
net users to the automatic analysis system that is pro-
posed, the results shown in Tables 1 and 2 are obtained, 
for the same internet users.

The analysis of these results in light of the character-
istics of the internet users' profiles allows associating 
a personality profile to each user. Seen the results of 
the semantic analysis to calculate the percentage of 
each personality type for the users JBnVFCLover78, five 
broad personality traits emerge: extraversion, agree-
ableness, openness, conscientiousness, and neuroti-
cism. However, by analyzing the resulting percentages 
of each personality, we find that the percentage of neu-
roticism personality is important and characterizes the 
personality of JBnVFCLover78.
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Twitter users Agreeableness Conscientiousness Extraversion Neuroticism Openness
User 1 29.15 % 16% 16.21 % 16.2 % 22.44 %

User 2 42.01 % 8.9 % 8.6 % 20.82 % 19.67 %

User 3 27% 11.4% 14.13 % 31.47 % 16%

User 4 10.54 % 18% 21.56 % 21.06% 28.84 %

User 5 27.17 % 7.05 % 37.22 % 20.8 % 7.76 %

User 6 65.75 % 15.27 % 3.98 % 13.15 % 1.85 %

User 7 4% 45.4 % 10.38 % 32.56 % 7.66 %

User 8 14.46 % 5.54 % 51.58 % 10.69 % 15.73 %

User 9 10.85 % 11.09 % 68.21 % 4.53 % 5.32 %

User 10 5.96% 6.15% 13.65 % 69.06 % 5.18 %

Table 1. Results of the intuitive analysis

The table below represents the results of running the system on the test corpus:

Twitter users Agreeableness Conscientiousness Extraversion Neuroticism Openness
User 1 34.33 % 14.91 % 13 0/0 17.93 % 19,83 %

User 2 46.41 % 4.57 % 10,11 % 22.22 % 16.69 %

User 3 31.62 % 0.68 % 12,42 % 33.51 % 21.77 %

User 4 06.12 % 24.56 % 17.26 16.22 % 35.84 %

User 5 33.08 % 09.00 % 46.62 % 20.00 % 6.57 %

User 6 60.15 % 12.14 % 05.98 % 17.73 % 04.00 %

User 7 07.56 % 51.12 % 07.00 % 28.00 % 06.32 %

User 8 11.00% 08.00 % 56.27 % 14.00 % 10.73 %

User 9 08.00 % 13.16 % 71.06 % 02.78 % 05.00 %

User 10 07.13 % 04.22 % 08.65 % 80.00 % 02.56 %

Table 2. Results of the execution of the system on the test corpus

Table 3. Comparison between analysis system and intuitive analysis

Twitter users Agreeableness Conscientiousness Extraversion Neuroticism Openness
User 1 94,82% 98,91% 96,79% 98,27% 97,39%

User 2 95,6% 95,67% 98,49% 98,6% 97,02%

User 3 95,38% 89,28% 98,29% 97,96% 94,23%

User 4 95,58% 93,44% 95,7% 95,16% 93%

User 5 94,09% 98,05% 90,6% 99,2% 98,81%

User 6 94,4% 96,87% 98% 95,42% 97,85%

User 7 96,44% 94,28% 96,62% 95,44% 98,66%

User 8 96,54% 97,54% 95,31% 96,69% 95%

User 9 97,15% 97,93% 97,15% 98,25% 99,68%

User 10 98,83% 98,07% 95% 89,06% 97,38%

Average 95,88% 96,00% 96,19% 96,40% 96,90%

Final result 96,28 %

Table 3 shows the margin of error between the in-
tuitive analysis of the expert and the system analysis. 
This error margin gives a confidence degree for results 
validation. A result of 100% means that the system is 
perfectly aligned with the human expert. In the ex-
ample below, from the intuitive analysis the internaut 

« Bigeny » emerges as an Agreeableness personality 
with 29,15% (see table 2) and 34,33 % according to the 
results of the system (see table 1). We have considered 
the result of the intuitive analysis expert as a reference; 
we can see that the error rate is 3.72 %.

Table 4. A comparison of the proposed approach with alternative methods.

Methode
Accuracy

Agreeableness Conscientiousness Extraversión Neuroticism Openness

Wang et al [44] 76.8 % 75% 85% 70% 79%

Zheng andWu [45] 65% 62% 71% 68% 70%

Xue et al [46] 78.57 % 77.20 % 82.35 % 83.08 % 79.55 %

BOW [47] 88.75 % 87.86 % 88.15 % 89.52 % 87.94 %

Skip-Vec [47] 88.81 % 88.19 % 88.39 % 89.71 % 88.27 %

Our method 95.88 % 96.00 % 96.19 % 96.40 % 96.90 %
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Fig. 4. Graphical representation comparing the proposed approach with alternative methods

The comparison results demonstrate that our method 
significantly outperforms other evaluated approaches, 
achieving an average precision of 96.28%. This excep-
tional performance is particularly evident in traits such 
as Openness and Neuroticism, showcasing its superior 
ability to capture nuanced textual cues associated with 
these personality dimensions.

In contrast, alternative methods exhibit varying levels 
of performance. Wang et al.'s use of graph convolutional 
networks for text encoding achieves an average preci-
sion of 77.16%, indicating moderate effectiveness [44]. 
Zheng and Wu's approach, employing semi-supervised 
learning on Facebook status data, shows a lower preci-
sion of 67.2%, suggesting limitations in leveraging social 
media for precise personality trait recognition [45].

Xue et al.'s method, which employs semantically-
enhanced sequential modeling, improves upon these 
results with an average precision of 80.15% [46]. This 
method excels particularly in traits like Agreeableness 
and Extraversion, highlighting its ability to capture 
contextual relationships within texts.

The Bag of Words (BOW) and Skip-Vec methods 
achieve average precisions of 88.44% and 88.64%, re-
spectively, demonstrating solid performance but still 
trailing behind our approach [47]. Skip-Vec slightly out-
performs BOW, likely due to its superior incorporation 
of contextual relationships [47].

Our method clearly surpasses others, demonstrating 
superior efficacy in personality trait recognition from 
texts. These findings underscore the robustness and 
accuracy of our approach, even outperforming newer 
and more sophisticated techniques in the field.

6. CONCLUSION AND PERSPECTIVES:

Personality traits significantly influence decision-
making processes, interpersonal interactions, and indi-
vidual success. Understanding people's personalities is 
essential for various applications, such as job candidate 
selection, targeted marketing, and security measures. 
Our study focused on detecting personality traits by 
analyzing Tweets using semantic similarity measures 
and a learning base grounded in the Big Five model. 
The experimental results demonstrated a high accu-
racy rate of 96.28% in identifying personality traits, un-
derscoring the potential of our approach in accurately 
profiling social media users' personalities.

We have incorporated recent literature to contex-
tualize our findings, highlighting the alignment and 
relevance of our methodology with current research 
trends in automated personality detection. The inte-
gration of semantic similarity measures, particularly 
using WordNet and information content-based similar-
ity measures, played a crucial role in enhancing the ac-
curacy and reliability of personality assessments based 
on textual data.

Future work will focus on improving the system's ex-
ecution time and expanding the test base to include 
more comprehensive user information. Additionally, 
we plan to explore the use of deep learning methods 
and generative AI to further optimize the accuracy of 
personality trait detection. By incorporating advanced 
new techniques, we aim to enhance the robustness 
and applicability of automated personality profiling in 
various domains.
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Abstract – Identifying drug-target binding affinities (DTBA) is crucial in drug discovery, to understand how effectively drugs interact 
with their targets. However, traditional methods often struggle to accurately capture the complex relationships in biological data, 
leading to limitations in their predictive power. This paper introduces FusionNet, an advanced deep-learning model designed to improve 
DTBA prediction. FusionNet combines the strengths of Convolutional Neural Networks (CNNs), Long Short-Term Memory networks 
(LSTMs), and Transformers, to better understand both short-range and long-range interactions in biological sequences and employs 
the Layer-wise Adaptive Moments (LAMB) optimizer, which ensures the model is more efficient and stable, especially when working with 
large datasets. FusionNet achieved an MSE of 0.20 and an rm² of 0.681 on the Davis dataset and an MSE of 0.18 and an rm² of 0.71 on 
the KIBA dataset, significantly outperforming existing models like SimBoost, GANsDTA, DeepCDA, and DeepDTA, making it a powerful 
tool for drug discovery and bioinformatics. This work not only enhances the accuracy of DTBA prediction but also sets new performance 
standards by integrating advanced neural network architectures and optimizing their training process. FusionNet effectively addresses 
the limitations of previous approaches, offering a more reliable and efficient method for predicting drug-target interactions.
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1.  INTRODUCTION

Drug discovery and development is a complex, 
lengthy, and expensive process, often requiring over a 
decade and billions of dollars to bring a new drug to 
market. A critical aspect of this process is understand-
ing the interaction between drug molecules and their 
target proteins, quantified by the drug-target binding 
affinity (DTBA). Accurate prediction of DTBA is essen-
tial for determining the efficacy and safety of potential 
therapeutics. Traditional experimental methods such 
as X-ray crystallography, nuclear magnetic resonance 
(NMR) spectroscopy, surface plasmon resonance (SPR), 
and isothermal titration calorimetry (ITC) are critical for 
understanding drug-target interactions at the molecu-
lar level [1]. However, these methods are labor-inten-
sive, time-consuming, and expensive, often limiting 
their scalability and practical application in early-stage 
drug discovery. For example, X-ray crystallography, 

while highly precise, can take several months to years 
for data collection and structural determination, mak-
ing it impractical for high-throughput screening [2]. 
Similarly, NMR spectroscopy requires a high concentra-
tion of samples and extensive computational resourc-
es, limiting its efficiency [3]. Consequently, there is a 
significant demand for computational methods that 
can predict DTBA accurately, efficiently, and at scale.

Recent advances in computational power and the 
availability of large-scale biochemical datasets have 
catalyzed the development of various computational 
approaches for DTBA prediction. These methods range 
from classical machine learning techniques to more 
sophisticated deep learning models. Traditional ma-
chine learning models, such as random forests and 
support vector machines (SVMs), have been widely 
used in drug-target binding affinity prediction due to 
their simplicity and interpretability [4]. However, these 
models typically rely on manually engineered features, 
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such as molecular fingerprints and physicochemical 
descriptors, which fail to capture the complex, non-
linear relationships inherent in biological data. This 
reliance on handcrafted features restricts the models' 
generalization ability to unseen data, reducing predic-
tion accuracy and reliability [5]. Additionally, SVMs and 
other classical models are computationally inefficient 
when dealing with high-dimensional, large-scale data-
sets, limiting their effectiveness in practical, large-scale 
drug discovery applications [6]. In contrast, deep learn-
ing models can learn feature representations directly 
from raw data, showing promise in overcoming these 
limitations. Convolutional Neural Networks (CNNs) and 
Long Short-Term Memory networks (LSTMs) have been 
particularly effective due to their ability to model spa-
tial and sequential data, respectively. [7]

Although CNNs and LSTMs have achieved great suc-
cess in DIBA prediction, there are still some significant 
challenges. CNNs excel at capturing local spatial pat-
terns but struggle to model long-distance dependen-
cies, which are critical for understanding interactions 
between distant residues or a drug and its binding site 
on a protein. LSTMs, targeted at sequential data pro-
cessing, can partially capture sequential dependencies. 
However, they may run into difficulties such as vanish-
ing gradients and computational inefficiency when 
dealing with lengthy sequences, resulting in their mod-
el for the full complexity of drug-target interactions. [8]

Moreover, both CNNs and LSTMs fall short of effec-
tively leveraging contextual information, which is es-
sential for accurately modeling biological sequences. 
For instance, the interaction between a drug and a 
protein is influenced by the broader context of the 
protein’s structure and the physicochemical properties 
of the drug, which these models struggle to capture 
comprehensively. This limitation hinders their ability 
to provide accurate and reliable DTBA predictions An-
other limitation lies in the optimization of deep learn-
ing models. Standard optimizers, such as stochastic 
gradient descent (SGD) and Adam, may not be efficient 
enough to train large models on complex datasets, 
leading to suboptimal performance and longer train-
ing times, particularly when processing large bioinfor-
matics datasets [9].

To address these challenges, we propose a hybrid 
deep learning model that integrates CNNs, LSTMs, and 
Transformers to improve DTBA prediction. The model 
leverages CNNs for local feature extraction, LSTMs for 
capturing sequential dependencies, and Transformers 
for modeling long-range dependencies and contextual 
information via self-attention [10]. This combination 
provides a comprehensive representation of sequenc-
es, enhancing accuracy and reliability. CNNs extract key 
patterns, LSTMs maintain temporal order, and Trans-
formers capture broader interactions between drug 
and protein sequences.

To further enhance the training efficiency and per-
formance of the hybrid model, the Layer-wise Adap-

tive Moments (LAMB) optimizer is employed. LAMB is 
specifically designed for large-batch training, making 
it well-suited for deep learning models on large datas-
ets. It adapts the learning rate for each layer individu-
ally, ensuring stable and efficient convergence, and 
addressing the shortcomings of traditional optimizers 
in training large models efficiently, which is particularly 
beneficial in the context of our complex hybrid model.

The contributions are:

•	 A novel hybrid model combining CNNs, LSTMs, 
and Transformers to improve DTBA prediction by 
addressing key limitations of existing methods

•	 Implementation of the LAMB optimizer to enhance 
training efficiency and performance.

•	 Extensive experiments demonstrating the superi-
ority of the model over traditional approaches.

2. RELATED WORKS

Deep learning has become a powerful tool for pre-
dicting drug-target binding affinity (DTBA). Öztürk et 
al. introduced DeepDTA, a model that uses CNNs to 
analyze sequence information from both targets and 
drugs, achieving high accuracy in predicting binding 
affinities [11]. Feng et al. developed PADME, which con-
sistently outperformed baseline methods across mul-
tiple datasets using a deep learning-based framework 
[12]. Furthering this, Öztürk et al. introduced WideDTA, 
combining chemical and biological textual sequence 
information to enhance binding affinity predictions 
[13]. Zeng et al. improved upon these approaches by 
integrating multiple attention blocks, effectively en-
coding correlations between atoms and modeling 
drug-target interactions [14]. In other applications, 
Elansary et al. developed a bat-inspired optimizer us-
ing RNNs for predicting anti-viral cure drugs, highlight-
ing the versatility of deep learning in drug discovery 
[15]. Makowski et al. explored machine learning mod-
els for co-optimizing therapeutic antibody affinity and 
specificity, emphasizing their importance in therapeu-
tic development [16].

Hybrid models that integrate CNNs and LSTMs have 
shown significant improvements in drug discovery and 
drug repurposing. These models leverage CNNs' ability 
to capture local features and LSTMs' strengths in mod-
eling sequential dependencies. For example, Yoon et 
al. outperformed traditional models in predicting DNA-
protein binding sites using this hybrid approach [17]. 
In DTBA, hybrid CNN-LSTM models have demonstrated 
remarkable success by extracting key features from 
SMILES representations and protein sequences before 
processing them with LSTMs for accurate affinity pre-
dictions. DeepBind, which also integrates CNNs and 
LSTMs, has been used to predict protein-DNA binding 
affinity with high accuracy.

Transformers have revolutionized sequence model-
ing by effectively capturing long-range dependencies 
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with self-attention mechanisms. In bioinformatics, 
transformers have been applied to tasks like protein 
structure prediction, achieving state-of-the-art results. 
The LAMB optimizer, developed by You et al., enhanc-
es training efficiency and performance in large-batch 
scenarios by adapting learning rates layer-wise, which 
is especially beneficial for models with extensive pa-
rameter spaces [18]. LAMB builds on Adam [19], offer-
ing better generalization and faster convergence. The 
proposed hybrid model, combining CNNs, LSTMs, and 
Transformers with the LAMB optimizer, enhances DTBA 
prediction by leveraging their strengths for improved 
accuracy and generalization.

3. METHODOLOGY

3.1. DATASETS

The study utilizes two well-established datasets for 
predicting drug-target binding affinities: the KIBA da-
taset and the Davis dataset [20]. These datasets provide 

Table 1. The statistics of datasets

Dataset No of drugs No of proteins Known DTI

Davis 68 442 30,056

Kiba 2,116 229 118,254

The KIBA dataset integrates information from multi-
ple sources, including Kinase Inhibitor Bioactivity data, 
to provide a unified measure of drug-target binding af-
finities. It combines data from Ki, Kd, and IC50 measure-
ments, offering a robust and comprehensive resource 
for kinase inhibitor bioactivity.

comprehensive and experimentally validated informa-
tion on drug-target interactions, making them suitable 
benchmarks for evaluating the performance of the pro-
posed hybrid model. These datasets provide compre-
hensive and experimentally validated information on 
drug-target interactions, making them suitable bench-
marks for evaluating the performance of the proposed 
hybrid model.

Fig.1. Proposed Model Structure

Fig. 2. Distribution of binding affinity values in Davis and Kiba dataset

3.2. PROPOSED METHODOLOGY

Predicting drug-target binding affinity (DTBA) is cru-
cial in drug discovery, where the goal is to quantify the 
interaction strength between a drug molecule and a tar-
get protein. The problem can be mathematically stated 
as, given a drug represented by its SMILES (Simplified 
Molecular Input Line Entry System) string, S, and a tar-

get protein represented by its amino acid sequence, P, 
the task is to predict the binding affinity y, which can 
be mathematically represented as 

y = f (S, P) (1)

where f is the predictive model.

The ultimate objective is to optimize the function. 
f (S, P) such that the predicted binding affinity y' close-
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ly approximates the true binding affinity y minimizing 
the mean squared error (MSE) across the dataset.

In the proposed model as in Fig.1, Convolutional 
Neural Networks (CNNs) to extract local features from 
SMILES strings and protein sequences, utilizing mul-
tiple 1D convolutional layers with filter sizes of 4, 6, and 
8, chosen based on empirical testing to capture vari-
ous sequence patterns. Bidirectional Long Short-Term 
Memory (LSTM) networks handle sequential depen-
dencies, with 64 units selected to balance complex-
ity and efficiency. To model long-range dependencies, 
Transformer layers with multi-head self-attention (4 
heads and key dimension of 64) are incorporated, cho-
sen through preliminary experiments to optimize per-
formance while managing computational demands. 
Hyperparameters were tuned using cross-validation 
and grid search, including filter sizes, LSTM dimensions, 
and dropout rates (set at 0.5 to mitigate overfitting). 
The LAMB optimizer was selected for its ability to ad-
just learning rates for each layer adaptively, improving 
training efficiency, particularly with large batch sizes 
(128) and a learning rate chosen to ensure stable and 
rapid convergence. The model was trained for 100 ep-
ochs, with Mean Squared Error (MSE) as the loss func-
tion and evaluation metric to measure the alignment 
between predicted and actual binding affinities.

Mathematically, the convolution operation for each 
filter size i can be expressed as

conv(x)=ReLU(Conv1D(x, filtersi , Kernel_sizei )) (2)

where x represents the input sequence, and filtersi, 
Kernel_sizei  correspond to the filter and kernel size 
for the i-th convolutional layer. Following convolution, 
max-pooling layers are applied to reduce the dimen-
sionality and retain the most significant features, ex-
pressed as

LSTMbi( f )= 
Concat( LSTMforward ( f ), LSTMbackward ( f ))

(3)MaxPooli=Maxpooling1D (Convi (x))

The pooled features are then concatenated to form a 
comprehensive feature representation. Subsequently, 
Long Short-Term Memory (LSTM) networks are em-
ployed to capture sequential dependencies in the data. 
The bidirectional LSTM processes the CNN-extracted 
features f by considering both forward and backward 
contexts, which can be mathematically represented as

(4)

Where LSTMforward(f),LSTMbackward(f)  are the LSTM 
operations in the forward and backward directions, re-
spectively. Finally, Transformer layers are incorporated to 
model long-range dependencies more effectively. The 
Transformer utilizes a multi-head self-attention mecha-
nism, which allows the model to assign different weights 
to various parts of the sequences during the interaction 
between SMILES and protein features.

The multi-head self-attention mechanism applies 
multiple attention layers in parallel (in our model, 4 
heads), each learning distinct patterns from the input 

sequences. The attention weights are calculated by tak-
ing the dot product of queries (Q), keys (K), and values 
(V), where Q, K, and V are derived from the input. This 
can be expressed as:

(5)

where dk is the dimension of the keys (set to 64 in our 
model). This mechanism allows the model to focus on 
different parts of the sequences, making it well-suited 
for tasks like DTBA, where interactions between distant 
parts of the sequences are important.

Following the attention mechanism, the outputs are 
passed through a feed-forward neural network, and 
layer normalization is applied. 

The multi-head self-attention applied to the LSTM-
processed features H can be expressed as

Hattn = Multi_Head_Self_Attention (H) (6)

This is followed by a feed-forward network to process 
the attended features.

Hffn=Feed_Forward_Network(Hattn) (7)

The processed features are then combined and nor-
malized to produce the final feature representation for 
the prediction task.

To optimize the model, we employed the LAMB op-
timizer (Layer-wise Adaptive Moments based on Batch 
size), which is particularly effective in handling large 
batch sizes. Unlike traditional optimizers, LAMB adjusts 
the learning rate for each layer individually, taking into 
account both the gradient magnitude and the layer's 
weight norm. This enables the model to maintain sta-
ble training dynamics, especially in deep networks, 
while benefiting from faster convergence. The LAMB 
optimizer's advantages over traditional optimizers like 
Adam include improved scalability with large batch 
sizes (128 in our model) and more efficient training in 
deep architectures. The learning rate was carefully se-
lected to ensure stable and rapid convergence, while 
a dropout rate of 0.5 was used to mitigate overfitting.

The model was trained for 100 epochs, with Mean 
Squared Error (MSE) as the loss function and evaluation 
metric to measure the alignment between predicted 
and actual binding affinities. The entire workflow is de-
picted in Algorithm 1 and Fig 3.

Algorithm 1 

1. Input: SMILES strings, S Protein sequences P, Labels Y

2. Output: Predicted interaction scores Y'

3. Data Preparation

 3.1. Shuffle the dataset, D containing triplets S, P, Y

 3.2. Split the data into training and test sets: 
train_smiles,test_smiles←S

train_proteins,test_proteins←P
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4. RESULTS AND DISCUSSION

4.1. EVALUATION METRICS

The performance of the model is evaluated using 
metrics such as accuracy, Mean Squared Error (MSE), 
Root Mean Squared Error (RMSE), R-squared (R2), Area 
Under the Precision-Recall Curve (AUPR), and Concor-
dance Index (CI). These metrics provide a comprehen-
sive assessment of the model’s ability to predict drug-
target binding affinities accurately.

Mean Squared Error (MSE) measures the average 
squared difference between the actual and predicted 
values. It is a fundamental metric for regression prob-
lems, providing a clear indication of the model’s predic-
tion error.

(8)

A lower MSE indicates better model performance, with 
an ideal value of 0, which would mean no error. High 
MSE values suggest that the model is not capturing the 
underlying trend in the data. The Concordance Index (CI) 
measures the agreement between predicted and actual 
rankings, commonly used in survival analysis and similar 
tasks. CI provides an evaluation of the ranking accuracy 
of predictions. CI values range from 0.5 (random chance) 
to 1 (perfect prediction). Values above 0.7 are generally 
considered good. Higher CI values indicate better model 
performance in terms of ranking predictions correctly.

4.2. PERFORMANCE OF THE PROPOSED 
 FUSIONNET MODEL

The FusionNet model demonstrates strong perfor-
mance in predicting drug-target interactions on both 
the Kiba and Davis datasets. The Kiba dataset, achieved 
a training loss and MSE of 0.1874, with validation loss 
and MSE of 0.1852, indicating good generalization 
without overfitting. On the Davis dataset, the model 
had a training loss and MSE of 0.2073, and a validation 
loss and MSE of 0.2296, showing slight deviations but 
maintaining strong performance.

The system architecture shown in Fig. 3. displays MSE 
over 100 epochs, where the training MSE drops sharply 
in the first 10 epochs, and the validation MSE stabilizes, 
demonstrating effective learning and good generaliza-
tion. Fig. 4. depicts "Actual vs. Predicted Values" and 
"Residual Plots." For the Davis dataset, predicted values 
show more spread, and residuals indicate areas of inac-
curacy, whereas, for Kiba, predictions are tightly clus-
tered with residuals randomly distributed around zero, 
reflecting better accuracy. Overall, the model performs 
more accurately on the Kiba dataset.

Fig. 3. Training and Validation MSE for Kiba and 
Davis Dataset

4. Tokenization and Padding

 4.1. Initialize a character-level tokenizer, 
  TokenizerSMILES

 4.2. Fit the tokenizer on the training SMILES strings 
  {Si}i∈D

 4.3. Convert the SMILES strings to sequences of 
   tokens, SeqSmiles= TokenizerSMILES (S)

 4.4. Pad the sequences to a maximum length, 
  LSMILES

PaddedSmiles=Pad(SeqSmiles, LSMILES)

 4.5. similarly padding for proteins 

PaddedProtein=Pad(SeqProtein, LProtein)

5. Define two input layers Sinput for SMILES and Pinput for 
 protein sequences.

6. Encode SMILES and proteins using convolutional lay-
ers followed by LSTM layers.

ESmiles = Embedding( Sinput )
CSmiles = Conv1D (ESmiles)
HSmiles

LSTM = LSTM(CSmiles)

7. Apply transformer blocks with multi-head attention 
 and LSTM layers.

HSmiles
Trans = MultiHeadAttention (HSmiles

LSTM)

HSmiles = LayerNormalization (HSmiles
LSTM, HSmiles

Trans)

FSmiles = LSTM (Hsmiles)

8. Similar steps 6 and 7 to be followed for the protein 
 encoder.

FProteins = LSTM (HProteins)

9. Concatenate the outputs of the SMILES and protein 
 encoders.

Fcombined = Concatenate (FSmiles, FProtein)

10. Output the final interaction score, y’. 

Fig. 4. Actual vs. Predicted Values and Residual Plots 
for Kiba dataset
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Fig. 5. Actual vs. Predicted Values and Residual Plots 
for Davis dataset for Davis dataset

Fig. 5 and Fig. 6 show two scatter plots of predicted 
vs. actual values for two models. The Kiba plot, with an 
R-squared of 0.710, indicates that 71% of the variance 
in actual values is explained by the model, showing a 
strong correlation and good predictive accuracy. The 
Davis plot, with an R-squared of 0.681, explains 68.1% 
of the variance, indicating a weaker correlation and 
lower predictive accuracy. 

Fig. 7 displays two precision-recall curves for two 
models. The precision-recall curves for kiba, have an 
average precision (AP) of 0.80, showing a model that 
maintains high precision across various recall levels but 
drops off as recall approaches 1.0. The precision-recall 
curves for the Davis curve, have an AP of 0.86, indicat-
ing better overall performance, with higher precision 
maintained over a broader range of recall values.

Fig. 6. Actual vs. Predicted Values for Kiba and Davis 
dataset

Fig. 8 shows an AUC (Area Under the Curve) of 0.9 
for the Davis dataset, indicating a high level of model 
performance with a good balance between sensitivity 
and specificity. The Fig. 13 shows an AUC of 0.91, which 
is slightly better, suggesting even better performance. 
Both models significantly outperform random guess-
ing (represented by the red dashed line).

Fig. 7. Precision-recall curves for the Kiba and Davis 
dataset

Fig. 8. ROC curve for Kiba and Davis dataset

The Protein Attention Map and SMILES Attention Map 
as in Fig. 9 provide valuable insights into the model's de-
cision-making process by visualizing how attention is dis-
tributed across protein sequences and molecular struc-
tures, respectively. In the Protein Attention Map, each 
vertical strip represents specific positions in the protein 
sequence, with varying color intensities indicating the at-
tention values assigned by the model. This helps capture 
important local and long-range dependencies essential 
for accurate drug-target binding predictions.

Fig. 9. Attention map for protein and smile 
sequences

Similarly, the SMILES Attention Map highlights at-
tention distribution across molecular sequences rep-
resented in SMILES notation, where each vertical line 
corresponds to a token (atom or bond) in the mol-
ecule. The intensity reflects the importance given by 
the model to different parts of the molecular structure. 
These visualizations enhance interpretability, showing 
how the model focuses on crucial areas in both protein 
and molecular data, thereby improving transparency in 
the prediction process.

4.2. COMPARATIVE ANALYSIS OF VARIOUS 
 APPROACHES

In this paper, the proposed FusionNet model has 
been compared to previous state-of-the-art approach-
es like SimBoost[21], GANsDTA[22], DeepCDA[23], and 
DeepDTA[11] using mean squared error (MSE), root 
mean squared error (RMSE), concordance index (CI), 
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area under the precision-recall curve (AUPR), and rm2 
evaluation metrics, as shown in Table 2. In the case of 
the Davis dataset, the proposed model has obtained 
an MSE of 0.20 and an rm2 value of 0.681. This result 
showcases a clear improvement over existing methods 
by offering the lowest MSE and the highest rm2, indi-
cating its ability to make more accurate predictions. 
In more detail, compared to the SimBoost, GANsDTA, 

DeepCDA, and DeepDTA models with MSE values of 
0.28, 0.27, 0.24, and 0.26, respectively, FusionNet dem-
onstrates a higher prediction accuracy due to its abil-
ity to capture both local and long-range dependencies 
within drug-target sequences. Additionally, the rm2 
values of these methods lag, further highlighting the 
efficacy of our approach.

Fig 10. AUPR comparison graph of FusionNet's Vs baseline models on the Davis and KIBA datasets

Similarly, on the KIBA dataset, FusionNet outperforms 
existing methods, achieving an MSE of 0.18 and an rm2 
of 0.71. The Transformer component allows FusionNet 
to model complex drug-target interactions, leading to 
more biologically meaningful predictions. For instance, 
while SimBoost, GANsDTA, DeepCDA, and DeepDTA re-
turned MSE values of 0.22, 0.22, 0.17, and 0.19 respec-
tively, FusionNet’s multi-head attention mechanism 
captures intricate patterns across SMILES and protein 
sequences, improving generalization. Other metrics, 
such as root mean squared error and concordance 

index, reflect this model’s robust performance across 
datasets. Figure 10 provides a side-by-side AUPR com-
parison graph, highlighting FusionNet's performance 
against baseline models on Davis and KIBA datasets.

 The biological implication is substantial, as more ac-
curate drug-target affinity predictions enhance early-
stage drug discovery by efficiently identifying poten-
tial drug candidates. In summary, FusionNet’s superior 
accuracy and generalizability make it highly promising 
for accelerating therapeutic discovery.

Datasets Methods MSE RMSE CI AUPR rm2

Davis

SimBoost 0.28 - 0.83 0.70 0.644

GANsDTA 0.27 - 0.70 0.69 0.653

DeepCDA 0.24 - 0.89 0.s73 0.649

DeepDTA 0.26 - 0.87 0.71 0.67

Proposed (FusionNet) 0.20 0.55 0.89 0.86 0.681

KIBA

SimBoost 0.22 - 0.83 0.76 0.629

GANsDTA 0.22 - 0.86 0.75 0.675

DeepCDA 0.17 - 0.88 0.81 0.682

DeepDTA 0.19 - 0.86 0.788 0.673

Proposed (FusionNet) 0.18 0.40 0.88 0.81 0.71

Table 2. Comparative analysis of various 
approaches



416 International Journal of Electrical and Computer Engineering Systems

5. CONCLUSION

This work presents a new deep-learning framework, 
called FusionNet, which substantially improves the 
prediction of drug-target binding affinity. By combin-
ing Convolutional Neural Networks, Long Short-Term 
Memory networks, and transformers, it effectively repre-
sents local patterns, sequential dependencies, and long-
range interactions in biological sequences. The model’s 
novelty lies in its hybrid architecture, which leverages 
the strengths of each component to achieve enhanced 
robustness and accuracy in prediction. It also integrates 
the Layer-wise Adaptive Moments optimizer to improve 
training efficiency and performance, making the model 
scalable and reliable even for large datasets. Extensive 
tests were conducted with FusionNet on both the Davis 
and KIBA datasets, yielding state-of-the-art results. Fusi-
onNet achieved an MSE of 0.20 and an rm2 of 0.681 on 
the Davis dataset, and an MSE of 0.18 and an rm2 of 0.71 
on the KIBA dataset. These results highlight FusionNet’s 
superior performance, surpassing existing methods like 
SimBoost, GANsDTA, and DeepDTA. Unlike traditional 
methods that often focus on either local or global con-
text, FusionNet addresses both simultaneously.

Biologically, this enhanced accuracy could stream-
line drug discovery pipelines by enabling more precise 
identification of potential drug-target pairs earlier in 
the development process, potentially reducing costs 
and timeframes. Additionally, the LAMB optimizer 
not only accelerates the training process but also en-
hances stability and performance on large datasets, 
underscoring FusionNet's scalability and robustness. 
Key takeaways include the hybrid model’s capability to 
capture both local and global features, leading to im-
proved predictive accuracy, and the model’s scalability 
for larger datasets, which is essential for real-world ap-
plications. However, a notable limitation is FusionNet’s 
reliance on sequence-based features without consid-
ering structural or genomic data, which might offer 
further insights into drug-target interactions. Future 
work could address this by expanding the dataset to 
include more diverse biological sequences and incor-
porating additional data such as 3D protein structures 
or genomic information. Scaling the model to larger 
datasets or alternative binding data types could pres-
ent challenges that need further exploration. Another 
avenue could involve the use of transfer learning to le-
verage pre-trained models for related tasks. Finally, en-
hancing interpretability, such as linking attention to bi-
ologically relevant protein or molecular regions, could 
provide deeper insights into the biological mecha-
nisms underlying drug-target interactions, increasing 
the model’s value in biomedical research. This will not 
only establish FusionNet as a robust predictor but also 
enrich our understanding of molecular biology.
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Abstract – This paper presents a novel and highly effective fuzzy model reference adaptive control for MPPT based on a boost 
converter. The design of Model-Referenced Adaptive Control (MRAC) and the adaptive gain selection are discussed. The adjustment 
of the adaptation gains by a fuzzy logic subsystem and a simplified fuzzy MRAC procedure are presented. The suggested algorithm is 
assessed through a comprehensive simulation in MATLAB/Simulink. Various scenarios and environmental conditions are considered 
to assess its robustness and adaptability. The results indicate that the suggested MRAC-Fuzzy MPPT control is extremely robust, with 
tracking efficiency that can reach 99.97%. Furthermore, it consistently operates the photovoltaic system at or around the MPP, effectively 
reducing oscillations, improving energy efficiency, and enhancing power production. Under real operating conditions, this new controller 
can be used for photovoltaic pumping applications.
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1.  INTRODUCTION

Energy production represents a significant challenge 
for the years ahead. Furthermore, developing countries 
will increasingly require energy to enhance their devel-
opment. Energy sources can be divided roughly into 
two groups: renewable and non-renewable energies. 
The first category includes sources such as wind, hydro, 
waste, biomass, geothermal energy and solar, while the 
second category comprises uranium, gas, oil, coal, and 
similar resources. Consumption of fossil fuels from the 

second category results in greenhouse gas emissions, 
leading to an increase in atmospheric pollution. Ad-
ditionally, these fossil fuel resources are exhaustible [1, 
2]. Consequently, numerous countries are dedicated to 
exploring alternative, sustainable, and profitable renew-
able energy sources. In contrast to fossil fuels, these new 
energy sources are non-polluting, emitting no green-
house gases, and pose no inherent danger [3]. The use 
and advancement of photovoltaic energy are on the 
rise globally. One of the most promising applications of 
this renewable energy source is photovoltaic pumping, 
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which is particularly beneficial in rural areas with high 
levels of sunlight and no access to an electric grid [4]. 
Solar energy refers to the portion of electromagnetic en-
ergy extracted by photosensitive cells from the radiation 
emitted by the sun. It involves converting electromag-
netic radiation into electricity through the photovoltaic 
effect. Based on the photovoltaic cells' electrical proper-
ties and their configuration, the efficiency of PV systems 
can be enhanced through techniques known as Maxi-
mum Power Point Tracking (MPPT) [5]. 

Indeed, numerous research studies on MPPT algorithms 
have been conducted and documented in the literature. 
Traditional methods like the Incremental Conductance 
(INC) algorithm [6] and the Perturb and Observe (P&O) 
algorithm [7] are among the most commonly used tech-
niques. In spite of their simple and functional design, con-
ventional approaches were only adept to follow the maxi-
mum power point (MPP) when weather conditions stayed 
constant. Moreover, conventional MPPT algorithms often 
demonstrate ripples in the vicinity of the MPP and may 
not be optimal for extensive solar power installations. Giv-
en these limitations mentioned above, researchers world-
wide are actively devising innovative approaches to MPPT 
control in solar systems. Advanced MPPT techniques, 
including heuristic approaches like genetic algorithm, 
Fuzzy Logic Control (FL) [8], Particle Swarm Optimization 
(PSO) [9, 10], and Artificial Neural Network (ANN) [11], are 
widely used as some of the most prevalent enhanced 
MPPT control techniques, which guarantee a remarkable 
capability to track the MPP. MPPT methodology based 
on soft computing is widely regarded as one of the most 
powerful approaches for addressing nonlinear problems. 
The realm of literature abounds with research endeavors 
focused on enhancing existing methodologies and sur-
mounting their inherent constraints. [12] have presented 
a novel method called perturbation and observation ap-
proach, which has been optimized using Neural Network 
(NN) technology to achieve MPPT. To validate the effec-
tiveness of this system, simulation tests were conducted, 
considering various solar radiation levels. The findings of 
this research suggest that the approach excels in vary-
ing light intensities and temperature, the P&O approach 
optimized by NN is more efficient than traditional INC 
approaches. This controller demonstrates the ability to 
generate approximately 99% of the real maximum power. 
In contrast to the Incremental Conductance approach, 
which requires approximately 0.3 seconds to attain the 
reference value, the NN method requires approximately 
0.025 seconds to execute, exhibiting minimal overshoot. 
An efficient and rapid method for MPPT has been de-
vised by employing FL without the need for an expert to 
construct the membership functions. Using MATLAB, the 
methodology is put into practice and its effectiveness is 
assessed by analyzing the results obtained, fuzzy logic sig-
nificantly outperforms ANN optimized with PSO, ANN-GA 
(Genetic Algorithm), and ANN-ICA (Imperialist Competi-
tive Algorithm) in terms of stability, precision, rapidity and 
simplicity of installation in the face of environmental fluc-
tuations, as reported by [13]. In order to tackle the issue 

of chattering, a novel super-twist sliding-mode controller 
was proposed and integrated into the system. Addition-
ally, a Type 2 fuzzy set (STSMC-T2FC) was employed to 
further enhance the performance of the system. The algo-
rithm proposed has been developed using MATLAB and 
then assessed against both STSMC and traditional SMC 
methodologies across different radiation scenarios. The 
efficiency of the STSMC-T2FC MPPT stands at 99.59%, sur-
passing both STSMC with 99.33% and SMC with 99.20%. 
Despite the closely matched efficiency performances, 
STSMC-T2FC emerged as the superior choice, as indicated 
by [14]. A two-stage global MPPT control mechanism has 
been proposed to guarantee the utilization of all power 
generated by the PV for the load [15]. The initial stage 
employs global perturbation-based extremum seeking 
control (GPESC) to pinpoint the global Maximum Power 
Point (MPP). The second stage involves Model Reference 
Adaptive Control (MRAC), which is utilized to regulate 
the dynamics of the DC-DC converter. The simulation 
evaluates the effectiveness of the suggested controller in 
terms of tracking speed, efficiency, and accuracy under 
different radiation conditions. The GPESE and GPESC-PID 
controllers are utilized for comparative analysis. A newly 
developed high-frequency learning-based adjustable 
gain Model Reference Adaptive Control (HFLAG-MRAC) 
system, as proposed by [16], designed for a two-level 
MPPT control structure in PV systems. This approach aims 
to optimize power distribution to the load, particularly in 
the face of rapidly changing environmental conditions. 
The adaptive principle for the HFLAG-MRAC is formulat-
ed through Lyapunov theory, ensuring that the control 
system is theoretically robust and stable. However, there 
are several efforts still to be resolved in order to enhance 
the effectiveness of MPPT control. These efforts involve 
reducing response times, monitoring MPP, optimizing 
design parameters, attenuating steady-state oscillations, 
minimizing the sensor costs involved, and simplifying 
complexity. 

Another issue is the aleatory behavior of optimiza-
tion approaches in one-shot design methods, with 
MPPT MRAC control, system performance is affected 
by the adaptation gain of the adjustment mechanism: 
a high value of adaptation gain can cause system in-
stability. This implies that the adaptation gain should 
be selected optimally to minimize this problem. In this 
context, a novel adaptive MPPT controller have been 
proposed, whose adaptation gain is defined heuristi-
cally using an adequate heuristic method for setting 
the adaptation gain based on fuzzy logic.

The main contributions of the current study are de-
scribed as follow:

•	 A new Fuzzy Model Reference Adaptive controller 
(MRAC-FUZZY) is suggested for photovoltaic sys-
tems in order to obtain an optimal MPP.

•	 The proposed algorithm reduces complexity by 
minimizing the adaptation equations mechanism 
and subsequently the controller.
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•	 MRAC-FUZZY MPPT is intended to provide an 
adaptive control strategy that optimizes the power 
output of photovoltaic systems by dynamically ad-
justing control parameters to track the MPP under 
varying environmental conditions while maintain-
ing stability and eliminating ripples. This leads to 
increased energy efficiency and improved perfor-
mance of PV systems.

•	 The proposed algorithm reduces response time: by 
approximately 11 times, 5 times and 2 times, faster 
than P&O, FL and PSO respectively.

•	 A comparative study involving simulation is con-
ducted to assess the efficiency of the suggested 
MPPT controller.

This research is structured as outlined below: In Sec-
tion 2, we present the photovoltaic system's mathemati-
cal model. Section 3 outlines the procedure design of 
the proposed MRAC-Fuzzy MPPT control algorithm. Sec-
tion 4 illustrates the simulation outcomes regarding the 
performance of the photovoltaic systems. These results 
are obtained by implementing the MRAC-Fuzzy MPPT 
control algorithm, which is proposed in this study. Fur-
thermore, a comparison is made between the perfor-
mance of this algorithm and three conventional control-
lers namely, "MPPT PSO," "MPPT Fuzzy Logic," and "MPPT 
P&O." Additionally, we evaluate the performance of each 
MPP controller in comparison to the proposed MRAC-
Fuzzy MPPT algorithm. Finally, we conclude with some 
remarks and a summary of our findings.

2. MODELING OF THE PHOTOVOLTAIC SYSTEM

2.1. PHOTOVOLTAIC CELL MODELING

The typical composition of a photovoltaic cell con-
sists of components depicted in Fig. 1, comprising a 
current generator, a diode, and a combination of resis-
tors connected in series and parallel [17].

Fig. 1. PV circuit equivalent model

The equation below can be used to calculate the cur-
rent delivered by a solar panel.

(1)

With

(2)

(3)

(4)

Icell (Ipv) and Vpv represent the output current and 
voltage of the PV system, respectively, Iph is the photo-
current, Id designates the diode current, I0 is the inverse 
saturation current. The short-circuit current is desig-
nated by Isc, the series resistance is indicated by Rs, the 
parallel resistance is noted as Rp. ki is the temperature 
coefficient of the short circuit current. T, q, kb, and A 
correspond to the temperature, the electronic charge, 
the Boltzmann constant, and the diode factor respec-
tively [18]. T is the temperature of Solar Cells and G is 
the irradiance and the irradiance reference (kW/m2).

2.2. BOOST CONVERTER

Fig. 2 depicts the DC-DC converter responsible for 
optimizing the power transfer from the PV array to the 
load. This converter plays a crucial role in MPPT by dy-
namically adjusting the voltage and current levels be-
tween the PV source and the load. This allows the sys-
tem to operate at the Maximum Power Point (MPP) of 
the PV array, maximizing power extraction under vary-
ing environmental conditions.

Fig. 2. Photovoltaic system schematic diagram

The fundamental connection between converter 
duty cycle and mains voltage is given by:

It is essential to consider the interaction among the 
duty cycle and the grid voltage in MPPT control to im-
prove the transitional response [19]. To facilitate the 
analysis of the system's transient behavior, we examine 
a small equivalent signal similar to the one depicted in 
Fig. 2, as illustrated in Fig. 3.

Fig. 3. Small-signal model of the photovoltaic 
output converter circuit

The duty cycle transfer function at mains voltage 
in small signal mode is calculated using an operating 
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point [20]. As shown in Fig. 4, the equation between 
the mains voltage V 

p̂v and the variation of the small 
pulse around the duty cycle d̂ of the inverter can be de-
termined in the Laplace domain as below:

(6)

with d̂(s) denoting the smaller signal variation near 
the duty cycle D, h(d) represents the relationship 
among Vpv and D. h’(D) the derivative of h(D). Accord-
ing to Eq. (6), we get:

(7)

As defined above, h(D) can be written as the follow-
ing equation:

(8)

V0 represents the output of the boost converter. We 
simply derive h(d) with regard to the duty cycle D, we 
obtain:

(9)

The output of the boost converter in a steady-state 
condition, designated as V0, is represented by Eq. (8) 
under the assumption that transient switching be-
havior does not influence h(d) and V0. This leads to the 
derivation of h’(D) = −V0. Consequently, Eq. (7) will be 
formulated as follows:

(10)

3. MAXIMUM POWER POINT TRACKER DESIGN

This section introduces the concept of the MRAC-
FUZZY, which aims to optimize the power generated 
by a photovoltaic array. The complete framework of the 
suggested control methodology is depicted in Fig. 4.

The proposed algorithm consists of two levels. First 
level presents an MPPT control law based on P&O tech-
nique, as shown in Fig. 5. A voltage reference (vref ) is 
set by this control block for any given MPP voltage. In 
the second level, a proposed MRAC-Fuzzy MPPT con-
troller is developed which is illustrated in Fig. 6.

Fig. 4. Photovoltaic system with the suggested 
MPPT control configuration

Fig. 5. Voltage Setpoint calculation

The new adaptive MPPT controller has only two in-
puts: voltage array and reference voltage. Its architec-
ture is based on a reference model, a plant, and an ad-
aptation gain (γ) as shown in Fig. 6.

Fig. 6. Proposed MRAC controller architecture

The aim of the MRAC is to ensure that the output of 
the plant produces the output of the reference model 
by using γ. To achieve optimal output measurement, it 
is crucial to select a reference model as the initial step 
in implementing an MRAC, Additionally, a controller 
should be formulated to minimize the error (e) among 
reference and plant value. The Massachusetts Institute 
of Technology (MIT) law, which employs a gradient 
strategy, is considered one of the most fundamental 
adaptive approaches. Developed at MIT in the 1960s for 
aerospace uses, the MRAC controller enhances this tech-
nique by adjusting the adaptation laws to minimize the 
disparity among the reference and system output.
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Conventional MRAC feedback is not sufficient for sec-
ond-order systems. The second-order system control 
law and the first to second-order extension of MRAC-
FUZZY are described in this section.

The plant model is defined with the following equation:

(11)

(12)

ap, bp and kp are plant coefficients which can be de-
termined using equation (9). The reference model has 
been specially adapted to define the required output 
ym(t) for the input r(t) in the next equation.

(13)

(14)

km exhibits a positive gain, am and bm are determined 
to ensure that the reference model produces a step re-
sponse that is critically attenuated. The purpose of the 
control system is to create yp(t) in a manner that the 
later proceeds ym(t).

The MIT rule (The MIT law employs a gradient ap-
proach in its implementation) is applied to build the 
adaptation law of the controller parameters for the 
MRAC. Using the MIT rule, the cost function is given by:

(15)

(16)
Where e represents the error between the plant and 

the reference model, θ is an adjustable control param-
eter. Based on the MIT rule, we can write:

(17)

Where γ is an adaptation gain.

In the proposed algorithm, the equation (17) is used 
for the controller. In contrast to the MRAC developed 
by [21], we have streamlined the equations governing 
the adaptation mechanism and subsequently opti-
mized the controller.

(18)

With φ expressed as [r, yp] T and [θ1, θ2] T denotes the 
estimation vector of the controller variables. Replacing 
Eq. (18) with Eq. (11), we obtain:

(19)

Based on Eqs.13 and 19, we can get:

(20)

(21)

(22)
θ1, θ2 converge as follows:

(23)

(24)

Using Laplace, the Eq. 23 become:

(25)

According to the error in Eq. (16), we can define:

(26)

In order to determine the derivatives of sensitivity 
(δe/δθ1 and δe/δθ2), and with the use of Eqs.17 and 26, 
we obtain:

(27)

(28)

As mentioned previously that s2 + am.s + bm = s2 + ap.s 
+ bp+ kpθ2, and according to the MIT law and utilizing 
equations (27) and (28), we can conclude the expres-
sions of θ1 and θ2.

(29)

(30)

The adaptation gain γ dictates the system's perfor-
mance and is typically determined heuristically. In or-
der to guarantee an optimum performance, the gain γ 
in the proposed algorithm is determined using a fuzzy 
logic controller. As defined previously, the fuzzy con-
troller must contain two inputs and a single output as 
illustrated in Fig. 7.

Fig. 7. Fuzzy control input and output variables

We have assigned five triangular membership func-
tions to each fuzzy controller variable as indicated 
in Fig. 8, resulting in a total of 25 inference rules. The 
fuzzification method employed is the Max-Min method 
(Mamdani). These distributions are depicted in the fol-
lowing figures.

Fig. 8. Membership functions of two inputs
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With NB: Negative Big; NS: Negative Small; ZO: Ap-
proximately Zero; PS: Positive Small; PB: Positive Big. 

Inputs and output are linked by rules called inference 
rules, which enable conclusions to be executed. The 
typical form of a fuzzy rule is:

If <Conditions linked by fuzzy operators> Then <Action >

The following table illustrates the representation of 
inference rules (used to determine the adaptation gain) 
in matrix form, commonly referred to as the "Inference 
Matrix".

Table 1. Inference matrix

e

Δe

γ NB NS ZO PS PB

NB Z Z B B B

NS Z Z S S S

ZO S Z Z Z S

PS S S S Z Z

PB B B B Z Z

For instance, the rules corresponding to the red cell in 
the table is interpreted as follows: if error is NB and rate of 
change of error is ZO, then the adaptation gain is small (S). 

4. RESULTS AND DISCUSSION

The MATLAB-Simulink software is utilized to perform 
various simulations. Table 2, 3 and 4 presents the PV 
panel parameters, the boost converter data, and the co-
efficients of the suggested methodology. To assess the 
performance of our approach, we compare it with other 
classical MPPT control methods such as Perturb and Ob-
serve, fuzzy logic, and metaheuristic PSO controllers un-
der dynamic temperature and irradiation profiles.

To simulate a photovoltaic (PV) system with MPPT 
control in MATLAB/Simulink, several settings need to 
be adjusted in the blocks to ensure correct simulation 
and accurate results. Below are the key block param-
eters and model settings for running a PV system with 
a boost converter and MPPT controller.

•	 PV Generator (Photovoltaic Array) Settings

The photovoltaic array block is typically found in the 
Simscape Electrical library. Key parameters adjusted: 

•	 Irradiation (Ir): We use a standard value for solar 
irradiance, such as 1000 W/m² (under standard 
test conditions), or modify it based on real-time 
weather data or dynamic inputs. Example: Irradi-
ance = 1000 W/m².

•	 Temperature (T): We set the ambient tempera-
ture to a typical value, like 25°C, or adjust it ac-
cording to simulation parameters (e.g., dynamic 
temperature changes). 

•	 Number of Series and Parallel Modules: These 
affect the voltage and current characteristics 
of the PV system. Adjust based on our desired 
output. In our case Series = 2 modules, Parallel 

= 2 string (these values vary depending on the 
panel's specifications).

•	 Boost Converter Settings. Key Parameters to 
Adjust are given in Table 3.

•	 Duty Cycle (D): The duty cycle is controlled by 
the MPPT algorithm and adjusts based on the 
MPPT feedback.

•	 Simulation Settings

•	 Solver: We used ode45 (Variable step size).
•	 Simulation Time: Simulation time = 1 seconds.
•	 Time Step (Sampling Time): The time step should 

be small enough to capture system dynamics 
accurately. A typical value might be 0.01 to 0.1 
seconds. In our case: Time step = 10-6 seconds.

•	 Test Cases for Different Conditions. To test vari-
ous conditions of your system, we modify the 
following parameters:

•	 We vary the Irradiation: we test our system un-
der different light conditions [800 W/m2 700w/
m2 600W/m2 800W/m2 900W/m2].

•	 We vary the Temperature: we test for different 
ambient temperatures (as shown in figure 13) to 
observe the system’s response to temperature 
changes.

Table 2. PV Model Parameters

PV Model Parameters Value PV Model 
Parameters Value

Maximum power 213.15W PV cell Rpe 100 µF

Maximum current 35 A PV cell Rse 56.6-60.3 V

Maximum voltage 29 V Cells per module 2 mH

Short-circuit current (Isc) 7.84 A R 20 Ω

Open-circuit voltage (Voc) 36.3 V

Table 3. DC-DC boost converter Parameters

DC-DC Boost Parameters Value
C1 100 µF

VIN 56.6-60.3 V

L 2 mH

R0 20 Ω

C0 100 µF

V0 112.5-129.1 V

MRAC_FUZZY Parameters Value

ap = am 8.17 × 103 (rad/s)

bp = bm = 1/L × C1 1.67 × 107 (rad/s)2

kp = V0/L × C1 6.45 × 108V (rad/s)2

Simulation step time (Ts) 1 µs

Switching frequency (fs) 20 kHz

km 5.75 ×108V (rad/s)2

Table 4. MRAC-FUZZY control parameters

The proposed MRAC-FUZZY based MPPT control has 
been verified by simulations under MATLAB/Simulink 
using the control scheme illustrated in Fig. 9.
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Fig. 9. Block diagram of the photovoltaic system

4.1. CONTROLLER BEHAVIOR IN CASE OF 
 IRRADIATION VARIATION

The efficacy of the proposed MRAC-FUZZY MPPT has 
been validated through simulations under diverse op-
erating conditions using MATLAB/Simulink software. 
Initially, we conducted an irradiation test as illustrated 
in Fig. 10. The irradiance profile begins with an initial 
irradiance of 800W/m². At t=0.2s, the irradiance gradu-
ally decreases to 700W/m² over a duration of 0.2 sec-
onds. Following this, starting at t=0.6s, the irradiance 
rises to 600W/m², then increases further to 800W/m², 
and finally to 900W/m². The temperature remains con-
stant at 25°C throughout the used profile.

Fig. 10. Variable irradiation profile

Fig. 11 illustrate the photovoltaic output power using 
the proposed MRAC-FUZZY, PSO, P&O, and Fuzzy Logic 
controllers. Zooms are applied: one focusing on the tran-
sient mode to enhance response time and another on 
the steady-state mode to illustrate ripples in the MPP. 
Fig. 10 shows that the P&O technique has a maximum 
time to reach MPP which about 0.046s, followed by the 
FL technique at 0.016s, and the PSO at 0.0095s, while the 
proposed technique takes only 0.0034s to reach the MPP. 

The FL and P&O methods show a significant ripple 
around the MPP but do not reach it. The PSO algorithm 
presents less ripples, compared with the MRAC-FUZZY 
method, which has practically no ripple and follows the 
MPP easily over all five irradiation conditions.

Fig. 11. Simulation results of four MPPT controllers 
with variable irradiation and constant temperature

To highlight the effectiveness of the proposed ap-
proach, in addition to response time and ripple, other 
performance criteria are calculated like energy losses 
and efficiency during five irradiation conditions, as 
shown in Table 5. As a result, the novel control algo-
rithm can ensure the superior effectiveness compared 
to the other conventional MPPT control, FL and meta-
heuristic controller under sudden change in irradiance 
conditions. It can be noted that the response time is 
minimal, ripple and energy losses are the lowest, and 
efficiency is the very highest in the event of the pro-
posed MRAC-FUZZY MPPT.

Table 5. Performance comparison for the 4 
algorithms

MPPT 
Techniques

Condition 
1

Condition 
2

Condition 
3

Condition 
4

Condition 
5

Response time (s)

P&O 0.046 0.043 0.049 0.046 0.044

FUZZY 
LOGIC 0.016 0.018 0.022 0.016 0.02

PSO 0.0095 0.0096 0.019 0.0095 0.01

MRAC_ 
FUZZY 0.0034 0.0036 0.004 0.0034 0.0038

Ripples (W)

P&O 5.2 4.1 3 3.2 3.5

FUZZY 
LOGIC 2.6 3 2.3 2.6 2

PSO 1.4 1.6 1 1.4 1.3

MRAC_ 
FUZZY 0.05 0.01 0.01 0.01 0.02

Energy losses (%)

P&O 3 3.7 2.30 1.86 1.81

FUZZY 
LOGIC 1.5 1.98 1.76 1.51 1.03

PSO 0.8 1.05 0.76 0.81 0.67

MRAC_ 
FUZZY 0.02 0.006 0.007 0.005 0.01

Efficiency (%)

P&O 95.2 94.6 95.11 95.94 95.83

FUZZY 
LOGIC 96.41 95.73 96.42 96.58 96.94

PSO 97.92 97.25 98.2 97.6 98.1

MRAC_ 
FUZZY 99.88 99.97 99.86 99.98 98.87
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4.2 CONTROLLER BEHAVIOR IN CASE OF 
 TEMPERATURE VARIATION

The four MPPT controls are simulated under two vari-
able profiles of temperature and constant irradiation 
as illustrated in Fig. 12. Firstly, it's evident from Fig. 13 
and Fig. 14 that power varies inversely with tempera-
ture. The performance criteria are summarized in Table 
6. It can be noted that the MPPT MRAC-FUZZY control 
has better PPM tracking performance with minimal re-
sponse time, almost zero ripple around the MPP and 
very high efficiency with little energy loss compared to 
P&O, Fuzzy Logic and PSO MPPTs controllers.

Fig. 13. Simulation results of four MPPT controllers 
with variable temperature and constant irradiation 

(1st profile)

Fig. 12. Variable Temperature profiles

Fig. 14. Simulation results of four MPPT controllers 
with variable temperature and constant irradiation 

(2nd profile).

Table 6. Performance comparison for a variable 
temperature profile

MPPT techniques P&O FUZZY-LOGIC PSO MRAC-FUZZY
Response time (s) 0.034 0.015 0.005 0.0032

Ripple (W) 7.8 2.4 1.2 0.01

Energy loss (%) 4.53 1.93 0.69 0.005

Efficiency (%) 95.32 96.67 97.98 99.96

The results presented in Table 6 show that the P&O 
method has the highest response time to reach the 
Maximum Power Point (MPP), with a value of 0.034 
s. This is followed by the FUZZY_LOGIC technique at 
0.015 s, and the PSO method at 0.005 s. In contrast, the 
proposed technique captures the MPP in just 

0.0032 s. Although the P&O, FUZZY_LOGIC, and PSO 
methods exhibit ripple content near the MPP, they fail to 
precisely achieve it. On the other hand, the MRAC-FUZZY 
method demonstrates nearly zero ripple content and 
tracks the MPP with high accuracy. Regarding energy loss-
es, the P&O, FUZZY_LOGIC, and PSO methods experience 
losses of 4.53%, 1.93%, and 0.69%, respectively, while the 
proposed technique incurs virtually no energy losses. In 
terms of tracking efficiency, the P&O method achieves 
95.32%, FUZZY_LOGIC achieves 96.67%, and PSO 
achieves 97.98%. In comparison, the proposed technique 
achieves an impressive tracking efficiency of 99.96%.

The results highlight the exceptional MPP tracking 
capability of the MRAC-FUZZY MPPT controller, excel-
lent tracking of maximum power point with total elimi-
nation of ripples. In contrast, other MPPT controllers 
experience delays in reaching the MPP. Moreover, the 
time required to reach the MPP is 0.0034s, approxi-
mately 11 times faster than P&O, 5 times faster than FL, 
and 2 times faster than PSO. Figure 15 show the com-
parison between tracking time, ripples, and efficiency 
of proposed MRAC-FUZZY, PSO, Fuzzy Logic and P&O 
MPPT under variable condition as shown in Figure 9.

In comparison to other recent studies, the PV sys-
tem's tracking efficiency has ultimately been improved, 
as outlined in Table 7.

It can be seen that MRAC-FUZZY algorithm enhances 
the system's average efficiency from 95.32%, 96.67%, 
and 97.98 in comparison to the P&O, Fuzzy Logic and 
conventional PSO algorithms respectively, achieving a 
rate of 99.96%.

(a)
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(b)

(c)

Fig. 15. Comparison evaluation. (a) Tracking time, 
(b) Ripples, (c) Efficiency.

Table 7. An analysis comparing the suggested 
approach to other methods

Performance 
Parameters

Adaptive 
MPPT 

Controller 
[21]

ANFIS-
TRSMC 

[19]

(PSO) 
[22]

(GWO)-
PID 
[23]

Proposed 
MPPT

Tracking time 0.0036 0.04 0.012 0.018 0.0034

Oscillations 
at MPP Low Medium Medium No No

Complexity Medium Medium Medium Medium low

Efficiency 99.69% 98.9% 96.96% 99.50% 99.97%

Moreover, the MRAC-FUZZY algorithm, as proposed, 
exhibits superior accuracy in tracking maximum power 
following fluctuations in climatic conditions, with mini-
mal observable oscillation around the MPP, distinguish-
ing itself from other control methods, As observed in 
the zoomed-in views of Figs. 11 and 13, notable im-
provements are evident when comparing the results 
obtained with the PSO, Fuzzy Logic, and P&O MPPT al-
gorithms. These enhancements are delineated below:

•	 The tracking time is notably shorter compared to 
other algorithms

•	 The power ripple has been significantly reduced

5. CONCLUSION

In order to improve the photovoltaic system's efficien-
cy, a new fuzzy model reference adaptive control based 
MPPT has been proposed. The proposed algorithm com-
bines the strengths of the MRAC concept, which can han-

dle non-linear systems adequately, and the advantages 
of fuzzy logic, which can determine the adaptation gain 
heuristically. In order to simulate the system behavior for 
MPP tracking, simulations were carried out in the MAT-
LAB/Simulink environment. A comparative analysis was 
conducted again to the classical algorithms like (P&O), 
fuzzy logic, metaheuristic (PSO), according to different cri-
teria (dynamic response time, low ripples, and efficiency). 
The simulation outcomes have confirmed the exceptional 
performance of the innovative controller, showcasing a 
reduction in response time (3.4ms to reach the MPP) it is 
around 11 times, 5 times and 2 times faster than P&O, FL 
and PSO respectively with high efficiency up to 99.97%. 
Also, the proposed MPPT algorithm based MRAC-Fuzzy 
can ensure good tracking of MPP without ripple. 

The proposed MRAC-Fuzzy-based MPPT controller of-
fers higher tracking efficiency, reduced ripple content, 
and lower energy losses compared to traditional MPPT 
techniques. However, successful implementation in a real 
PV system requires addressing challenges related to sen-
sor accuracy, hardware limitations, environmental factors, 
and system stability. In the upcoming study, the proposed 
MPPT algorithm will be deployed in a real testing environ-
ment. This will include the setup of temperature and irra-
diation sensors, as well as instrumentation to measure the 
power and voltage generated by the photovoltaic panel. 
The MPPT controller will be integrated with an inverter or 
a battery charger to validate the effectiveness of the MPPT 
algorithm based MRAC-FUZZY controller. During the im-
plementation of the developed MPPT controller, several 
challenges and potential issues may arise, including:

•	 Problems related to model parameter estimation: 
Photovoltaic system models may not be perfectly 
accurate. Real-world conditions can present unex-
pected variations compared to theoretical assump-
tions (e.g., shadows on the panels, dust, or panel 
degradation). This could lead to errors in adjusting 
the MRAC-FUZZY controller.

•	 Sensitivity to irradiation and temperature condi-
tions: MPPT algorithms are sensitive to rapid varia-
tions in irradiation and temperature. In particular, 
sudden changes in irradiation due to clouds or 
shadows could disrupt the tracking efficiency. The 
fuzzy algorithm must be adjusted to handle these 
variations smoothly and stably.

•	 Control latency: In a real system, sensor and con-
troller latency may introduce delays in adjusting 
the control, which could slow down the system's 
response. Our proposed algorithm needs to be de-
signed to minimize this latency and ensure an ap-
propriate real-time response.
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