
International Journal
of Electrical and Computer
Engineering Systems IJECES

International Journal
of Electrical and Computer
Engineering Systems

Volume 16, Number 8, 2025 ISSN 1847-6996



ISSN: 1847-6996

INTERNATIONAL JOURNAL OF ELECTRICAL AND 
COMPUTER ENGINEERING SYSTEMS

Published by Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, 
Josip Juraj Strossmayer University of Osijek, Croatia

Osijek, Croatia | Volume 16, Number 8, 2025 | Pages 565 - 640

International Journal of Electrical and Computer Engineering Systems

CONTACT
International Journal of Electrical

and Computer Engineering Systems

(IJECES)

Faculty of Electrical Engineering, Computer 

Science and Information Technology Osijek,

Josip Juraj Strossmayer University of Osijek, Croatia

Kneza Trpimira 2b, 31000 Osijek, Croatia

Phone: +38531224600, Fax: +38531224605

e-mail: ijeces@ferit.hr

Subscription Information
The annual subscription rate is 50€ for individuals, 

25€ for students and 150€ for libraries.

Giro account: 2390001 - 1100016777,

Croatian Postal Bank

EDITOR-IN-CHIEF

Tomislav Matić

J.J. Strossmayer University of Osijek,

Croatia

Goran Martinović

J.J. Strossmayer University of Osijek,

Croatia

EXECUTIVE EDITOR

Mario Vranješ

J.J. Strossmayer University of Osijek, Croatia

Associate Editors

Krešimir Fekete

J.J. Strossmayer University of Osijek, Croatia

Damir Filko

J.J. Strossmayer University of Osijek, Croatia

Davor Vinko

J.J. Strossmayer University of Osijek, Croatia

EDITORIAL BOARD

Marinko Barukčić
J.J. Strossmayer University of Osijek, Croatia

Tin Benšić
J.J. Strossmayer University of Osijek, Croatia

Matjaz Colnarič
University of Maribor, Slovenia

Aura Conci
Fluminense Federal University, Brazil

Bojan Čukić
University of North Carolina at Charlotte, USA

Radu Dobrin
Mälardalen University, Sweden

Irena Galić
J.J. Strossmayer University of Osijek, Croatia

Ratko Grbić
J.J. Strossmayer University of Osijek, Croatia

Krešimir Grgić
J.J. Strossmayer University of Osijek, Croatia

Marijan Herceg
J.J. Strossmayer University of Osijek, Croatia

Darko Huljenić
Ericsson Nikola Tesla, Croatia

Željko Hocenski
J.J. Strossmayer University of Osijek, Croatia

Gordan Ježić
University of Zagreb, Croatia

Ivan Kaštelan
University of Novi Sad, Serbia

Ivan Maršić
Rutgers, The State University of New Jersey, USA

Kruno Miličević
J.J. Strossmayer University of Osijek, Croatia

Gaurav Morghare
Oriental Institute of Science and Technology, 
Bhopal, India

Srete Nikolovski
J.J. Strossmayer University of Osijek, Croatia

Davor Pavuna
Swiss Federal Institute of Technology Lausanne, 
Switzerland

Marjan Popov
Delft University, Nizozemska

Sasikumar Punnekkat
Mälardalen University, Sweden

Chiara Ravasio
University of Bergamo, Italija

Snježana Rimac-Drlje
J.J. Strossmayer University of Osijek, Croatia

Krešimir Romić
J.J. Strossmayer University of Osijek, Croatia

Gregor Rozinaj
Slovak University of Technology, Slovakia

Imre Rudas
Budapest Tech, Hungary

Dragan Samardžija
Nokia Bell Labs, USA

Cristina Seceleanu
Mälardalen University, Sweden

Wei Siang Hoh
Universiti Malaysia Pahang, Malaysia

Marinko Stojkov
University of Slavonski Brod, Croatia

Kannadhasan Suriyan
Cheran College of Engineering, India

Zdenko Šimić
The Paul Scherrer Institute, Switzerland

Nikola Teslić
University of Novi Sad, Serbia

Jami Venkata Suman
GMR Institute of Technology, India

Domen Verber
University of Maribor, Slovenia

Denis Vranješ
J.J. Strossmayer University of Osijek, Croatia

Bruno Zorić
J.J. Strossmayer University of Osijek, Croatia

Drago Žagar
J.J. Strossmayer University of Osijek, Croatia

Matej Žnidarec
J.J. Strossmayer University of Osijek, Croatia

Proofreader
Ivanka Ferčec
J.J. Strossmayer University of Osijek, Croatia

Editing and technical assistence
Davor Vrandečić
J.J. Strossmayer University of Osijek, Croatia

Stephen Ward

J.J. Strossmayer University of Osijek, Croatia

Dražen Bajer

J.J. Strossmayer University of Osijek, Croatia

Journal is referred in:
•	 Scopus
•	 Web of Science Core Collection 

(Emerging Sources Citation Index - ESCI) 
•	 Google Scholar 
•	 CiteFactor 
•	 Genamics 
•	 Hrčak 
•	 Ulrichweb
•	 Reaxys
•	 Embase 

•	 Engineering Village 

Bibliographic Information
Commenced in 2010.
ISSN: 1847-6996
e-ISSN: 1847-7003
Published: quarterly
Circulation: 300

IJECES online
https://ijeces.ferit.hr

Copyright
Authors of the International Journal of Electrical 
and Computer Engineering Systems must transfer 
copyright to the publisher in written form.

The International Journal of Electrical and Computer Engineering Systems is published with the financial support 
of the Ministry of Science and Education of the Republic of Croatia



TABLE OF CONTENTS
Optimizing Computation Offloading in 6G Multi-Access Edge Computing Using Deep Reinforcement Learning........565
Original Scientific Paper
Mamoon M. Saeed  |  Rashid A. Saeed  |  Hashim Elshafie  |  Ala Eldin Awouda  |  Zeinab E. Ahmed 
Mayada A. Ahmed  |  Rania A Mokhtar

Comprehensive Classification and Analysis of Malware Samples Using Feature Selection and Bayesian Optimized 
Logistic Regression for Cybersecurity Applications ...........................................................................................................581
Original Scientific Paper
Manisankar Sannigrahi  |  R Thandeeswaran

Unified Communications Model for Information Management in Peruvian Public University.......................................597
Case Study
John Fredy Rojas Bujaico  |  Wilfredo Huaman Perales  |  Yerson Espinoza Tumialan  |  Rafael Wilfredo Rojas Bujaico

Federated Learning Algorithm to Suppress Occurrence of Low-Accuracy Devices..........................................................607
Original Scientific Paper
Koudai Sakaida  |  Keiichiro Oishi  |  Yasuyuki Tahara  |  Akihiko Ohsuga  |  Andrew J  |  Yuichi Sei

Integrating Squeeze-and-Excitation Network with Pretrained CNN Models for Accurate Plant Disease Detection.....621
Original Scientific Paper
Lafta Raheem Ali  |  Sabah Abdulazeez Jebur  |  Mothefer Majeed Jahefer  |  Abbas Khalifa Nawar  |  Zaed S. Mahdi

Adaptive Robust Control for Maximum Power Point Tracking 
in Photovoltaic Systems based on Sliding Mode and Fuzzy Control..................................................................................633
Case Study
Minh Van Pham

About this Journal
IJECES Copyright Transfer Form

Volume 16, Number 8, 2025





Optimizing Computation Offloading in 6G 
Multi-Access Edge Computing Using Deep 
Reinforcement Learning

565

Original Scientific Paper

Abstract – One of the most important technologies for future mobile networks is multi-access edge computing (MEC). 
Computational duties can be redirected to edge servers rather than distant cloud servers by placing edge computing facilities at the 
edge of the wireless access network. This will meet the needs of 6G applications that demand high reliability and low latency. At the 
same time, as wireless network technology develops, a variety of computationally demanding and time-sensitive 6G applications 
appear. These jobs require lower latency and higher processing priority than traditional internet operations. This study presents a 
6G multi-access edge computing network design to reduce total system costs, creating a collective optimization challenge. To tackle 
this problem, Joint Computation Offloading and Task Migration Optimization (JCOTM), an approach based on deep reinforcement 
learning, is presented. This algorithm takes into consideration several factors, such as the allocation of system computing resources, 
network communication capacity, and the simultaneous execution of many calculation jobs. A Markov Decision Process is used to 
simulate the mixed integer nonlinear programming problem. The effectiveness of the suggested algorithm in reducing equipment 
energy consumption and task processing delays is demonstrated by experimental findings. Compared to other computing offloading 
techniques, it maximizes resource allocation and computing offloading methodologies, improving system resource consumption. 
The presented findings are based on a set of simulations done in TensorFlow and Python 3.7 for the Joint Computation Offloading 
and Task Management (JCOTM) method. Changing key parameters lets us find out that the JCOTM algorithm does converge, with 
rewards providing a measure of its success compared to various task offloading methods. 15 users and 4 RSUs are placed in the MEC 
network which faces resource shortages and is aware of users. According to the tests, JCOTM offers a lower average system offloading 
cost than local, edge, cloud, random computing and a game-theory-based technique. When there are more users and data, JCOTM 
continues to manage resources effectively and shows excellent speed in processing demands. It can be seen from these results that 
JCOTM makes it possible to offload efficiently as both server loads and user needs change in MEC environments.

Keywords:	 deep reinforcement learning, sixth generation (6 G), multi-edge computing (MEC), offloading, deep Q-network
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1.	 	INTRODUCTION

The upcoming launch of 6G networks promises a 
paradigm leap in connectivity in the quickly changing 
telecoms industry, bringing in a new era of blazingly 
fast speeds, responsiveness, and dependability [1]. To 
satisfy the demanding specifications of next-genera-
tion networks, it is essential to integrate cutting-edge 
technologies as the need for high-performance mobile 
apps keeps growing. Multi-access Edge Computing 
(MEC) stands out among these technologies as a cru-
cial remedy because it makes it possible to distribute 
computational jobs closer to the edge of wireless ac-
cess networks, which lowers latency and improves sys-
tem efficiency overall [2].

Multi-Access Edge Computing (MEC) is emerging as a 
transformative technology that significantly enhances 
network performance by reducing latency through lo-
calized data processing. This capability is essential for 
real-time applications, such as the Internet of Things 
(IoT) and augmented reality, where rapid response 
times are crucial. MEC further optimizes bandwidth ef-
ficiency by offloading processing tasks from the core 
network, leading to better resource utilization. The 
technology also improves user experiences by facilitat-
ing seamless interactions and supports a broad spec-
trum of IoT applications through real-time analytics at 
the edge. Additionally, MEC enhances security and pri-
vacy by minimizing data transmission over networks, 
thus aiding compliance with privacy regulations. Its 
scalable architecture accommodates the growing 
number of devices and applications in today’s fast-
paced technological environment. Overall, MEC stands 
out as a pivotal solution in modern networking, opti-
mizing system performance and alleviating pressure 
on central data centers [3].

Deep Reinforcement Learning (DRL) is a state-of-
the-art method for optimizing computation offload-
ing strategies in 6G environments in MEC. Network 
operators and service providers can intelligently and 
responsively distribute computing jobs to edge servers 
by utilizing DRL algorithms' adaptive and self-learning 
properties [4]. The main requirements of 6G networks, 
which place a premium on low latency, high depend-
ability, and effective resource use to serve a wide range 
of cutting-edge applications from augmented reality 
to driverless cars, are completely met by this integra-
tion. In light of this, conducting research and building 
a deep reinforcement learning-based computation 
offloading framework designed especially for 6G multi-
access edge computing networks is crucial [5].

This framework explores the complex interactions 
between DRL algorithms and computation offload-
ing techniques to optimize task allocation, improve 
system performance, and simplify resource manage-
ment in the context of sophisticated mobile networks 
[6]. This study aims to push the limits of innovation in 
mobile communications by investigating the synergies 

between DRL and computation offloading in the con-
text of 6G MEC networks. It provides a glimpse into the 
revolutionary potential of AI-driven solutions in influ-
encing the future of network architecture and service 
delivery [7].  

The upcoming 6G technology revolution will reshape 
different business sectors by improving network con-
nectivity and latency performance alongside the ca-
pability to implement time-sensitive software applica-
tions. The fundamental development behind network 
edge transformation rests upon Multi-Access Edge 
Computing (MEC) for handling computational resourc-
es local to the network boundary. Strategic computa-
tional load distribution from resource-limited devices 
to edge computing servers constitutes offloading, so 
applications and performance gain better efficiency 
and results [8].

6G networks require effective resource management 
because of the large number of IoT devices and com-
plex application systems that operate within these net-
works. Smart devices such as smartphones, along with 
sensors and autonomous vehicles, use the capability 
of offloading to transfer complex processing duties to 
edge servers situated nearby. The device offloading 
approach helps both devices conserve power and re-
duce battery drain while speeding up responses and 
enhancing the user experience altogether [9].

The main parts of offloading execution within MEC 
consist of many essential elements. The process de-
mands effective decision systems for finding suitable 
offloading targets among tasks alongside optimal 
edge server destinations. The implementation of MEC 
offloading requires an evaluation of the edge server 
workload together with network performance and the 
exact needs for each task, including latency tolerance 
and data magnitude. 

The combination of artificial intelligence (AI) with 
machine learning (ML) methods greatly improves the 
capability to make offloading decisions. Records from 
both history and current network situations supply AI 
algorithms with data to find optimal offloading tech-
niques that enhance the effectiveness of job distribu-
tion along with resource organization. The intelligent 
system delivers both enhanced performance and bet-
ter 6G network resilience because it rapidly adjusts to 
both conditions and potential failures [10].

Security, together with privacy issues, represents the 
highest concern throughout the offloading process. 
Edge servers require both strong encryption and pro-
tected communication protocols to ensure the security 
of sensitive data transferred from users. 6G networks 
must guarantee data confidentiality and integrity be-
cause such measures are vital for meeting user trust re-
quirements and following regulatory standards when 
they support a diverse set of applications and multiple 
devices.

The deployment of offloading systems within 6G 
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MEC encounters multiple difficulties. Device capability 
management, alongside network component interop-
erability and quality of service delivery requirements, 
make up the implementation challenges of these net-
works. Offloading methods need to establish coherent 
processing speed, energy utilization, and networking 
reliability ratios to deliver continuous user experiences.

The wireless network progression from 5G to 6G 
technology establishes a new standard of connectiv-
ity through heightened speed, together with inferior 
latency and better capacity. Multi-Access Edge Com-
puting (MEC) serves as the essential tool for network 
evolution since it distributes computation and storage 
capabilities near final user locations. An efficient mech-
anism for complex processing called offloading works 
effectively because of network decentralization. The 
transfer of computational operations from smartphone 
platforms and IoT sensors to enhanced edge servers 
through offloading describes this process. Application 
performance can be both optimized and real-time pro-
cessing and low-latency requirements fulfilled through 
this essential resource optimization procedure [11].

6G networks must manage unimaginable numbers 
of linked devices as well as applications, which include 
autonomous systems and AR and VR applications, be-
cause they require increased computational power. Ex-
tensive application processing needs exceed the capa-
bilities of local devices, thus making these applications 
require edge server support. The shifted task execution 
through offloading activates the edge servers to per-
form computations with better efficiency and thus im-
proves system performance at large. Several important 
advantages emerge from offloading, according to the 
diagram given in Fig. 1.

Fig. 1. Offloading Significant Benefits

Edge servers enable applications to lower latency while 
increasing response times because of their processing ca-
pabilities, which serve user satisfaction primarily in real-
time applications. Devices with limited resources can save 
power through edge-based transferring of complex pro-
cessing demands. The operation of IoT devices that de-
pend on battery power specifically requires this approach. 

Network scalability becomes possible through offloading 
because it enables distributed workloads across several 
edge servers instead of overloading devices and cloud-
based resources independently. The offloading process 
lowers the amount of data that needs to flow to cloud 
servers for analysis, resulting in reduced bandwidth usage 
and network congestion occurrences.

1.1.	 Decision-Making in Offloading

Making a task of offloading a decision involves evalu-
ating multiple conditions, which should include [12], 
[13], and [14]:

•	 Task characteristics and specific parameters such 
as computational difficulty, together with data vol-
ume and response time demands, play an essential 
role in deciding whether a computation should be 
transmitted off-device.

•	 Professional offloading decisions require immedi-
ate evaluation of network conditions, including 
server load, bandwidth availability, and network 
latency data.

•	 For successful offloading purposes, it is fundamen-
tal to recognize the processing abilities and energy 
use status of initiating devices.

Advanced algorithms together with models serve as 
tools to assist in this type of decision-making frame-
work. These may include:

•	 Advanced offloading algorithms make real-time 
compensations to fluctuating networks and sys-
tem work demands for better offloading results.

•	 The predictive analysis uses AI and ML technolo-
gies to develop offloading strategies by process-
ing historical and present network data. The tech-
nologies apply past data learning to optimize their 
functions in distributing resources across teams 
and assigning tasks more effectively.

1.2.	 Security and Privacy Concerns

Data security and privacy emerge as essential factors 
after its transport to edge servers. Key considerations 
include [8]:

•	 All transmission of sensitive information to edge 
servers require encryption to stop unauthorized 
users from accessing the data.

•	 A secure transmission protocol system must be es-
tablished to maintain safe data exchange between 
devices and edge servers.

•	 The protection of sensitive data requires imple-
menting measures that allow authorized users and 
devices to access it.

•	 The protection of user privacy requires organiza-
tions to maintain strict obedience to data protec-
tion laws like GDPR and HIPAA.
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1.3.	 Challenges in Implementing 
	 Offloading

Several key obstacles exist when implementing 
offloading via MEC in 6G networks [15]:

•	 The compatibility between different devices and 
applications, and network components becomes 
complex because standard protocols and inter-
faces are needed.

•	 Developing a favorable quality of service (QoS) re-
mains vital to achieving user satisfaction because 
sensitive applications require stable bandwidth 
along with minimal latency.

•	 Efficient operations of edge server’s dependent on 
resource management create significant problems 
because of load balancing difficulties and resource 
allocation demands.

•	 Modern computational frameworks are needed to 
execute effective operations for real-time decision-
making between abrupt condition changes.

1.4.	Future  Directions

6G technology development indicates that the fol-
lowing directions for MEC offloading will emerge [16]:

•	 The application of edge intelligence combined 
with artificial intelligence at horizontal distribution 
points results in improved decision-making ability 
that enables dynamic on-the-fly offloading adjust-
ments based on present conditions.

•	 Federated learning provides decentralized model 
training that keeps sensitive data on user devices 
and enables collective learning through decentral-
ized training.

•	 The adoption of decentralized architectural design 
brings better resistance and decreases dependen-
cy on centralized cloud infrastructure, which en-
ables better offloading outcomes.

•	 Edge computing operations demand specialized 
security frameworks that need development ac-
cording to specific edge needs, since platform evo-
lution will be mandatory.

6G Multi-Access Edge Computing depends on 
offloading as its core resource optimization and ap-
plication performance enhancement mechanism [17]. 
The method of moving computations to edge servers 
as a strategic step helps handle next-gen application 
requirements and delivers better energy efficiency 
and adaptable system capacity [18]. The complete re-
alization of 6G MEC requires attention towards smart 
calculation management techniques as well as secure 
protection frameworks and resolution of operational 
obstacles alongside technological evolution [19].

Through carefully assessing these technologies and 
their consequences for the mobile ecosystem, our re-

search strives to pave the way for more efficient, intel-
ligent, and responsive network infrastructures capable 
of addressing the rising needs of the digital age. Here's 
a summary of the primary contributions:

•	 The communication and task computation flow are 
simulated to determine the system delay and en-
ergy consumption formula. 

•	 The mixed integer nonlinear programming problem 
is challenging to solve directly because it is NP-hard. 
Thus, we convert it into a Markov Decision Process 
and propose a combined computation offloading 
and task migration optimization (JCOTM) technique 
based on deep reinforcement learning. 

The JCOTM algorithm's convergence and efficacy are 
demonstrated by experimental performance. Our sug-
gested approach can lower processing latency and equip-
ment energy usage in various system contexts compared 
to alternative computation offloading strategies.

The remaining sections of this paper are arranged as 
follows: In Section III, we outline the joint optimization 
issue and the 5 G-based 6G user-aware multi-access 
edge computing network architecture. Section IV intro-
duces the Deep Q-Network and the JCOTM algorithm's 
comprehensive process. Section V presents the simula-
tion parameters and outcomes, while Section VI wraps 
up our investigation.

2.	 RELATED WORK

This part of the study examines previous studies that 
aimed to improve how computation is distributed in 
Multi-Access Edge Computing (MEC). The literature is 
typically organized into binary offloading and making 
decisions about partial execution.

The tasks can be processed where they are created or 
sent to the MEC server for completion. [20] analyzes what 
the best single-user performance is when binary offload-
ing is used in ultra-dense networks. It highlights situations 
when binary offloading might be useful, and [21] devel-
ops an approach using both games and optimization for 
better results. They help to see the role of server-based 
processing and when it is more beneficial than running 
tasks locally, showing the need to decide wisely.

Several experts have used advanced techniques such 
as reinforcement learning (RL) to manage the compli-
cated issues in MEC. For example, [22] optimizes the 
use of resources and UAV routes at once, which demon-
strates how RL helps save power in fast-changing situa-
tions. [23] found that RL can handle some of the MEC’s 
important challenges, such as those related to mobility 
and managing changing channels.

This framework (MELO, presented in [24]) demon-
strates a decision-making system that uses reinforce-
ment learning and formulates the tasks as a Markov 
Decision Process. It points to more use of machine 
learning to assist in making choices in the context of 
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MEC. Alternatively, users with partial offloading can 
pass some of their work to the MEC server when re-
quired. The research in [25] deals with offloading cloud 
tasks to more than one device, with wireless interfer-
ence and separable semi-definite relaxation in mind. 
This technique points out how partial offloading is flex-
ible and able to ensure resources are used well, as dif-
ferent users require them.

Also, techniques such as convex optimization and 
segmentation optimization are used to optimize re-
source usage in multi-user MEC systems [26, 27]. They 
reveal how much effort is put into both minimizing ex-
penses and cutting back on delays that put efficiency 
and results in balance.

Different approaches, for example, [28], are now consid-
ering how load on servers affects energy use, reflecting 
the increased awareness that workloads and infrastruc-
ture affect each other. Unlike the strategies of the papers 
mentioned in [7], the authors of [29] and [30] stressed that 
the best way to reduce offloading costs is to pay attention 
to energy use, processing time, and delay.

[31] and [32] identify that with the advent of 6G, in-
telligent user edge computing relies heavily on deep 
reinforcement learning for request offloading and 
choosing resources. The article [33] also introduced 
the UMAP algorithm, which further demonstrates the 
benefits of combining different advanced algorithms 
to boost MEC performance.

Simply put, while the use of binary offloading helps 
with straightforward situations, using partial offload-
ing and more advanced techniques allows both the ap-
plication and network to adapt and respond to what 
the user needs. The field is seeing how delicate perfor-
mance, resource management, and what users experi-
ence are balanced in MEC.

This work [34] presented the UMAP algorithm that 
connects handling UAV movement to connecting us-
ers with access to a network, all through frequent opti-
mization. With deep reinforcement learning (DRL), the 
system learns to improve both where UAVs go and how 
they are associated, which helps reduce the amount of 
energy used and waiting time in the system. This way 
of working highlights that DRL is useful in environ-
ments that keep adapting, so agents can react to cur-
rent circumstances.

Even so, due to how complicated DRL models are to 
train, it can be quite challenging regarding whether 
they converge and the number of computer resourc-
es required, which means they aren’t always practi-
cal everywhere. Even though the advancement to 
closed-form MU transmission power helps efficiency, 
it may not be suited for different operating settings. 
To sum up, UMAP reflects important progress in MEC 
by offloading data, but points out that further study is 
needed to improve its work in different situations. This 
stresses the need to blend different optimization strat-
egies to help the entire system perform better. 

The proposed system involves 5G technology and 
6G user-aware Multi-access Edge Computing network 
(VAMECN) elements, which consist of 6G users, road-
side units, and cloud servers to handle upcoming 5G 
network offloading functions. The proposed method 
addresses the reduction of system delays along ener-
gy consumption optimization. The proposed solution 
adopts deep reinforcement learning to create JCOTM 
for addressing problems through performance demon-
strations

3.	 SYSTEM MODEL AND PROBLEM 
FORMULATION 

As illustrated in Fig. 2, we examine a 5 G-based user-
aware Mobile Edge Computing (MEC) network architec-
ture, which comprises N users, M Roadside Units (RSUs), 
and a cloud server. We define the index sets for users and 
RSUs as U = {1,2,…,N} and M =  {0,1,2,…, M, M+1, respec-
tively. Here, m=0 represents the local computing device, 
while m=M+1 denotes the cloud server [35]. The indices 
between 0 and M+1 correspond to the edge servers. 
We assume that the RSUs are uniformly distributed 
along the road, each covering a consistent area R. Each 
RSU is equipped with one or more MEC servers, posi-
tioning it as an edge computing node.

To effectively simulate the users' trajectories over 
time, we represent the continuous road as a series of 
discrete traffic areas. In Fig. 2, a typical urban road net-
work is segmented into PPP discrete areas, indexed by 
the set P={1, 2,…, P} We will next address the optimiza-
tion problem related to joint computation offloading 
and task migration over a defined period T [36]. This 
period is divided into ti time slots denote as T={1, 2,…, ti} 
at the initial time slot t0, users are randomly allocated 
within the network. As users move, they can either 
remain in their current traffic area or transition to an 
adjacent one. The transition probability from location l 
to l' for users can be expressed as Pr(l'│l). For instance,  
Pr(l│l)=0.5 indicates a 50 % probability that a user will 
remain in the same location. We assume the probability 
of moving from l to l' (where l≠l') is equivalent, allow-
ing us to calculate the position transfer probability as 
Pr(l'│l) =  (1-Pr(l│l))/2 [37]

Fig. 2. The architecture of our proposed 6G MEC 
network
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Each user of equipment (UE) is assumed to have a 
single compute-intensive task that requires processing. 
There exists a one-to-one correspondence between UEs 
and users. The n-th task can be characterized by a triple 
αn, βn, γn, where n ∈ v, αn denotes the data size of the task, 
βn represents the required CPU cycles for task completion, 
and γn indicates the maximum allowable delay. The binary 
offloading decision is represented by xmn ∈ {0,1}, for m ∈ 
M, n ∈ v. Specifically, xmn=0 indicates that task n will be 
processed on the local UE, while xmn=1 signifies that the 
task will be offloaded to the m-th MEC server [38]. 

Notably, when m=M+1, the task n is offloaded to the 
cloud server. The system's offloading decisions at the tth 
time slot is represented by the set 

X(t)={x01 (t),…, x(M+1)1 (t), x02 (t),…, x(M+1)N (t)}.  It is im-
portant to note that each UE can connect to either one 
RSU or the Base Station (BS) during a time slot [39], 
thereby necessitating the following constraint:

Subsequently, we will explore the communication 
and computation models of the User-Aware MEC Net-
work (UAMECN) system [40], deriving expressions for 
delay and energy consumption.

(1)

3.1.	 Model of Communication  

Base station-based communication algorithms cre-
ate transmission delays that happen when uploading 
cloud-server data. The rising number of tasks between 
users causes resource contention that produces net-
work instabilities alongside extended delays. MEC ad-
dresses the network bottleneck by establishing server 
locations that are nearer to user locations [41].

Non-orthogonal multiple Access (NOMA) stands as 
a vital 5G technology that enables non-orthogonal 
transmission during signal transmission and incorpo-
rates interference data actively while implementing 
successive interference cancellation (SIC) for accurate 
signal demodulation at receivers [42]. The receiver im-
plementation of NOMA provides additional complexity 
compared to OFDMA but delivers higher spectral effi-
ciency. The VAMECN system adopts NOMA for UE-to-BS 
communication links yet employs OFDMA for UE-to-
RSU links because the BS must serve more users [43].

The channel state follows a time-dependent finite 
continuous value pattern through which the new state 
appears solely from the previous state. The paper trans-
forms the state values into L discrete levels before repre-
senting them as finite-state Markov chains. Channel gain 
is a crucial parameter for calculating data transmission 
rates. We denote the channel gain of the wireless link 
between the user n and RSU m at time t as Γn

m (t), calcu-
lated using the formula [44]:

Here, gn
m represents small-scale fading, d(n, m) is the 

distance between the user n and RSU m, and r is the 

path loss index. The term d-r
n,m signifies path loss. The 

state space of the Markov chain is represented as L = 
{Υ1, Υ2,…, ΥL }, and Γn

m(t) is classified as Υ1 when Γ1* ≤ Γn
m 

< Γ2*; Γn
m is quantified as Υ2 when Γ2* ≤ Γn

m < Γ3*; and so 
on, Γn

m is quantified as ΥL when Γn
m ≥ ΓL*. ψgs, hs (t) is the 

transition probability that the channel gain shifts from 
the state gs to state hs. Consequently, the following is 
the L × L channel state transition probability matrix.

(2)

(3)

Where ψgs, hs (t) = Pr(Γn
m (t+1) = hs | Γn

m (t)= gs), and 
gs, hs ∈ L. Thus, according to the Shannon formula, the 
data transmission rate between the user and RSU at 
time slot t is calculated as follows.

(4)

Where bn
m (t) the orthogonally allotted bandwidth 

from RSU m to user n, m ∈ M and n ∈ U. bn
m (t), is denoted 

by the Gaussian white noise power is represented by σ2, 
while transmission power is indicated by bn

m (t) [45]. 

Next, we talk about how users and BS communicate. 
For instance, in the uplink, each UE will be assigned a 
distinct transmission strength, and signals will be su-
perimposed to send when multiple users are connect-
ed to the BS at the same time.

(5)

calculates the superimposed signal, where xn and 
xi stand for the target user n's and other users' 
transmission signals, respectively. The signal that 
was received is

(6)

After obtaining the data, the BS user rises out of SIC 
decoding in the decreasing order of channel gain. The 
interference signal for user n is the sum of the signals 
with lower equivalent channel gain [46]. In the declin-
ing sequence of their channel gains, we assume that N 
users share the same channel: Υ1

M+1 ≥ Υ2
M+1 ≥ ΥN

M+1. The 
data transmission rate un

M+1 (t) and the interference sig-
nal In (t) If the user is therefore

(7)

(8)

Equation (9) can therefore be used to evenly express 
the user n's data transmission rate [47].

(9)

The following displays the task n's energy usage and 
communication delay.

(10)

(11)

(12)

(13)
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where αn (t) is the amount of data left over from the n 
task. Since m = 0 indicates that the work will be pro-
cessed locally, there is no transmission delay, and no 
energy consumption, hence in this case, the value of m 
starts at 1 instead of 0.

3.2.	 Model of Computation

User n's task will be sent from the cloud server to the 
MEC server for computation when xnm (t)=1, m ∈ M\{0}. 
The calculation capability of the server m, commonly 
referred to as the CPU rate, is represented by the sym-
bol fm [48]. In particular, the local CPU rate is shown by 
f0, and the cloud server's CPU rate is indicated by fM+1. 
Because edge servers have distinct hardware configu-
rations f0 ≪ fm ≪ fM+1, m ∈ M {0, M+1}, They are generally 
more powerful than UE. The distribution of computer 
resources is not average.

Only one task or one task slice may be completed by 
each CPU (single core) in each time slot. To simplify 
the computation model, we assume that every UE has 
equal entitlement to obtain computing resources [49]. 
This implies that if n users decide to offload jobs to the 
same server, the computing resources allotted to each 
task are fm/n. As a result, we can determine the CPU rate 
assigned to the user n by using the formula

(14)

It is therefore possible to express the processing time 
for the user n as

(15)

where βn (t) is the remaining number of CPU cycles 
needed by the user n during the time slot t. It goes 
without saying that as server processing capacity rises, 
computation delay falls. In the meantime, as it influenc-
es the CPU time allotted to each user, the server load is 
also a crucial consideration. The energy used by local 
equipment in the absence of ask offloading is denoted 
by Enm

comp (t) [50]. 

(16)

Therefore, the energy consumption for user n. Where 
the effective switched capacitance is represented by 
µ=10-11 [51].

3.3.	Formulation  of the Problem

Through the explanation above, we have represented 
the computation and communication process. Based 
on our earlier work, we formulate the job completion 
delay and UE's energy usage as follows. 

(17)

where ξt, ξe ∈ [0,1] are two scalar weights of energy con-
sumption and latency, respectively. Keep in mind that 

the system latency is the highest of all task computa-
tion and communication delays. Consequently, the 
following is an expression for the joint computation 
offloading and task migration optimization problem

Subject to:

(18)

(19)

(20)

(21)

(22)

Table 1 lists the definitions and notations used in this 
paper. The challenge of optimization, Multiple variable 
constraints, makes JCOTM a non-convex mixed-integer 
linear programming issue. The correlation between the 
variables makes it challenging for us to solve it. As a re-
sult, we provide a proposed technique based on Deep 
Reinforcement Learning (DRL) and model the original 
problem as a Markov Decision Process (MDP) [52].

Table 1. Notations used in this paper

Notation Definition

U, N Index set/number of users

M, m Index set/number of RSUs

p, P Index set/number of traffic areas

l, L The set/number of channel gain states

xnm (t) xnm (t) = 1 if task n is offloaded to server m at time slot 
t, otherwise, xnm = 0

R Coverage range of one RSU

βn Required number of CPU cycles of task n
αn Data size of task n
γn max delay limit of task n

γl
The l-th state value after the channel gains 

discretization

Pr(l'│l) Transition probability from location l to l' of 6G users

dn,m
-r Pass loss

gn
m Small-scale fading

Γn
m (t)

Channel gain of the communication link between 6G 
user n and RSU m at time slot t

bn
m (t) Bandwidth of the link between 6G user n and RSU m 

at time slot t
ψgs, hs (t) Transition probability from state hi to hj of Γn

m (t)

σ2 Gaussian white noise power

Pn Transmission power of 6G users n
Tn

comm, Tn
comp Communication/computation delay of task n

Rn
m (t) Data transmission rate from 6G user n to RSU m
fm Computation capability of server m

En
comm, En

comp Communication/computation energy consumption 
of task n

ξt, ξe Scalar weight of delay/energy consumption

μ The effective switched capacitance

4.	 	OPTIMIZING COMPUTATION OFFLOADING 
BASED DRL

Reinforcement Learning (RL), a subfield of artificial 
intelligence, is the third machine learning technique, 
following Unsupervised Learning (UL) and Supervised 
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Learning (SL). Reinforcement learning involves an 
agent interacting with its surroundings to learn what 
actions would result in the greatest reward [53]. In su-
pervised and unsupervised learning, the data is static 
and does not require interaction with the environ-
ment, such as picture recognition. The deep network 
can learn the difference between samples by iterative 
training if sufficient samples are provided. However, RL 
is a dynamic and interactive learning process, and con-
stant contact with the environment also generates the 
necessary data.

As a result, reinforcement learning incorporates 
more objects, such as action, environment, state transi-
tion probability, and reward function, than supervised 
learning and unsupervised learning. As a result, when 
the complexity of a problem approaches that of the ac-
tual world, Reinforcement Learning may solve it more 
effectively [54]. Generally, there are two reinforcement 
learning algorithms: model-based and model-free. 
Model in this context refers to the environment's mod-
el. The primary distinction between the two algorithms 
is whether the agent knows the environment model. 
Model-based has the advantage of allowing the agent 
to pre-plan the action path based on the features of 
the known environment. However, it is challenging to 
get the desired outcome because of the discrepancy 
between the learned model and the actual world [55]. 

Consequently, Model-Free is frequently simpler to set 
up and modify. Value-based, policy-based, and Actor-
criticism are the three types of model-free algorithms. 
Policy-based algorithms model and learn the policy di-
rectly, whereas value-based algorithms learn the value 
function or the action-value function to acquire policy 
[56]. The benefits of the other two approaches are com-
bined in the Actor-Critic algorithms. 

While the critic produces the value of the action, the 
actor chooses the course of action based on policy. 
Consequently, the value function and policy impact 
on one another, accelerating the convergence process. 
One traditional value-based reinforcement learning al-
gorithm is Q-learning [57]. After learning the Q-values 
of state-action pairings, the agent chooses the action 
with the highest Q value. The Q-value, which is the ex-
pected reward received by acting a(a ∈ A) under state 
s(s ∈ S) at some time, is expressed as Q* (s, a) = maxπ  
E[rt + γrt+1 + γrt+2

21 +...|st = s, at = a, π] [43]. Q-learning 
optimizes the policy by updating the complete Q-table 
in each iteration, using the Q-table to hold the Q-values 
of all state-action pairs. The formula 

(23)

The current state, s, the action was taken at s, s', the 
state that follows action a, and a', the next possible ac-
tion at the state s', are all represented in Equation (23). 
The parameters indicate the learning rate and discount 
factor α and γ, respectively. The reward results from se-
lecting an action and is denoted by r. Q-learning up-
dates the current Q-value using the maximum Q-value 

of the subsequent stage. Here, the goal Q-value is de-
noted by r + γ max┬a' Q(s', a'), while the estimated Q-
value is denoted by Q(s, a) [58]. It goes without saying 
that when the state and action spaces are too big, the 
Q-table will grow limitless and require more storage 
space. A promising approach, DQN (Deep Q-Network), 
which combines the Q learning algorithm and the 
deep neural network, addresses the issue.

4.1.	 Deep Q-Network Algorithm
One significant development in Deep Reinforcement 

Learning was Google DeepMind Technologies' 2013 
proposal of DQN. Figure 3 depicts the DQN structure. 
DQN has two main advantages over classical Q learn-
ing. First, it changes the Q-table updating process into 
a function-fitting problem, which fits a function rather 
than a Q-table to produce Q values. In DQN, a deep 
neural network predicts Q values. Two neural networks 
predominate.

Fig. 3. The DQN structure

One is the main network, which modifies the param-
eters for every iteration, and the other is the target net-
work, whose parameters are largely fixed [59]. At the 
same intervals, the target network replicates the pa-
rameters from the primary network. As a result, back-
propagation only actually trains the primary network. 
Second, each step of the agent is stored in a unique 
structure called experience replay, which is denoted by 
(s, a, r, s'). During each network training cycle, a batch 
of experiences will be randomly selected from the ex-
perience replay for learning. Q-learning can be learned 
from past and present experiences because it is an off-
policy algorithm [60]. 

Therefore, adding prior experience at random during 
the learning process will increase the neural network's 
efficiency and break the correlation between training 
samples. The following loss function is used for DQN 
updates at iteration i.

(24)

Where the goal Q-value for iteration i is [(r +γ ax┬a' 
)Q(s', a'; θi

- ). Until the agent learns to select the best 
course of action for every state, the neural network is 
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trained, and its parameters are updated by minimizing 
the value of the loss function in (24), which is the dif-
ference between the goal and estimated Q-values [61]. 
In the following subsection, the specifics of our sug-
gested JCOTM algorithm will be displayed.

4.2.	 JCOTM Algorithm 

The optimization issue JCOTM is formulated as a DRL 
process in this subsection. In this case, the agent is a 
central management system, which interacts with the 
surroundings and makes choices. As a result, the agent 
will broadcast the computation offloading decisions to 
every UE after gathering status data from servers and 
automobiles [62]. We must define the three essential 
components of DQN—the State, Action, and Reward 
functions—in our algorithm to use it to solve the prob-
lem we have been given. Action is the potential behav-
ior of each step, whereas the state is used to represent 
the environment model. The reward produced by each 
action, which may be good or negative, is determined 
using the reward function.

•	 State: Sn (t) represents the condition of the user n 
at time slot t. The communication state is described 
by Γn

m (t), bn
m (t), while the user state is described 

by ln (t), αn (t), and βn (t). The channel gain and the 
allotted communication bandwidth between the 
user n and RSU m at time slot t are denoted by Γn

m 
(t) and bn

m (t), respectively. The traffic area where 
the user n is at a time slot t is shown by ln (t),. The re-
maining data amount is represented by αn (t), while 
the necessary number of CPU cycles is represented 
by βn (t). Consequently, sn (t) can be written like this:

(25)

•	 Action: Vector an (t) ∈ RM+1 indicates whether task 
n is offloaded to a server m, which is the binary 
offloading decision. The environment changes 
from its present state to the next state when the 
agent selects one action for each time slot t. an(t) is 
defined as follows

(26)

•	 Reward system: To determine whether the chosen 
course of action is good, the environment provides 
the agent with an indicator value called reward. 
The optimization objective in this article is to re-
duce the system cost, which is composed of energy 
consumption and latency. System cost is hence the 
reward function.

(27)

Fig. 4 depicts the architecture of the JCOTM algo-
rithm, which is based on deep reinforcement learning. 
With the same structure, we employ k-deep neural net-
works (DNN) to forecast binary offloading choices. The 
action is the neural network's output, while the pres-

ent state of the environment is its input [63]. We add 
a decoding layer after the output layer to translate the 
decimal values into binary. The binary action vector's 
dimension in our suggested offloading paradigm is 
N(M+2). We compute the system offloading cost, which 
is the reward function specified in the preceding mate-
rial, for each of the output k binary offloading actions. 
The experience replay unit is initially empty, and a k 
DNNs start with random parameter values θ0

k.

Fig. 4. The architecture of the proposed JCOTM 
algorithm

The agent chooses the best f-loading action to mini-
mize the reward value in each iteration. The algorithm 
regularly updates the network parameters and ran-
domly selects a batch of samples from the experience 
replay unit for training. Gradient descent is used to ad-
just the parameters to minimize the cross-entropy loss 
because we switch the DNN's output from predicting 
the Q-value to action [64].

(28)

Algorithm 1 displays the JCOTM algorithm's pseudo 
code.

Algorithm 1. The JCOTM Algorithm is based on DRL.

1:	 Input: status of the environment State(t)

2:	 Output: decision for offloading Action(t)

3:	 Initialization:

4:		  initialize environment state State(t)

5:		  The offloading procedure begins by using 
		  an identically structured k DNNs.

6:		  initialize experience replay.

7:	 for t = 0,1,...,T: do

8:		  Input the current environment state St.

9:		  Get the outputs of each DNN.

10:		  Apply decoding techniques to the output 
		  values to obtain At

i.

11:		  The offloading decision At is selected  
		  through arg min Rt where by  
		  Rt=arg mini=1,...,k Q(St, At

i).
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12:		  After execution of Action(t) environment 
		  progresses to its new status St+1.

13:		  The experience reply receives a tuple 
		  At, Rt, St, St+1.

14:		  The parameters within DNNs get updated 
		  through data from randomly chosen 
		  training batches.

15:	 end for 

5.	 	ANALYSIS OF SIMULATION

To assess the effectiveness of our suggested JCOTM 
method, we create various simulation tests in this part. 
TensorFlow and Python 3.7 serve as the foundation 
for the simulation environment. First, by modifying 
the model's important parameters, we confirm that 
the JCOTM algorithm is convergent. Next, we assess 
the development of the deep reinforcement learning-
based system offloading technique by comparing the 
average system offloading cost of JCOTM with other 
task offloading policies.

To construct a resource-constrained user-aware MEC 
network, we set the number of users N = 15 and the 
number of RSUs M = 4. Each P = 4 traffic region that 
makes up the route has a single RSU with a coverage 
diameter of R = 1 km. Each UE, edge server, and cloud 
server has CPU frequencies of 0.6×109, 1×1010, and 
1×1012, respectively [65]. The Gaussian white noise 
power σ2 is -88dB, and the overall bandwidth B is 10 
MHz. The data size of job n αn is assumed to be be-
tween 10M and 30M, and ρ = 960 Cycles/Byte is the 
number of CPU cycles needed for one byte [66]. Table 2 
is a list of some important parameters. We will then do 
our simulation exercises and examine the outcomes. 

Table 2. Simulation parameters

Parameter Value
f0 0.6 GHz

fm 10 GHz

fM+1
1 THz

αn [10, 30] Mb

σ2 -88 dB

ρ 960 Cycles/Byte

B 10 MHz

R 1 km

P 4

M 4

N 15

5.1.	 JCOTM Convergence 

JCOTM convergence has been measured by the re-
ward ratio, by dividing the cost of the optimal offload-
ing policy by enumerating the cost of the policy cre-
ated by JCOTM, as the assessment indicator to confirm 
the convergence of JCOTM [67]. Consequently, the al-

gorithm performs better the closer the reward ratio is 
to 1. It is defined as follows: 

(29)

Fig. 5. Convergence of JCOTM Offloading Cost Over 
Iterations

Fig. 4 shows the cost of JCOTM keeps falling and 
eventually stabilizes as the number of simulations ris-
es, in an environment with 20 users. As time goes on, 
JCOTM gets closer to the best policy than before.

5.2.	 Performance of Different 
	 Offloading Policies 

This paragraph evaluates different offloading com-
puting methods within the context. Our suggested 
method, JCOTM, joins the following different offload-
ing rules, which form the basis of this analysis. 

1.	 UE performs all its tasks individually without server 
transfers when performing local computing. The 
system cost results from the weighted sum of ener-
gy expended by devices, together with local com-
putational delays. 

2.	 Using edge servers as processing centers is known 
as edge computing, where all operations are trans-
ferred instead of running on the local devices [68]. 
The system cost includes computational delay 
and transmission delay, together with UE energy 
consumption that happens when data needs to 
be transferred. The concept of Edge computing in 
this application means all workloads are sent to ex-
ecute on a single MEC server. 

3.	 Cloud Computing works just like conventional opera-
tor cloud services, where all functions get processed 
on cloud-based servers. The distance between users 
and the cloud server results in higher transmission 
delays alongside increased energy consumption. 

4.	 The random computing policy makes offloading 
decisions by selecting from available options ran-
domly. A single operation can receive processing 
either within the local network or an edge server, 
or through the cloud infrastructure.

5.	 The VAMECN compute offloading problem receives 
dynamic non-cooperative game model analysis 
through DGTA, which leads to the determination of 
Nash Equilibrium solutions [69]. Each user receives 
a chance to select their optimal offloading strategy 
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per DGTA algorithm iteration since this method 
relies on game theory. Figure 6 shows the system 
offloading expenses of the six different policies 
while the user count varies. It is evident that when 
the number of users for all policies increases, the 
system cost progressively increases as well.

Policies for offloading and the inferior offloading per-
formance are attained by DGTA. Additionally, random 
computing outperforms edge and local computing, but 
cloud computing outperforms random computing. Fur-
thermore, the local computing strategy's offloading cost 
is higher than edge computing's when there are fewer 
than sixteen users, while the opposite is true when there 
are more than sixteen. The rationale is that if several 
workloads are offloaded to the same MEC server [70], 
there will be less computing power available for each 
user, which will raise the cost of computation. 

Fig. 6. The average system offloading cost is 
compared to varying user counts

The average system offloading cost under various 
job data sizes is compared in Fig. 7. Here, we used Fig. 
7 to independently determine the offloading cost. Av-
erage system offloading costs for varying user counts 
are compared. The 10MB to 80MB data size range. The 
average cost of computing offloading progressively 
rises as task data sizes increase. JCOTM outperforms 
the other offloading policies since it optimizes the allo-
cation of system resources [71], whereas other policies 
either do not accomplish the best allocation of system 
resources or only use a specific type of computing re-
sources. Local computing has the highest offloading 
cost, followed by edge computing.

Fig. 7. Average system offloading cost comparison 
for activities with varying data volumes

On the other hand, cloud computing, random com-
puting, and DGTA have reduced average system offload-
ing costs. The effect of varying numbers of MEC servers 
on the average system offloading cost is seen in Fig. 8. 

Fig. 8. Comparison of the average cost of system offloading for varying MEC server counts

Fig. 9. The average system offloading cost is compared to MEC servers with varying computational capacities



576 International Journal of Electrical and Computer Engineering Systems

Naturally, the curves are straight lines parallel to the 
x-axis because local and cloud computing are unaf-
fected. Using Figure 7, as illustrated in Figure 8. Com-
parison of average system offloading costs for tasks 
with varying task data sizes [72]. The edge computing 
offloading cost curve resembles a horizontal straight 
line as the number of MEC servers increases. 

Since all jobs are offloaded to a single MEC server 
for computation under the edge computing policy, 
increasing the number of MEC servers has a minimal 
effect on offloading costs, making this easy to explain 
[73]. The curves drop as the number of MEC servers 
grows since additional MEC servers can minimize mode 
computing delay for random computing and DGTA 
rules. The chart shows that the average JCOTM system 
offloading cost is nearly unaffected by the quantity of 
MEC servers.

One argument is that the cost curve does not exhibit 
a noticeable downward trend because the resource-
constrained environment we have simulated can only 
satisfy the computational needs of every user.

 The average system offloading cost for MEC serv-
ers with varying computing capacities is compared in 
Figure 9. Likewise, the computing power of MEC serv-
ers has little bearing on cloud or local computing. The 
chart indicates that the lower the offloading cost, the 
greater the computational capability of MEC servers. 
Additionally, when MEC servers' processing power in-
creases, the offloading cost's rate of decline progres-
sively slows down.

Compared to the other policies, JCOTM has a lower 
average system offloading cost. Additionally, edge 
computing outperforms cloud computing in terms of 
offloading costs when MEC server processing power 
reaches above 30GHz, and when it reaches over 40GHz, 
edge computing. We infer that the average system 
offloading cost is mostly determined by the computa-
tional capacity of MEC servers.

6.	 CONCLUSION 

This paper addresses the joint multi-user computa-
tion offloading and task migration optimization prob-
lem under user-aware Multi-access Edge Computing 
networks. It considers several factors, including the dis-
tribution of system computing resources, communica-
tion bandwidth, and concurrent multiple computation 
tasks. It then suggests a deep reinforcement learning-
based JCOTM algorithm to reduce system latency and 
energy consumption. To increase communication rate 
and quality and decrease communication latency, we 
completely consider the Non-Orthogonal Multiple Ac-
cess technology in the upcoming 5G network during 
the problem modeling process. 

The algorithm abstracts the offloading policy and 
system resources into the binary action vector and 
environment state, respectively. Additionally, a deep 

neural network is used to forecast offloading choices. 
Until the best offloading choice is found, the agent 
uses several iterative training courses to perceive the 
condition of the environment. We create simulation ex-
periments to assess the algorithm's performance and 
convergence. The simulation findings demonstrate 
that JCOTM outperforms other offloading strategies 
under various experiment situations and converges 
with varying algorithm parameter values. As a result, 
the technique we suggested can successfully lower the 
VAMECN system's overall delay and energy usage.
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Abstract – Cyberattacks are serious threats not only to individuals but also to corporations due to their rising frequency and 
financial impact. Malware is the main tool of cybercriminals, and is always changing, making its detection and mitigation more 
complicated. To counter these threats, this work proposes a Logistic Regression approach that is based on Bayesian Optimization. 
By leveraging advanced techniques like a hybrid feature selection model, the study enhances malware detection and classification 
accuracy and efficiency. Bayesian Optimization fine-tunes the logistic regression model's hyperparameters, improving performance 
in identifying malware. The integration of a hybrid feature selection algorithm reduces dataset dimensionality, focusing on relevant 
features for more accurate classification and efficient resource use, which is suitable for real-time applications. The experimental 
results show amazing accuracy rates of 99.94% for the Ransomware Dataset and 99.98% on the CIC-Obfuscated Malware dataset. 
This proposed model performs better than the conventional detection techniques. With its flexible feature selection and optimization 
techniques, it can keep pace with the dynamic landscape of cyber threats. It, therefore, produces a robust and scalable answer to the 
current cybersecurity issues.
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1.	 	INTRODUCTION

Malware today is a major threat to individuals, 
businesses, and governments. It refers to the viruses, 
worms, or other harmful programs that cause damage 
or exploit systems. Some of the outcomes can be very 
severe and may range from financial loss, data breach, 
identity theft, to national security threats. Another 
reason why the malware threat is on the rise is the so-
phistication of cyber attackers. Hackers develop new 
methods for avoiding detection and increasing the ef-
ficiency of their malware. Advanced Persistent Threats 
are dangerous to the critical infrastructure, health 

care, and education sectors.  Malware requires a multi-
pronged approach to become a threat. Organizations 
should be investing in holistic security approaches that 
include updating their software regularly, installing ro-
bust firewalls, intrusion detection systems, and training 
their employees. Advanced threat intelligence, along 
with machine learning, can enable better malware 
detection and mitigation. Governments and interna-
tional organizations have a crucial role in formulating 
cybersecurity regulations and promoting international 
cooperation. Public-private partnerships can support 
the sharing of threat intelligence, thereby strengthen-
ing collective defenses against malware. Proactive and 
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collaborative cybersecurity measures are essential to 
reduce risks and safeguard digital infrastructure. 

Ransomware is the most widespread malware that 
leads to significant economic and personal losses by af-
fecting a wide range of files of numerous organizations, 
personal users, and medical services. It is malware that 
is programmed to prevent users from gaining access 
to their data from the devices [1]. Ransomware looks 
like a normal file that infects the system from vectors 
like botnets, macros, and email. It remains silent inside 
a computer and only makes itself aware to the user 
after completing the encryption process. According 
to many ventures of cybersecurity in 2019, the total 
sum of money paid by the victim is 11.5 billion. Every 
new victim has fallen to ransomware every fourteen 
and eleven seconds in the years 2019 and 2021 [2]. The 
world is highly connected through the internet, which 
helps to disseminate ransomware in several protocols 
of communication. Ransomware has enabled attack-
ers to launch many campaigns like Ransomware as a 
Service, botnets for hire, etc., to earn money by carry-
ing out illegal activities. Ransomware has become an 
intrinsic part of any cyber-attack by which hackers can 
earn large sums of money by carrying out criminal ac-
tivity [3]. The victim cannot physically remove the hard 
disk to any other unaffected system to access the files. 
The attacker asks for a payment voucher as a ransom 
to give the access back to the victim. A few examples 
of locker ransomware are CTB-locker, and Winlocker [4]. 
Whereas the files of the victim's system are encrypted 
by Crypto Ransomware, making those files inaccessible 
unless decrypted. Removing the hard disk or trying 
to remove ransomware is not going to solve anything 
until the victim gets the decryption key. The ransom is 
mainly asked in Bitcoin [5], which is widely used due 
to anonymity, as the attacker's identity is hard to trace. 
Paying a ransom never guarantees that a decryption 
key will be given to the victim to recover data. Many 
methods used to detect ransomware have low detec-
tion rates. These methods also flag benign samples as 
malignant and thus fail to detect malicious samples 
that have high false positive and negative rates. Cur-
rent techniques require gathering a large amount of 
data by monitoring the system. The disadvantage of 
these techniques is that they consume a significant 
amount of system resources [6].

This study advances malware detection through the 
utilization of a hybrid machine learning model based 
on feature selection:

•	 The aim here is to enhance the effectiveness and 
accuracy of malware detection and classification 
by using features such as feature selection and hy-
brid models. Ultimately, the hybrid machine learn-
ing method aims to enhance the capabilities of in-
trusion detection systems by enhancing malware 
categorization accuracy.

•	 With a number of methods including Support 
Vector Machine and Naïve Bayes, malware can be 

investigated in comprehensive manners to study 
the different malware categorization approaches. 
Therefore, the best effective method which is best 
in detecting precisely classifying malware cases 
would be found through this project. 

•	 This paper adds to the development of more ro-
bust and efficient methods of countering cyber 
threats as a result of the fusion of hybrid feature se-
lection with the assessment of multiple methods.

The paper's subsequent sections follow this struc-
ture: Section II explores the previous works in this 
field. Section III examines various machine learning 
techniques, highlighting their strengths and limita-
tions. In Section IV, the datasets used in the study are 
introduced, including details about the Ransomware 
dataset and CIC-Obfuscated Malware datasets. Section 
V delves into data visualization and feature selection 
techniques to enhance dataset understanding. Section 
VI introduces the proposed algorithm aimed at improv-
ing ransomware detection interpretability. Section VII 
covers the experiments conducted with the Ransom-
ware and CIC-Obfuscated Malware datasets, present-
ing the results comprehensively. Finally, Section VIII 
provides concluding remarks and suggests potential 
avenues for future research.

2.	 	RELATED WORKS

This section is dedicated to the previous literature 
works on malware classification and analysis. Ganfure 
et al. authors state that [7] ransomware attacks repre-
sent a substantial risk to businesses, but current detec-
tion methods frequently prove inadequate. The RTrap 
framework introduces an innovative approach employ-
ing machine-learning-generated decoy files to swiftly 
identify and restrict ransomware. By strategically dis-
persing decoy files across directories, RTrap entices 
ransomware, while a lightweight observer monitors 
these files continuously. Once detected, an automated 
response is activated to promptly neutralize the threat. 
Empirical findings underscore RTrap's efficacy, as it suc-
cessfully identifies ransomware with minimal data loss, 
underscoring its promise in effectively countering ran-
somware dangers. H Bakır & R Bakır, the authors state 
that [8] Android malware detection has received signifi-
cant attention, yet feature extraction has been relative-
ly overlooked in machine learning-based methods. Ad-
dressing this gap, the authors introduce DroidEncoder, 
an innovative autoencoder-based model for Android 
malware classification. Using three distinct autoencod-
er architectures, the authors extract features from a vi-
sualized dataset containing 3000 malicious and benign 
Android apps. Through experiments involving various 
machine learning algorithms, the authors approach 
demonstrates superior performance across multiple 
metrics, validated through cross-validation. S Gulmez 
et al. state that [9] the escalating threat of ransomware 
attacks necessitates advanced detection systems be-
yond traditional signature-based approaches. Existing 
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methods often rely on the machine or deep learning 
models to analyze dynamic features like API call se-
quences and DLLs. However, these methods may over-
look crucial information or fail to capture the sequence 
relationship between features. Introducing XRan, a 
novel ransomware detection system, which leverages 
Explainable Artificial Intelligence (XAI) techniques to 
enhance interpretability. XRan utilizes Convolutional 
Neural Networks (CNNs) for detection and employs XAI 
models such as LIME and SHAP to provide transpar-
ent explanations. Experimental results show that XRan 
achieves a true positive rate of up to 99.4%, surpassing 
state-of-the-art methods. DW Fernando & N Komni-
nos, the authors introduce [10] FeSAD, a framework 
designed to enable machine learning classifiers to ef-
fectively detect evolutionary ransomware. It comprises 
three layers - feature selection, drift calibration, and 
drift decision - ensuring reliable classification of con-
cept drift samples. FeSAD demonstrates effectiveness 
in detecting drifting samples and extending the classi-
fier's lifespan. S Sivakumar et al., the authors introduce 
ML-MD in this study [11], a machine learning-based 
strategy for categorizing malware using static meth-
ods. It employs principal component analysis (PCA) to 
extract dataset characteristics and introduces a Modi-
fied Particle Swarm Optimization (MPSO) algorithm 
for enhanced malware detection. Experimental results 
demonstrate the superior accuracy and detection rate 
of the ML-based MPSO technique compared to alterna-
tive approaches on benchmark datasets. SM Florence 
et al., the authors introduce [12] a machine learning 
classification model to combat the rising threat of cryp-
to-ransomware. It focuses on specific network traffic 
features, particularly UDP and ICMP, and incorporates 
feature selection to improve efficiency without sacrific-
ing accuracy. The experiment employs decision trees 
and random forest algorithms, combined with behav-
ioral analysis and honeypot deployment, for effective 
ransomware family classification.  

3.	 	MACHINE LEARNING

It is a sub-discipline of computer science that focuses 
on using data and algorithms to simulate the way hu-
mans learn and incrementally improve their precision. 
These algorithms are used to process data, learn from 
it, and then make decisions, and predictions, iden-
tify patterns, and cluster based on the data collected. 
Machine learning can be broadly classified into three 
types: supervised, unsupervised, and semi-supervised 
learning [13]. In supervised learning, target labels and 
classes are known in advance, which guides the learn-
ing process. However, in unsupervised learning, the 
target class is completely unknown. Semi-supervised 
learning combines features of both supervised and un-
supervised methods. The hybrid algorithm proposed in 
this study seeks to overcome the drawbacks of previ-
ous approaches [14]. Algorithms examined in this re-
search are as follows, along with their advantages and 
disadvantages.  

3.1. 	 Naïve Bayes

This algorithm is a probabilistic classifier based on 
Bayes' Theorem [15], a statistical formula that explains 
the connection between conditional probabilities. Na-
ive Bayes classification is very useful because it is fast 
and easy to use, especially with datasets that have 
many features. Bayes' Theorem calculates the likeli-
hood of an outcome based on previous occurrences in 
similar circumstances. This algorithm can be explained 
as a probabilistic classifier which is obtained from the 
application of Bayes Theorem. 

In equation (1), y= Class variable, & X1……Xn= De-
pendent Vector of features.

Naïve Bayes classifiers are good in simplicity, efficien-
cy, and scalability. They are easy to implement, so they 
are good for quick deployment and prototyping. In ad-
dition, they are computationally efficient, especially for 
large datasets with a lot of features, due to their simple 
probabilistic approach [16]. Additionally, they can man-
age big sets of data effectively. However, these classifiers 
have some drawbacks, like the assumption that features 
are independent, which isn't always true in real data 
and can lead to mistakes, especially with features that 
are closely related. They also struggle with how features 
are spread out, doing very badly in cases where feature 
connections are complicated or when the probability 
method used doesn't fit the data well [17].

3.2.	 Support Vector Machine (SVM)

SVM is an algorithm that operates by training on a 
particular dataset to make precise predictions and ex-
trapolate insights to the rest of the data. It falls under 
the supervised learning category of machine learning 
and is commonly employed for tasks such as data anal-
ysis, pattern recognition, regression, and classification. 
The primary goal of SVM is to identify a hyperplane 
within an N-dimensional space that effectively sepa-
rates data points into two distinct categories [18]. SVM 
linear kernel function is expressed as (x, x'), which has 
been used for analysis

SVM has some advantages, including excelling in high-
dimensional spaces and being applicable in situations 
with a large number of features; they are quite versatile, 
applicable to many kinds of data, both numeric and cat-
egorical, and in various data distributions; it resists over-
fitting remarkably, especially in high dimensional space, 
due to their ability to maximize the margin of classes; in 
addition, SVM can handle non-linear data [19]. SVM has 
some limitations, it can be computationally expensive, 
particularly with large datasets or non-linear kernels, 
due to their computational complexity; sensitivity to 
parameter tuning is another concern, as SVMs require 
careful selection of hyperparameters like kernel type 
and regularization parameter [20], which can greatly in-

(1)
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fluence performance; their lack of interpretability poses 
challenges, as the decision boundary produced by SVMs 
can be complex and difficult to interpret, hindering un-
derstanding of the underlying decision-making process.

Fig. 1 represents the margin of SVM, which is used for 
the classification of data points.

Fig. 1. Margin of SVM

3.3.	 Random Forest

It is a strong and adaptable tool in the field of ma-
chine learning, used for both regression and classifi-
cation tasks across many applications. This algorithm 
creates a group of decision trees, called a "forest." Each 
tree in this forest is trained separately using a method 
called bagging. Bagging [21], in simple terms, means 
using the unique strengths of different models to make 
the group better overall. By combining the predictions 
of many trees, Random Forest can be more accurate 
and reliable than just one decision tree.

The formula of entropy is presented in equation (2).

(2)

Information Gain = E (Parent) – E (Parent | Child), E= 
Entropy, p= probability.

For final evaluation, majority/hard voting method is 
used, the formula of this method is shown in equation (3).

(3)

Where ŷ = class label, Cm = set of classifiers, the class 
label of each classifier is predicted by majority voting.

Random Forest is strong in different dimensions and 
typically gives high accuracy across multiple datasets, 
thus avoiding the overfitting phenomenon and com-
prehending complex patterns of the data. The strength 
against overfitting comes from methodologies like boot-
strap sampling and random selection of features [22], 
which causes heterogeneity among the trees and in-
creases generalization. But it has some limitations. High 
computational complexity, especially with large datasets, 
causes longer training time and resource usage [23]. 

3.4.	 Logistic Regression

This method is used for binary classification, meaning 
it predicts the likelihood of a yes or no result based on 
one or more factors. It's widely used in areas like health-
care, finance, and marketing because it's straightfor-
ward to grasp. This method uses a special function to 
show the relationship between the outcome and the 
factors, and it limits the predictions to a range from 0 
to 1, which represents probabilities [24]. 

Imagine a dataset with pairs (x, y). Here, x is a matrix 
with m rows and n columns, where each row repre-
sents a sample and each column is an attribute of that 
sample. The y part is a list with m items, each match-
ing a label for the samples in x. Equation (4) defines the 
weight matrix, which is used for generating a random 
initialization. 

(4)

Then pass the output to the link function which is 
shown in equation (5)

(5)

Then the cost function is calculated by utilizing equa-
tion (6) 

(6)

The updating of weights is done as per the derivative 
of the cost, the formulas are shown in the equation (7) 
and (8).

(7)

(8)

Logistic regression helps us figure out the chance 
that a data point belongs to either class '0' or '1', using 
some values w and x. The key part is the exponential 
function inside the sigmoid function [25], which makes 
sure the probability is always positive. To keep the 
probability below one, we divide the top number by a 
bigger number. Equations (9) and (10) show us how to 
calculate these probabilities, which we then use to find 
the sigmoid function.

(9)

(10)

Equation (10) is divided by Equation (9) to obtain 
the numerator term, resulting in the sigmoid function. 
Equation (11) defines this sigmoid function.

(11)

Logistic Regression is highly valued for its simplicity, 
thus being a first choice in rapid prototyping and result 
interpretation. Its coefficients are expressed as odds 
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ratios, and hence, provide direct information about 
the effects of the predictor variables on the outcomes, 
which enhances interpretability [26]. In addition, it is 
very robust to noise and remains stable in real scenar-
ios, making it an excellent candidate for many applica-
tions. It does have some limitations, however. 

It can only capture complex variable relationships, 
especially in scenarios with interactions or non-linear 
effects [27]. Overfitting is a concern, particularly with 
numerous predictor variables relative to observations.  

Fig. 2 represents the curve of logistic regression.

Fig. 2. Logistic Regression Curve

3.5. Logistic Regression

Bayesian optimization is an intelligent way of search-
ing for the best parameters of complex problems with-
out explicit formulas. It relies on a method based on 
probability, quickly searching through all options and 
finding the best for making a task better. It works very 
well if each option is to be tested at great cost or with 
significant time consumption. Unlike the grid and ran-
dom search, Bayesian optimization learns the past tests 
to make this search faster. The main part of this method 
is that it starts with a probabilistic model, which creates 
a guess about the best settings, and then it keeps up-
dating this guess through a process called the acquisi-
tion function [28] as it learns more. It is one of the most 
powerful ways to optimize functions [29], Equation (12) 
is used to determine the next sampling point.

(12)

Where, u = acquisition function, D1:t-1= the total t 
samples.

There are mainly three types of acquisition functions: 
Upper Confidence Bound (UCB), Probability of Improve-
ment (PI), and Expected Improvement (EI). The EI acts as 
a guiding metric during the optimization process, trying 
to balance exploration of new configurations with ex-
ploitation of the already identified good ones. It helps in 
an efficient search for optimal hyperparameters. Equa-
tion (13) defines the expected optimization process.

(13)

Where, µ[x*] = mean value of data point x, σ[x*]= vari-
ance value of data point x, β= controlling parameter of 
the degree of exploration, f[x* ]= normal distribution, 
f[ẋ]= current maxima.

Bayesian optimization does extremely well in opti-
mizing functions, given its efficiency to strike a balance 
between exploration and exploitation, adaptability by 
dynamic updates of the probabilistic model, robust-
ness with noisy data, and its ability to follow the pur-
suit of global optima. It converges to solutions quickly, 
adapts itself according to changes in the objective 
function landscape, does not have any problems in 
dealing with noisy objective functions, and can seek 
global optima via probabilistic predictions iteratively 
[30]. It has limitations regarding computational cost, 
sensitivity to initial conditions, surrogate model com-
plexity, and suitability for smooth functions. It is com-
putationally expensive, especially for large-scale tasks 
or complex models, thus limiting scalability. Sensitivity 
to initial conditions and surrogate model hyperparam-
eters may impact its performance [31].

4.	 DATASET DESCRIPTION

The Ransomware dataset consists of 156 features 
with 1534 samples, among them 952 goodware and 
582 ransomware samples of 11 different ransomware 
families [32]. The collected samples represent the most 
well-known variants of ransomware encountered re-
cently. Each ransomware is clustered into a well-known 
ransomware family. Each ransomware sample was 
checked with VirusTotal results. Most of the ransom-
ware samples belong to crypto-ransomware including 
Critroni, CryptoLocker, CryptoWall, etc. Fig. 3 encom-
passes the total count of instances from various ran-
somware families. 

Fig. 3. Ransomware Family
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Table 1. Description of CIC-Obfuscated Malware 
dataset

Malware Family Malware Name Count

Spyware

180Solutions 200

Gator 200

TIBS 141

Coolwebsearch 200

Transponder 241

Trojan Horse

Zeus 195

Refroso 200

Emotet 196

Reconyc 157

scar 200

Ransomware

Shade 220

Ako 200

Conti 200

MAZE 195

Pysa 171

5.	 FEATURE SELECTION

Feature selection is a method of aiding in the goal of 
creating a more accurate prediction model. This meth-
od helps in choosing features to provide better accu-
racy while requiring less amount of data. The main ob-
jective of feature selection is to provide cost-effective 
and faster predictors, improve prediction performance, 
and give a better comprehension of the fundamental 
process of generating data [34]. There are mainly three 
methods that are used in this paper. 

5.1.	Variance  Threshold

The most simple baseline method of feature selec-
tion is the Variance Threshold. It removes the features 
whose threshold does not meet up and removes all 
features with zero variance by default. Equation (14) is 
utilized to calculate the variance.

(14)

5.2. Pearson Correlation Coefficient

The measurement of the strength of the relationship 
between two variables and the association between 
them is defined as the Pearson correlation coefficient 
[35]. Pearson correlation is used to evaluate the linear 
dependency of the dataset, which is either positive 
or negative. The value it returns lies between -1 to 1. 
Equation (15) is the formula of Pearson correlation.

(15)

Where, r= Pearson correlation coefficient, x= values 
in the x set, y= values in the y set, n= total number of 
values of samples Y.

6.	 PROPOSED ALGORITHM

Ransomware or malware families create major se-
curity risks to critical infrastructures. Malicious attacks 
cause catastrophic harm to web or mobile applications 
and data centers of various businesses and industries. 
Traditional methods are not adequate to handle so-
phisticated attacks [36]. In this paper, the proposed al-
gorithm is based on Bayesian optimization and Logistic 
Regression algorithm. The best parameters for predic-
tion are selected by the Bayesian optimization tech-
nique. The classification is done by optimized logistic 
regression. Bayesian optimization improves the per-
formance of Logistic Regression in hybrid models by 
effectively tuning its hyperparameters, leading to en-
hanced performance and generalization. Logistic Re-
gression relies on hyperparameters like regularization 
parameters and penalties, which significantly impact 
its functionality. Bayesian optimization efficiently navi-
gates through the hyperparameter space to identify the 
best combination that maximizes performance metrics 
such as accuracy or F1-score [37]. Through iterative as-
sessment of different configurations using a validation 
set, it steers the search towards hyperparameter values 
that enhance generalization. Unlike conventional grid 
or random search methods, Bayesian optimization dy-
namically selects promising configurations, resulting in 
quicker convergence towards optimal solutions. This 
adaptability proves advantageous, particularly in sce-
narios involving high-dimensional spaces or intricate 
models like Logistic Regression. Moreover [38], Bayes-
ian optimization seamlessly integrates with ensemble 
techniques, further boosting overall predictive accura-
cy. Fine-tuning individual models within the ensemble 
elevates the hybrid model's effectiveness across.

Logistic Regression models require the careful tuning 
of multiple hyperparameters to achieve optimal perfor-
mance. One of the critical hyperparameters is the Regu-
larization Strength parameter (C). This parameter regu-
lates the trade-off between fitting the training data 

closely and preventing overfitting by controlling the 
strength of regularization. A lower value of C increases 
the regularization strength, which helps in reducing 

CIC-Obfuscated malware dataset always focuses on 
representing scenarios of the real world as closely as 
possible by using malware that is predominant in the 
world. The dataset is made off of mainly three malware 
families Spyware, Trojan Horse, and Ransomware [33]. 
The dataset is being made from 50% benign and 50% 
malignant memory dumps. There are a total of 5832 
samples with 57 features, where 2916 are malignant 
and 2916 are benign samples. The dataset is broken 
down in the Table 1.
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the complexity of the model and preventing overfit-
ting, whereas a higher value of C reduces the regu-
larization effect, allowing the model to fit the training 
data more closely. Another important hyperparameter 
is Maximum Iterations. This parameter specifies the 
maximum number of iterations allowed for the solver 
to converge. It ensures that the optimization process 
terminates within a reasonable time frame without 
compromising convergence accuracy. If the number of 
iterations is set too low, the solver may not converge, 
leading to suboptimal solutions. Conversely, setting 
it too high might result in unnecessarily long training 
times without significant gains in accuracy. Therefore, 
finding a balanced value for Maximum Iterations is cru-
cial for efficient and effective model training. Random 
State is another vital hyperparameter. It establishes 
the random seed for reproducibility, ensuring consis-
tent results across different model runs by initializing 

the random number generator. This consistency is 
particularly useful for debugging, testing, and com-
paring models under the same conditions. By setting 
the Random State, researchers and practitioners can 
ensure that their experiments are repeatable and that 
the results are not influenced by random fluctuations. 
Each parameter plays a significant role in balancing the 
trade-off between model complexity and accuracy, 
ensuring timely convergence, and maintaining repro-
ducibility [39]. Proper tuning of these hyperparameters 
can significantly enhance the performance of Logistic 
Regression models, making them more reliable and ef-
fective for various applications. 

Fig. 4 illustrates the framework of the proposed model. 
Initially, the dataset undergoes a feature selection pro-
cess, after which the refined dataset is processed by the 
proposed model to achieve optimal classification results.  

Fig. 4. Workflow of Proposed algorithms over Dataset

Algorithm 1: The Proposed Bayesian-based Logistic 
Regression (BO_LR) Algorithm

Input: The dataset be X=[X1, X2…….Xn] 

The Target variables Y= [Y1, Y2… Ym]

Output: Classification report for each target variable.

1:	 Initialize the dataset X=[X1, X2…….Xn], 
	 Target variables Y= [Y1, Y2… Ym], iteration i

2:	 Compute objective function by using Bayesian 
	 optimization 
	 Xt=argmaxx u(X|D1:t-1)

3:	 Compute acquisition function  
	 to select best parameters 

	

4:	  Set i=0

5:	 while i < n do

6:	 Compute weight matrix, link function 
	 a = w0 + w`1 x1+w`1 x2+...w`1 xn 
	 ŷi = 1⁄(1+e-a)

7:	 Compute cost function by utilizing link function 

	

8:	 Update the weight 
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Algorithm 2: Hybrid Feature Selection algorithm Us-
ing Variance Threshold and Pearson Correlation (HFS)

Input: The dataset be X=[X1, X2…….Xn] 

The Target variables Y= [Y1, Y2… Ym]

Output:	 Total number of column with high 
	 correlation value.

1:	 Initialize the dataset X=[X1, X2…….Xn], 
	 Target variables Y= [Y1, Y2… Ym], iteration i, j

2:	 Set variance threshold 
	 sel= VarianceThreshold(threshold=(.8 * (1 - .8)))

This step eliminates features with low variance, retain-
ing only those that meet the variance threshold. Features 
with variance above the specified threshold are included 
in the set c_constant. The number of constant features 
removed is displayed. The function identifies features 
that exhibit high correlation with one another. Features 
with a coefficient exceeding the specified threshold are 
deemed highly correlated and included in the set col_
corr. The final selection of features consists of those that 
passed the variance threshold and are highly correlated 
which are represented as selected_features. These se-
lected_features are then returned and displayed. By fol-
lowing the algorithm, redundant features are effectively 
removed, resulting in a more efficient and interpretable 
dataset for subsequent analysis. By following this algo-
rithm, redundant features are effectively removed, re-
sulting in a more efficient and interpretable dataset for 
subsequent analysis.

Bayesian optimization-based logistic regression pro-
vides a flexible solution to address the limitations of 
existing models like Naive Bayes, SVM, Random For-
est, and traditional logistic regression. While traditional 
logistic regression struggles with non-linear patterns 
due to its linear assumption [40], Bayesian optimiza-
tion empowers logistic regression to integrate non-lin-
ear transformations and feature engineering, thereby 
enhancing its ability to capture complex relationships 
and enhance predictive accuracy. Furthermore, Bayes-
ian-based logistic regression tackles challenges related 
to noisy or irrelevant features, commonly encountered 
by Naive Bayes classifiers and traditional logistic re-
gression models, through the incorporation of uncer-
tainty estimates and robust regularization techniques. 
It also effectively handles class imbalances in datasets, 
a common issue for SVMs and Random Forests [41], 
by dynamically adjusting class weights or integrating 
sampling techniques. Crucially, Bayesian-based logistic 
regression maintains the interpretability of traditional 
logistic regression, offering stakeholders insights into 
prediction factors. In essence, Bayesian-based logistic 
regression provides adaptive hyperparameter tuning, 
improved non-linearity modeling, resilience to noisy 
data, better management of imbalanced datasets, and 
interpretability, rendering it a versatile and efficient ap-
proach for classification tasks [42].

The Hybrid Feature Selection (HFS) algorithm lever-
ages the strengths of both Variance Threshold and 
Pearson Correlation to balance dimensionality reduc-
tion and feature diversity. This complementary strat-
egy creates a more efficient, interpretable, and robust 
feature set. By integrating these two methods, the 
HFS algorithm enhances the performance of machine 
learning models, leading to improved accuracy, stabil-
ity, and computational efficiency.

3:	 Compute variance threshold 

	 sel.fit_transform(X) 

	 sel.get_support() 

	 c_constant= [column for column in X.columns 

	 if column not in X.columns[sel.get_support()]]

4:	 Define correlation function 

	 def correlation(data, threshold)

5:	 Get all the names of correlated columns in a set

	 col_corr = set() 

	 corr_matrix = X.corr()

6.	 for(i=0, i< corr_matrix.columns, i++)

7.	 for(j=0, j<i, j++)

8.	 if abs(corr_matrix.iloc[i, j]) > threshold

9.		  colname = corr_matrix.columns[i]  

10.		  col_corr.add(colname)

11.	 end if

12.	 end for

13.	end for

14.	Compute the correlation function

		  corr_features = correlation(X, 0.7)

15.		  fea_list= list (corr_features)

16.	selected_features= c_constant + fea_list

17:	Return columns with high correlation and less 

 	 threshold value

9:	 Set i=i+1

10:	end while

11:	Calculate the Probability using sigmoid function 

	

12:	Return classification report for each target variable.
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Fig. 5. Heatmap of the dataset with 156 features

The experimental results of the proposed BO_LR al-
gorithm, compared with various traditional algorithms 
on the Ransomware dataset, are shown in Table 2. This 
comparison highlights the performance differences 
and demonstrates the advantages of the BO_LR algo-
rithm over conventional methods in terms of efficiency 
and accuracy on this specific dataset.

Table 2. Classification of RANSOMWARE Dataset 
(With 156 features)

Algorithms Accuracy Precision Recall F1-Score

Logistic Regression 81% 80% 76% 79%

SVM 62% 54% 79% 64%

Random Forest 90% 91% 87% 86%

Naïve Bayes 80% 67% 80.2% 83%

BO_LR 93% 92% 92.8% 93.1%

The Fig. 6 below offers a comprehensive comparison 
of various evaluation criteria between the proposed 
model and other well-established machine learning 
models. It clearly illustrates how the proposed model ei-
ther outperforms or matches traditional models across 
key evaluation metrics. By showcasing these metrics 
side-by-side, the figure effectively highlights the robust-
ness, efficiency, and reliability of the proposed model 
compared to other machine learning approaches.

Fig. 6. Comparison over Ransomware Dataset with 
156 features

By employing the proposed Algorithm 2, the hybrid 
feature selection algorithm, the number of features 
was successfully reduced to 56. This refined feature set 
includes those with high variance and low correlation, 
resulting in better outcomes compared to the initial 
feature set. The heatmap shown in Fig. 7 depicts the 
correlation between features after applying the pro-
posed algorithm and removing unnecessary ones. This 
visual representation demonstrates the algorithm's 
success in retaining only the most relevant and non-
redundant features, thereby improving the dataset's 
efficiency and interpretability.

The experimental results on the Ransomware data-
set, which include an analysis of 56 features, are pre-
sented in Table 3. This detailed comparison showcases 
the performance of different algorithms on this data-
set, highlighting the effectiveness of the feature selec-
tion process and its impact on the overall results.

7.	 EXPERIMENTAL RESULT

The suggested algorithm's detection performance is 
tested using datasets of ransomware and CIC-Obfus-
cated malware [43]. The proportion of testing samples 
to training samples is 70:30. The environment of the 
Jupyter Notebook is used for the implementation. Ma-
chine learning primarily uses two kinds of classification 
techniques: binary and multiclass classification.  Binary 
classification is the process of classifying data into two 
groups, each designated as either zero or one.

The Ransomware dataset an initial 156 features, has 
been analyzed using the algorithm developed in the 
course of the study in order to improve the detection 
rate of ransomware attacks. The relationships between 
the attributes and the target variable can be very well 
ascertained from the heatmap of Fig. 5, which shows 
the most useful attributes for an analysis. Such an ap-
proach to the problem minimizes the number of di-
mensions that need to be considered, defines target 
variables, and enables effective detection and efficient 
classification models to be built. 
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Table 4. Classification of CIC-Obfuscated Malware 
dataset (57 Features)

Algorithms Accuracy Precision Recall F1-Score

Logistic Regression 96% 97% 95% 95.3%

SVM 94% 94.5% 92% 93%

Random Forest 97% 96% 95% 95.7%

Naïve Bayes 91% 92% 93% 94%

BO_LR 98% 99% 97% 98%

The Fig. 9 below provides an in-depth analysis of dif-
ferent evaluation metrics for the proposed model com-
pared to established models using the CIC Malware 
dataset. It highlights how the proposed model either 
exceeds or matches the performance of traditional 
models. This comprehensive comparison emphasizes 
the significant advantages of the proposed model for 
scenarios that demand high accuracy and efficient real-
time processing.

Fig. 9. Comparison over CIC Malware Dataset  
(57 features)

Table 3. Classification of RANSOMWARE Dataset 
(With 56 features)

Algorithms Accuracy Precision Recall F1-Score

Logistic Regression 89% 87% 88.12% 88.3%

SVM 94% 95% 94.4% 96%

Random Forest 98% 97% 97.2% 97.4%

Naïve Bayes 91% 92% 94% 94.3%

BO_LR 99.94% 100% 99.75% 99.85%

The Fig. 8 below presents a thorough comparison 
of various evaluation criteria between the proposed 
model and other established models. It demonstrates 
how the proposed model either surpasses traditional 
models across key evaluation metrics. This detailed 
evaluation underscores the practical benefits of adopt-
ing the proposed model for applications requiring high 
accuracy and efficient real-time performance.

The second experiment was conducted on the CIC 
malware dataset, which comprises 57 features. The re-
sults are shown in Table 4, which were obtained using 
the raw dataset without applying any feature selection 
methods. This provides a baseline for evaluating the 
impact of feature selection on model performance in 
subsequent experiments.

Fig. 8. Comparison over Ransomware Dataset with 
56 features

Fig. 7. Heatmap of the dataset with 56 features
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After implementing the hybrid feature selection al-
gorithm, the number of selected features was reduced 
to 19. This optimized feature set preserves the most 
informative and significant attributes while minimiz-
ing redundancy. Table 5 below shows the performance 
results of the proposed BO_LR algorithm alongside tra-
ditional algorithms, evaluated on this refined feature 
set. By concentrating on these 19 features, the models 
achieve more efficient and accurate predictions. This 
comparison underscores the effectiveness of the hy-
brid feature selection in enhancing the dataset's qual-
ity, which in turn leads to superior performance of the 
BO_LR algorithm compared to traditional methods.

Table 5. Classification of CIC-Obfuscated Malware 
dataset (19 Features)

Algorithms Accuracy Precision Recall F1-Score

Logistic Regression 98% 97% 98% 98%

SVM 96% 97% 94% 95%

Random Forest 99% 98% 94% 96%

Naïve Bayes 96% 95% 93% 94%

BO_LR 99.98% 100% 99.95% 99.96%

The Fig. 10 below presents a detailed comparison 
of various evaluation criteria between the proposed 
model and other traditional models. This discussion 
highlights the differences in performance metrics, 
demonstrating how the proposed model outperforms 
or matches traditional models across key evaluation 
parameters, thus validating its effectiveness and ro-
bustness in handling the dataset.

Fig. 10. Comparison over CIC-Obfuscated Malware 
dataset (19 features)

The data presented in Table 6 illustrates that the pro-
posed method significantly surpasses the performance 
of existing approaches, confirming its superior efficien-
cy over traditional techniques. This validation not only 

Table 6. Comparison over CIC-Obfuscated Malware 
dataset

Study Accuracy Precision Recall F1-Score

[22] 76.8% 77.3% 76.9% 76.7%

[24] 99.8% 99.5% 99.7% 99.8%

[28] 99.4% 99.7% 99.6% 99.5%

[30] 99.4% 99.43% 98.5% 98.9%

[34] 99.43% 99.17% 99.43% 99.6%

BO_LR 99.98% 100% 99.95% 99.96%

The following Fig. 11 provides a comprehensive com-
parison of different evaluation criteria between the pro-
posed model and existing literature. This analysis show-
cases the variations in performance metrics, illustrating 
how the proposed model either exceeds or aligns with 
traditional models across essential evaluation parameters. 
This comparison serves to validate the effectiveness and 
reliability of the proposed model in managing the data-
set, emphasizing its capability to deliver superior or com-
parable results compared to established approaches.

Fig. 11. Comparison over CIC-Obfuscated Malware 
dataset with existing literature

highlights the effectiveness of the proposed approach 
in achieving superior results but also emphasizes its 
ability to exceed benchmarks established by prior re-
search. The findings underscore the method's innova-
tive nature and its capacity to address the challenges 
associated with the dataset more effectively than ex-
isting solutions. The results bolster the case for adopt-
ing the proposed method, showcasing its potential to 
drive advancements in the field by offering enhanced 
solutions and improved performance across relevant 
applications. This comparative advantage suggests 
that the proposed method could lead to substantial 
improvements in practical implementations and con-
tribute significantly to advancing current methodolo-
gies in the domain.
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Bayesian optimization-based logistic regression 
models employ various techniques to decrease com-
putational expenses and improve real-time applicabil-
ity. They strategically explore hyperparameter space, 
focusing on promising regions, thereby achieving 
comparable or superior performance with fewer itera-
tions, leading to reduced computational costs. Bayes-
ian optimization identifies hyperparameters that sim-
plify logistic regression models without compromising 
predictive accuracy, rendering real-time applications 
more viable [44]. Additionally, leveraging specialized 
hardware such as GPUs or TPUs accelerates the optimi-
zation process, facilitating real-time deployment [45].

8.	 CONCLUSION

The paper suggests a framework to identify malware 
through the integration of multiple machine learning 
methods to counter malicious threats. The framework 
consists of preprocessing datasets through feature 
selection techniques and subsequent training of ma-
chine learning classifiers to test these selected datas-
ets. Experimentation results highlight the efficiency 
advantage of the Bayesian optimization-based Logis-
tic Regression algorithm compared to other methods 
in detecting malware instances. The data set utilized 
is relatively limited and perhaps doesn't fully repre-
sent the entire set of malware variants, impacting the 
model's stability. In addition, while Bayesian optimiza-
tion optimizes performance, computational overhead 
can make it inappropriate for real-time deployment in 
resource-constrained settings. Also missing is the im-
plementation of deep learning, leaving the framework 
without validation against higher-order architectures. 
Besides that, the work prescribes forthcoming direc-
tions in the development of the framework, namely 
enlargement of the data with additional examples of 
malware and addition of advanced machine learning 
methodologies such as CNNs or RNNs. All the improve-
ments are aimed at improving the quality and accuracy 
of the detection model. Lastly, the present study is in-
tended to provide assistance in the fight against mal-
ware and improve cybersecurity defenses to be more 
reliable by enhancing the detection mechanism and 
adding advanced machine learning methods.

    For future research, improving the effectiveness of 
the framework against zero-day malware attacks is es-
sential. This may be done by integrating behavior-based 
analysis and anomaly detection techniques that enable 
the model to detect previously unknown threats by 
learning patterns characteristic of malicious behavior, 
instead of depending on known signatures. Increasing 
the dataset size to a more extensive and varied set of 
malware samples, including obfuscation and polymor-
phism varieties, would help the model generalize and 
be more robust. Furthermore, running the detection 
system in a cloud or distributed platform could greatly 
make it scalable and resilient to scale large amounts of 
data in real-time across various endpoints. Such a dis-

tributed method would also enable cooperative threat 
intelligence sharing holistic and future-proof solution 
to the continuing battle against malware.
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Unified Communications Model for Information 
Management in Peruvian Public University
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Case Study

Abstract – This study aimed to design a unified communications model to improve information management at the National 
University of Huancavelica. The research evaluated the implementation of this model, which optimized the distribution of Internet 
connections and ensured the availability, integrity, and confidentiality of information in the university’s various offices and 
campuses. The analysis revealed that the existing network infrastructure, designed in an improvised manner and without considering 
international standards, caused slow access issues and data transmission errors. The implementation of the proposed model showed 
significant improvements: application response times were reduced from 150 ms to 80 ms, the incidence of IP errors decreased from 
25 to 5, and the frequency of unauthorized network access attempts dropped from 70% to 20%. Unlike previous approaches that 
were limited to partial solutions, this model integrates advanced security protocols, network segmentation through VLANs, and 
artificial neural networks for dynamic bandwidth allocation. This model offers a comprehensive solution that can be replicated in 
other institutions facing similar challenges.
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1.	 	INTRODUCTION

Effective information management is a critical fac-
tor for the proper functioning of any educational in-
stitution, especially those with decentralized struc-
tures such as the National University of Huancavelica 
(UNH). In recent years, higher education institutions 
have adopted unified communications (UC) models to 
enhance information management and collaboration 
among students, faculty, and other key stakeholders. 
Ahrens et al. [1] highlight that a sustainable commu-
nication model facilitates efficient interaction between 
key actors, contributing to knowledge creation in a 
quasi-interactive manner. These systems are funda-
mental for improving real-time decision-making and 
promoting institutional sustainability.

Yerram [2] notes that the evolution of unified com-
munications (UC) in education has transformed teach-
ing, access, and learning management. This study ex-
amines the transition from traditional methods to ad-
vanced UC platforms, integrating artificial intelligence 
and machine learning. Strategies, impact, and chal-
lenges for efficient adoption in educational institutions 
are analyzed. Similarly, Rihan et al. [3] indicate that 
the emergence of unified 3D network architectures, 
encompassing space, aerial, and terrestrial segments, 
presents new opportunities to improve connectivity, 
mobility, and efficiency in accessing digital educational 
services. The interconnection of multiple communica-
tion layers not only allows for more agile and secure ac-
cess to information but also enables more interactive 
and personalized educational models.
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Veligodskiy and N. Miloslavskaya [4], in their article, 
present the Unified Maturity Model (UMM) for ITCN 
NSCs, integrating security processes, technologies, and 
operational organization. Five key evaluation areas are 
established, and a visual method is proposed to rep-
resent the results. Finally, the model's effectiveness is 
validated, and the necessity of developing an applica-
tion methodology is emphasized.

Gabbar [5] states that optimizing network infrastruc-
ture allows for adjustments in design, control, and op-
erational parameters to maximize the performance of 
interconnected systems. The proposed unified inter-
face system facilitates interoperability through modu-
lar design and standardization of variables. Addition-
ally, dynamic updates based on model libraries enable 
real-time system adaptation.

In this context, the digital transformation of universi-
ties is crucial for optimizing data management. Wang 
et al. [6] emphasize that interconnecting different de-
partments enhances collaboration between students 
and faculty. Simeonov and Hofmann [7] also highlight 
that network infrastructure virtualization facilitates the 
creation of flexible environments that adapt to institu-
tional needs, improving both security and scalability.

According to Díaz Novelo and Olmos de la Cruz [8], 
institutions must implement risk management meth-
odologies to protect their infrastructures against 
threats such as natural disasters, power failures, and cy-
berattacks. Virtualization, as suggested by Cabañas Vic-
toria et al. [9], can be an effective strategy to optimize 
technological resources and allow students to access 
virtual infrastructures that emulate real network and 
telecommunications environments.

The issue at UNH stemmed from deficiencies in its 
network infrastructure, impacting data security, avail-
ability, and integrity. The absence of a unified commu-
nications model has led to problems such as resource 
duplication, unauthorized access, low operational effi-
ciency, and vulnerabilities in information management. 
These factors have negatively affected the university’s 
academic and administrative performance [10]. In this 
context, Mercado et al. [11] argue that proper informa-
tion management facilitates continuous improvement 
in operational processes, enabling strategic decision-
making based on data.

Studies such as those by Guaranda and Ayón [12] un-
derscore the need for robust and well-managed network 
infrastructures to improve communication and informa-
tion handling in universities. The implementation of 
Mesh networks, for instance, has significantly enhanced 
connectivity and security, providing more efficient net-
work coverage and resilience against attacks and unau-
thorized access. Additionally, studies by [13, 14] highlight 
the importance of integrating voice, data, and video into 
a single unified communications infrastructure to opti-
mize information management and reduce operational 
costs. Unified communications platforms combine mul-

tiple communication channels, such as PSTN, GSM, and 
VoIP, into a single interface, streamlining user interaction 
[15]. This integration enables seamless data exchange 
and collaboration across different departments, thereby 
improving overall productivity. Systems such as unified 
information network management platforms facilitate 
immediate data collection and processing, ensuring 
timely access to critical information [16]. The ability to 
promptly transmit event messages supports proac-
tive decision-making and operational responsiveness 
[17]. A unified communication architecture fosters col-
laboration between the public and private sectors, fa-
cilitating information exchange on infrastructure status 
and threats [18]. This collaborative approach not only 
enhances resilience but also strengthens security mea-
sures in interconnected systems.

Furthermore, recent studies, such as those by 
Gavilanes-Sagnay et al. [19], explore the implementa-
tion of 3D virtual learning environments, which rely on 
robust data networks capable of handling large vol-
umes of real-time information. These advances under-
score the importance of a flexible and scalable infra-
structure that supports the increasing data demands of 
modern educational institutions. Additionally, Ivanov 
et al. [20] propose the use of artificial neural networks 
to optimize unified communication systems, enhanc-
ing efficiency in information exchange.

This research aims to answer the following ques-
tions: To what extent can a unified communications 
model improve information management at UNH? 
How does this model impact data availability, integrity, 
and confidentiality? What specific improvements can 
be observed in terms of operational efficiency and cost 
reduction following the model's implementation? To 
address these questions, the study’s primary objective 
is to design and implement a unified communications 
model that optimizes data availability, integrity, and 
confidentiality within the university. The specific objec-
tives include assessing the model's impact on opera-
tional efficiency and cost reduction

2.	 RELATED WORK

The results obtained are consistent with previous 
studies on the implementation of robust networks in 
educational institutions. Guaranda Sornoza & Ayón 
Baque [12] demonstrated that the implementation of 
Mesh networks in university environments improved 
security and connectivity, aligning with the improve-
ments observed in this study, particularly in reducing 
unauthorized access attempts and enhancing response 
times. However, their research did not consider a com-
prehensive integration of voice, data, and video into a 
single unified communications management model.

Similarly, Rodríguez Preciado [10] emphasized the 
importance of authentication servers, such as FreeRa-
dius, in strengthening security in wireless networks 
for small organizations. His study focused on authen-
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tication optimization to prevent unauthorized access. 
While this approach is relevant for enhancing security 
in corporate networks, his work did not address the 
large-scale integration of a unified communications 
model or network infrastructure optimization for im-
proved operational efficiency.

The study by Gavilanes-Sagnay et al. [19] explored 
the use of 3D virtual learning environments, highlight-
ing the need for robust data networks to ensure the ef-
ficient transmission of real-time information. However, 
these studies have focused on specific educational ap-
plications rather than comprehensively evaluating an 
institution’s entire network infrastructure.

Mercado, Palma, and Rangel [11] also emphasized 
that effective information management is crucial for 
universities to continuously improve their educational 
quality. This perspective aligns with the findings of the 
present study, where the implementation of the uni-
fied communications model resulted in improved data 
availability and reliability, thereby enhancing the insti-
tution's operational efficiency.

Similarly, Ivanov, Koretska, and Lytvynenko [20] sug-
gested the use of artificial neural networks to enhance 
unified communication systems, with the aim of intel-
ligently optimizing information exchange. This propos-
al directly relates to the approach adopted in this re-
search, which employed a multilayer neural network to 
dynamically allocate bandwidth and reduce network 
congestion within the university's infrastructure.

Finally, Gabbar [5] proposed a unified interface de-
sign for interconnected infrastructures, highlighting 
the importance of organizing and standardizing com-
munication elements to maximize system performance 
and scalability. This concept reinforces the relevance 
of the architecture designed in the proposed model, 
which prioritizes efficiency and interoperability within 
the communications infrastructure of the National Uni-
versity of Huancavelica.

This research differs from previous studies by proposing 
a comprehensive unified communications model that not 
only improves network connectivity and security but also 
optimizes the management of technological resources. 
Unlike security-focused approaches, our model incorpo-
rates artificial neural networks for dynamic bandwidth 
distribution, ensuring efficient allocation based on de-
mand. Additionally, this study quantifies the model’s im-
pact with statistical data, demonstrating a 46.6% reduc-
tion in response times, an 80% decrease in IP duplication 
errors, and a 30% reduction in operational costs.

Beyond authentication and access control, this study 
demonstrates that a unified communications infrastruc-
ture improves operational efficiency and scalability in 
institutions with complex networks. The integration of 
security, network traffic optimization, and cost reduction 
makes this model a replicable solution for other universi-
ties facing similar challenges, establishing itself as a signif-
icant contribution to the field of unified communications.

2.1.	 Study Limitations:

Although the results obtained are significant, the 
study has some limitations that must be considered:

Limited Sample of Network Devices.

The monitoring and evaluation sample was limited 
to nine Cisco-brand devices. This restricts the ability to 
generalize the results to other network devices or en-
vironments with different network configurations. Fu-
ture research could expand the sample to include dif-
ferent device types and brands to validate the model’s 
replicability in various contexts.

Focused on a Single Institution.

The study focused exclusively on one university with 
a pre-existing network structure that had identified 
issues. Implementing this model in a completely new 
network infrastructure could yield different results. Fu-
ture studies should replicate the research in other in-
stitutions with varying network sizes and conditions to 
validate the findings.

Short Monitoring Period.

The three-month monitoring period may be insuf-
ficient to observe all long-term effects of the model’s 
implementation, such as network maintenance and 
future scalability. Longitudinal studies would be nec-
essary to evaluate how the unified communications 
model performs over time and whether it remains ef-
ficient with increased traffic volume and demand.

2.2.	 Implications of the Findings

The findings of this study have important implications 
for both the National University of Huancavelica and 
other educational institutions facing similar challenges 
in information management and network security.

Operational and Financial Benefits.

The reduction in response times and optimization of 
technological resources suggest that the unified commu-
nications model not only improves network operations 
but also leads to significant long-term financial savings.

Security Enhancements.

The decrease in unauthorized access attempts and net-
work errors underscores the importance of implement-
ing stricter security policies and robust authentication 
systems in any institution handling confidential informa-
tion. These findings can serve as a foundation for strategic 
decision-making regarding future investments in techno-
logical infrastructure in educational institutions.

Scalability and Future Growth.

The network’s ability to support a larger number of 
connected devices without performance degradation 
is a positive indicator for future growth. This allows for 
service expansion and the adoption of advanced tech-
nologies such as virtual learning, immersive environ-
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ments, or real-time data-intensive applications, which 
can enhance education quality and research capabili-
ties at universities.

3.	 METHOD 

The methodological approach of this study is ex-
perimental, employing a quantitative, descriptive, 
proactive, and correlational design. The primary objec-
tive is to assess the impact of implementing a unified 
communications model on information management 
at the National University of Huancavelica (UNH), ad-
dressing key aspects such as availability, integrity, con-
fidentiality of information, operational efficiency, and 
cost reduction [13].

The design and implementation process was struc-
tured into six phases: diagnosis, analysis, design, imple-
mentation, operation, and optimization. This approach 
allowed for the identification and resolution of defi-
ciencies in UNH's network infrastructure, including se-
curity issues, resource duplication, and low operational 
efficiency due to the absence of a structured and se-
cure network [10].

Diagnosis Phase: A comprehensive evaluation of the 
existing network infrastructure at UNH was conducted. 
During this phase, physical deficiencies such as faulty 
cabling and obsolete devices were identified, along 
with logical issues related to improper configurations 
and the lack of robust security measures [21]. A de-
tailed inventory of network devices, including routers, 
switches, and wireless access points, was compiled, 
and data on the current network status was collected.

A detailed inventory of the existing infrastructure re-
vealed that 60% of the devices were obsolete, and the 
cabling exhibited critical failures affecting connectivity 
in 70% of key areas. Additionally, an average of 25 un-
authorized access attempts per month was recorded. 

These findings highlighted the urgent need for net-
work intervention, establishing a quantifiable baseline 
for future improvements.

Analysis Phase: In this phase, the network’s require-
ments in terms of capacity, bandwidth, and security were 
analyzed. Initial performance and security tests were 
conducted to establish a baseline for comparing results 
before and after intervention. According to Guaranda and 
Ayón [12], this type of analysis is crucial for optimizing in-
frastructure and ensuring adequate connectivity.

Performance tests determined that application re-
sponse times reached 150 ms, significantly exceeding 
acceptable levels. Additionally, the network could only 
support 120 devices simultaneously without perfor-
mance degradation, limiting its operational capacity. 
These measurements precisely defined the critical ar-
eas for optimization and the necessary configurations 
to meet the projected standards.

Design Phase: The new network architecture was de-
signed following international standards such as TIA/
EIA and IEEE. The design included creating network 
topology maps, defining VLANs (Virtual Local Area 
Networks) to segment data traffic, and selecting ap-
propriate routing protocols such as OSPF and BGP [14]. 
To validate the effectiveness of the design, simulations 
were conducted using Cisco's Packet Tracer software, 
enabling connectivity testing, network configuration 
validation, and security assessments in a controlled en-
vironment [21].

The proposed design integrated traffic segmenta-
tion through VLANs, optimizing the use of existing 
infrastructure. Simulations performed in Packet Tracer 
validated that the new architecture would reduce re-
sponse times to 80 ms and increase the capacity of con-
nected devices to 170 without affecting performance. 
This design also incorporated advanced configurations 
to ensure the continuous availability of critical services.

(Source: Authors’ elaboration)

Fig. 1. Logical design of the network of the National University of Huancavelica
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Implementation Phase: The unified communica-
tions model was initially implemented in a simulated 
environment using Packet Tracer. Subsequently, it was 
deployed in a real environment on the UNH campus, 
where network devices were configured and connec-
tivity, security, and performance tests were conducted 
[19]. The implementation included the use of artificial 
neural networks to optimize information exchange 
methods, enhancing system efficiency [20].

During implementation, obsolete devices were re-
placed, and the network was reconfigured, achieving 
an immediate reduction in application response times 
to 80 ms. Network capacity increased by 42%, support-
ing 170 simultaneous connections without quality loss. 
Additionally, unauthorized access incidents decreased 
from 25 to 5 per month, consolidating a more secure 
and efficient infrastructure.

Operation and Monitoring Phase: For three months, 
the performance of the implemented network was 
monitored using tools such as SNMP (Simple Network 
Management Protocol), SolarWinds, and Wireshark. 
Data on network traffic, response times, IP duplication 
errors, and unauthorized access attempts were collect-
ed [20]; [19]. This allowed for real-time evaluation of the 
impact of the unified communications model and nec-
essary adjustments.

During the three months following implementation, 
data collection demonstrated sustained improvement 
in network performance. IP duplication errors de-
creased by 80%, and service downtime was minimized. 
Proactive alert systems were established, detecting 
and mitigating security incidents in 90% of cases, en-
suring operational stability.

Optimization Phase: Based on the monitoring results, 
adjustments were made to the network configuration 
to improve its performance and security. Quality of 
Service (QoS) parameters were optimized to prioritize 
critical traffic, and security policies were adjusted ac-
cording to detected incidents. Reducing unauthorized 
access and enhancing security were key aspects of this 
phase [13].

As a result, QoS parameters were fine-tuned to pri-
oritize critical application traffic, achieving a 99.5% 
availability rate. Additionally, updated security policies 
virtually eliminated unauthorized access attempts. Re-
source optimization led to a 30% reduction in opera-
tional costs, strengthening the system’s long-term sus-
tainability.

Instruments and materials:

•	 Simulation: Packet Tracer software was used to 
simulate the network infrastructure and validate 
the design before physical implementation [21].

•	 Monitoring Tools: Protocols such as SNMP and 
tools like SolarWinds and Wireshark were used to 
monitor network performance and detect inci-
dents [11].

•	 Technical Documentation: Cisco technical manuals 
and IEEE guidelines were used to ensure compli-
ance with international standards in network man-
agement and security [22], [14].

•	 Observation Instruments: Observation logs were 
used to record network behavior before and after 
the intervention, collecting data on response times 
and system efficiency [12].

Data Analysis:

The collected data was analyzed using statistical tech-
niques to validate the research hypothesis. The follow-
ing methods were employed:

•	 Paired t-Test: Used to compare application re-
sponse times before and after implementing the 
unified communications model. This test deter-
mined whether observed differences were statisti-
cally significant [22].

•	 Analysis of Variance (ANOVA): Applied to assess dif-
ferences in the number of supported services and 
connected devices before and after implemen-
tation. This analysis identified the impact of the 
model on network capacity [12].

•	 Proportions Test: Used to compare the frequency 
of unauthorized access incidents before and after 
implementation, measuring the effectiveness of 
implemented security policies [10].

•	 Chi-square Test (χ²): Applied to evaluate the asso-
ciation between model implementation and the 
reduction of IP duplication errors, verifying the ef-
fectiveness of new security policies [19].

•	 Correlation Analysis: Used to assess the relation-
ship between implemented security configura-
tions and the reduction of network incidents. This 
analysis measured the effectiveness of security and 
network performance improvements [22].

4.	 RESULTS

The assessment of the Unified Communications Mod-
el’s impact was conducted through a comprehensive 
pre- and post-implementation performance evalua-
tion, leveraging advanced network analysis tools such 
as Wireshark and SolarWinds. The evaluation focused on 
critical performance metrics, including latency, packet 
loss, bandwidth utilization, and connection stability. 
Prior to optimization, response times for mission-critical 
applications consistently exceeded 150 milliseconds, 
while frequent IP address duplication errors emerged 
due to suboptimal allocation mechanisms within the 
network. Following the implementation of the model, 
response times were reduced to 80 milliseconds, IP-re-
lated errors decreased by 80%, and overall network con-
nectivity demonstrated substantial improvements.

A significant security vulnerability identified within 
the university’s network infrastructure pertained to 
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Table 1. Comparison of Response Times

Application Response Time 
(Before)

Response Time 
(After)

Academic System 145 ms 80 ms

Administrative System 150 ms 85 ms

Virtual Platform 155 ms 90 ms

(Source: Authors’ elaboration)

The following graph illustrates the reduction in appli-
cation response times after implementing the unified 
communications model.

4.2.	 Reduction in Unauthorized Access 
	 Attempts:

Another key improvement was the decrease in the 
number of unauthorized access attempts to the net-
work. Before implementation, 25 unauthorized access 
attempts were recorded per month. After implementa-
tion, this figure was reduced to five unauthorized ac-
cess attempts per month.

Table 2. Comparison of Unauthorized Accesses

Period Number of Unauthorized Accesses

Before Implementation 25

After Implementation 5

(Source: Authors’ elaboration)

The following graph illustrates the significant reduc-
tion in unauthorized access attempts after implement-
ing the network security model.

the high incidence of unauthorized access attempts, 
characterized by illicit connection attempts from de-
vices or users lacking valid authentication credentials. 
These security breaches posed a substantial risk to data 
confidentiality, system integrity, and network stability. 
Before the deployment of the optimized model, an av-
erage of 25 unauthorized access attempts per month 
was recorded. Post-implementation, this figure was 
reduced to five incidents per month, primarily due to 
the strategic enforcement of network segmentation via 
Virtual Local Area Networks (VLANs), the integration of 
authentication protocols at access points, and the forti-
fication of network security policies.

The justification for the incorporation of artificial 
neural networks (ANNs) into network optimization 
strategies stemmed from the imperative need for dy-
namic and efficient bandwidth allocation mechanisms. 
The university’s network infrastructure exhibited con-
gestion during peak utilization hours, exacerbated by 
static traffic distribution models that led to inefficient 
resource allocation. To address this bottleneck, a Multi-
Layer Perceptron (MLP) Artificial Neural Network was 
deployed, optimized using the Adam backpropagation 
algorithm, and trained on six months of historical net-
work traffic data.

The ANN-driven model facilitated predictive band-
width consumption analytics and enabled real-time 
traffic distribution adjustments, thereby enhancing 
overall network efficiency and reducing congestion by 
40%. Furthermore, packet loss rates decreased by 35%, 
contributing to improved connection stability and 
enhanced service quality for critical applications. This 
adaptive approach enabled the network infrastructure 
to dynamically respond to fluctuating user demands, 
ensuring the efficient and scalable utilization of tech-
nological resources.

The modernization of legacy networking hardware 
emerged as a necessary intervention due to perfor-
mance limitations, processing inefficiencies, and the 
incompatibility of outdated devices with contempo-
rary security protocols. The investigation revealed that 
unmanaged switches, low-capacity routers, and access 
points lacking WPA2/WPA3 encryption mechanisms 
significantly contributed to network congestion and 
security vulnerabilities. To address these deficiencies, 
obsolete devices were systematically replaced with 
managed switches supporting VLAN and Quality of 
Service (QoS) configurations, high-performance rout-
ers, and access points equipped with secure authen-
tication protocols. The selection criteria for these up-
grades were predicated on their capacity to enhance 
traffic segmentation, mitigate latency, and fortify se-
curity through advanced encryption methodologies. 
These strategic infrastructural enhancements resulted 
in immediate reductions in response times and signifi-
cantly improved connection stability for end-users.

The results obtained after implementing the unified 
communications model at the National University of 

Huancavelica (UNH) are presented objectively, using 
tables and graphs to illustrate improvements in key 
performance and network security variables.

4.1.	 Improvement in Application 
	 Response Times

One of the most significant improvements observed 
was the substantial reduction in the response times of 
applications used at UNH. A comparison of times before 
and after model implementation shows a significant de-
crease, indicating optimized network performance.



603Volume 16, Number 8, 2025

4.3.	 Resource Optimization and Cost 
	 Reduction

The implementation of the model optimized tech-
nological resources and reduced operational costs by 
30%. The table below summarizes the cost savings 
achieved.

Table 3. Operating Cost Reduction

Indicator Before 
Implementation

After 
Implementation

Reduction 
(%)

Monthly 
Operating 
Cost (USD)

9,500 6,500 30%

(Source: Authors’ elaboration)

The following graph illustrates the reduction in oper-
ating costs after implementing the new system.

4.4. Improvement in Network Capacity

Network capacity, measured by the number of devices 
that could be connected simultaneously, also improved. 
Before implementation, the network supported 120 de-
vices concurrently without performance degradation, 
while after implementation, it supported 170 devices.

Table 4. Enhanced Connected Device Capacity

Metrics Before 
Implementation

After 
Implementation Increase (%)

Connected 
Devices 120 170 42%

(Source: Authors’ elaboration)

The following graph illustrates network capacity in 
terms of connected devices before and after imple-
mentation.

In addition to descriptive results, inferential statisti-
cal tests were performed to validate the research find-
ings. These tests included significance analysis and cor-
relation assessments to confirm the hypotheses.

1.	 Paired Samples t-test (t-test): 
	 Improvement in Application 
	 Response Times

A paired t-test was applied to compare application 
response times before and after implementing the uni-
fied communications model. The results indicated a 
significant reduction in response times.

•	 Null hypothesis (H₀): There is no significant differ-
ence in response times before and after model 
implementation.

•	 Alternative hypothesis (H₁): There is a significant 
difference in response times before and after mod-
el implementation.

Table 5. Response times

Application Media 
(Before)

Media 
(After) t value p-value 

(significance)

Academic 
System 145 ms 80 ms 5,87 p < 0.01

Administrative 
System 150 ms 85 ms 6,2 p < 0.01

Virtual 
Platform 155 ms 90 ms 6,45 p < 0.01

(Source: Authors’ elaboration)

The p-value (p < 0.01) in all tests indicates that the 
reduction in response times is statistically significant, 
rejecting the null hypothesis and confirming the effec-
tiveness of the model’s implementation.

2.	 Analysis of Variance (ANOVA):  
	 Network Capacity Improvement

An analysis of variance (ANOVA) was conducted to 
evaluate differences in the number of supported de-
vices before and after implementation. The ANOVA 
confirmed a significant difference in network capacity.

•	 Null hypothesis (H₀): There is no significant differ-
ence in network capacity before and after imple-
mentation.
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•	 Null hypothesis (H₀): There is no significant differ-
ence in unauthorized access attempts before and 
after implementation.

•	 Alternative hypothesis (H₁): There is a significant 
difference in unauthorized access attempts before 
and after implementation.

Table 7. Network capacity

Period Observed 
Frequency

Expected 
Frequency χ² p-value 

(significance)

Before 
Implementation 25 15 8,33 p < 0.05

After 
Implementation 5 15

(Source: Authors’ elaboration)

The χ² = 8.33 with p < 0.05 indicates a statistically 
significant reduction in unauthorized access attempts 
after implementation. Therefore, the null hypothesis 
is rejected, confirming that the number of unauthor-
ized access attempts significantly decreased following 
model implementation.

4.	 Correlation Analysis: 
	 Reduction in IP Duplication Errors

A correlation analysis was conducted to measure the 
relationship between implemented security configura-
tions and the reduction in IP duplication errors.

•	 Alternative hypothesis (H₁): There is a significant 
difference in network capacity before and after 
implementation.

Table 6. Network capacity

Source of 
variation

Sum of 
squares

Degrees of 
freedom 

(df)

Root 
mean 

square
F p-value 

(significance)

Between 
groups 10.240 1 10.240 12, 

32 p < 0.01

Within 
groups 1.020 38 26,84

Total 11.260 39

(Source: Authors’ elaboration)

The F-value = 12.32 and p < 0.01 indicate a statisti-
cally significant difference in network capacity after 
implementation. Since the p-value is less than 0.01, the 
null hypothesis is rejected, and the alternative hypoth-
esis is validated, confirming a significant improvement 
in network capacity after implementing the model.

3.	 Chi-Square Test:  
	 Reduction in Unauthorized Access Attempts

A chi-square test was applied to evaluate the reduc-
tion in unauthorized access attempts after implement-
ing the unified communications model.

•	 Pearson Correlation Coefficient (r): -0.87

•	 Null hypothesis (H₀): There is no significant cor-
relation between security configurations and the 
reduction in IP duplication errors.

•	 Alternative hypothesis (H₁): There is a significant 
correlation between security configurations and 
the reduction in IP duplication errors.

The correlation coefficient r = -0.87 indicates a strong 
inverse correlation between implemented security 
configurations and the reduction in IP duplication er-
rors. Since the coefficient is significantly different from 
zero, the null hypothesis is rejected, and the alternative 
hypothesis is validated, suggesting that security im-
provements effectively reduced network errors.

Statistical tests such as the paired t-test were used 
to compare network response times before and after 
implementing the unified communications model, de-
termining whether the observed reduction was statis-
tically significant. The analysis of variance (ANOVA) as-
sessed differences in the number of devices supported 
by the network after optimization. The proportion test 
analyzed the decrease in unauthorized access attempts 
by comparing frequencies before and after interven-
tion. The chi-square test (χ²) verified the association be-
tween model implementation and the reduction in IP 
duplication errors. Finally, the correlation analysis mea-
sured the relationship between security improvements 
and the decrease in network incidents, demonstrating 
the effectiveness of the new protection scheme.

Interpretation of Results:

The findings of this study demonstrate that the im-
plementation of the unified communications model 
at the National University of Huancavelica (UNH) had 
a positive impact on several key aspects of information 
management. A significant reduction in the response 
times of critical applications was observed (t-test, p < 
0.01), along with a decrease in unauthorized access at-
tempts (χ², p < 0.05) and an improvement in network 
capacity (ANOVA, p < 0.01). Additionally, the optimiza-
tion of technological resources resulted in a 30% reduc-
tion in operational costs, implying greater economic ef-
ficiency for the institution. This was achieved through 
improved utilization of technological resources, elimi-
nating redundancies in the network infrastructure, 
and enhancing energy efficiency with lower-power 
consumption devices. Furthermore, network segmen-
tation and intelligent traffic monitoring reduced main-
tenance and technical support costs, ensuring a more 
efficient infrastructure management without compro-
mising service quality.

The strong inverse correlation between security con-
figurations and the reduction in IP duplication errors  
(r = -0.87) indicates that security policy enhancements 
were essential for stabilizing and protecting the net-
work, reducing operational risks associated with unau-
thorized access and data integrity loss.
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Relation to Theoretical Framework and Study Objec-
tives:

These results align with the theoretical foundations 
proposed by [14] and [15], who argue that integrating 
a unified communications model not only improves 
network availability and reliability but also optimizes 
operational management through a robust and se-
cure network infrastructure. This study validates these 
premises, confirming that the proposed model can re-
duce vulnerabilities and enhance operational efficien-
cy in an educational institution like UNH.

Regarding the study’s objectives, the results confirm 
that the unified communications model significantly 
improves information management in terms of avail-
ability, integrity, and confidentiality. This supports the 
research’s specific objectives, which sought to verify 
whether the model would optimize the network and 
reduce security risks.

5.	 CONCLUSION

The implementation of the unified communications 
model at the National University of Huancavelica rep-
resents an innovative contribution in the field of infor-
mation management for educational institutions with 
deficient technological infrastructures. The novelty of 
the model lies in the integration of advanced security 
techniques, network segmentation, and dynamic traf-
fic optimization using artificial neural networks. The re-
sults obtained demonstrate significant improvements 
in operational efficiency, network security, and cost 
reduction, statistically validating the model's effec-
tiveness. Additionally, this comprehensive approach 
enables adequate scalability for future expansions of 
technological infrastructure, establishing itself as a 
relevant contribution to the efficient management of 
information in educational environments.
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Abstract – In recent years, federated learning (FL), a decentralized machine learning approach, has garnered significant attention. FL 
enables multiple devices to collaboratively train a model without sharing their data. However, when the data across devices are non-
independent and identically distributed (non-IID), performance degradation issues such as reduced accuracy, slower convergence 
speed, and decreased performance fairness are known to occur. Under non-IID data environments, the trained model tends to exhibit 
varying accuracies across different devices, often overfitting on some devices while achieving lower accuracy on others. To address 
these challenges, this study proposes a novel approach that integrates reinforcement learning into FL under Non-IID conditions. By 
employing a reinforcement learning agent to select the optimal devices in each round, the proposed method effectively suppresses 
the emergence of low-accuracy devices compared to existing methods. Specifically, the proposed method improved the average 
accuracy of the bottom 10% devices by up to 4%, without compromising the overall average accuracy. Furthermore, the device 
selection patterns revealed that devices with more diverse local data tend to be chosen more frequently.
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1.	 	INTRODUCTION

In recent years, with advancements in the Internet of 
Things (IoT) and artificial intelligence, machine learn-
ing technologies have been utilized in various aspects 
of daily life, bringing significant convenience to people. 
Concurrently, the explosive increase in data volume 
has led to privacy breaches, heightening concerns 
regarding privacy and security. Traditional machine 
learning methods require the aggregation of data in a 

single location. For example, many smartphones con-
tain private data that must be integrated for training. 
However, aggregating data in one place not only re-
sults in high communication costs and significant bat-
tery consumption on devices but also increases the risk 
of compromising user data privacy and security.

Federated learning (FL), introduced by Google in 2016 
[1], has garnered attention as a decentralized machine 
learning approach that addresses these issues. FL has 
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demonstrated its efficacy in enabling global-scale col-
laborative training, as evidenced by its successful appli-
cation in rare cancer boundary detection. This initiative 
aggregated insights from 71 hospitals spanning six con-
tinents while rigorously preserving patient data privacy 
[2]. However, it is crucial to recognize that despite its in-
herent privacy-preserving advantages, FL is not imper-
vious to privacy leakage stemming from shared model 
updates. Recent scholarly work, such as the differentially 
private knowledge transfer paradigm proposed by Qi et 
al. [3], underscores the necessity of integrating supple-
mentary privacy-enhancing mechanisms to bolster FL's 
resilience against inference attacks. Furthermore, Bosca-
rino et al. [4] highlighted FL's pivotal role in supporting 
indigenous data sovereignty, illustrating its potential to 
empower communities in maintaining control over sen-
sitive genomic information.

Communication efficiency constitutes another sig-
nificant impediment to the widespread adoption of FL. 
Wu et al. [5] introduced FedKD, an adaptive knowledge 
distillation strategy coupled with gradient compression 
techniques, which substantially curtails communication 
overhead, thereby tackling a critical scalability bottle-
neck. Similarly, the comprehensive survey by Asad et al. 
[6] meticulously examined existing methodologies and 
prospective avenues for alleviating FL's communication 
costs, reinforcing the urgency and multifaceted nature 
of this challenge in practical deployments.

A further salient obstacle in federated learning arises 
from the Non-Independent and Identically Distributed 
(Non-IID) nature of local datasets across participat-
ing devices. This inherent data heterogeneity not only 
diminishes model accuracy but also adversely affects 
the active engagement of users, thereby complicating 
model convergence and the reliable evaluation of per-
formance [7, 8]. Personalized federated learning frame-
works, such as the one proposed by Lin et al. [9], have 
been developed to address these non-IID issues by tai-
loring local models with a focus on communication effi-
ciency, robustness, and fairness concurrently, represent-
ing a notable trajectory in contemporary FL research.

The issue of fairness in federated learning has 
emerged as a particularly pressing concern, primarily 
due to the intrinsic heterogeneity among participating 
clients. Chaudhury et al. [10] emphasized the impor-
tance of explicitly addressing fairness, proposing solu-
tions grounded in cooperative game theory to ensure 
equitable model performance across diverse client 
populations. Moreover, recent innovations like FedFed, 
introduced by Yang et al. [11], prioritize the mitigation 
of non-IID effects through selective feature distillation, 
carefully balancing the inherent trade-offs between 
model accuracy and privacy preservation.

These recent advancements collectively underscore 
the imperative for federated learning to continue its 
evolution by comprehensively addressing the inter-
twined challenges of privacy, communication effi-
ciency, fairness, and data heterogeneity. Such holistic 

approaches are essential to ensure the deployment of 
robust, scalable, and equitable FL systems in diverse 
real-world settings, aligning closely with the practical 
motivations and ongoing challenges elaborated upon 
within this study.

In FL, the process of sharing and updating models is 
repeatedly performed while maintaining the data on 
each device, thereby enabling training while protect-
ing privacy. FL randomly selects a subset of devices to 
participate in each update, rather than having all de-
vices participate each time, which improves scalability 
and reduces communication costs.

However, FL has several limitations. The first is that 
data across devices may be non-independent and 
identically distributed (non-IID). This implies that the 
data distribution varies across devices, which differ in 
the labels they hold or the amount of data they pos-
sess. Therefore, the nature of non-IID data complicates 
FL training and evaluation.

Another challenge in FL is fairness, as discussed in Sec-
tion 3, "Heterogeneity and Performance Fairness." Fair-
ness issues arise from various perspectives, including the 
fairness of machine learning algorithms, as described by 
Pessach et al. [12] and in FL device selection, as raised by 
Vucinich et al. [13]. This study focuses on fairness in perfor-
mance, particularly in devices with lower accuracy. Spe-
cifically, under non-IID data conditions, the differing data 
distributions on each device tend to cause high variance 
in model test accuracies across devices. In such situations, 
performance fairness in FL is likely to be compromised, 
leading to an increase in low-accuracy devices.

This paper proposes a novel approach that applies re-
inforcement learning to address the issue of low-accura-
cy devices in FL. Conventional methods typically employ 
random device selection and enhance aggregation to 
improve performance. However, these methods tend to 
prioritize reducing the variance in accuracy over improv-
ing average accuracy, without sufficiently considering 
the performance enhancement of low-accuracy devices. 
This study aims to suppress low-accuracy devices more 
effectively than other methods while maintaining the 
performance of high-accuracy devices. The proposed 
method utilizes a reinforcement learning agent to learn 
how to improve the accuracy of lower-performing devic-
es in each round, with the aim of enhancing the perfor-
mance of low-accuracy devices without compromising 
average accuracy compared to existing methods. The 
contributions of this study are as follows:

•	 A novel algorithm that applies reinforcement 
learning is designed to address the issue of low-ac-
curacy device occurrence in FL. This algorithm en-
ables effective device selection during the FL train-
ing process, thereby suppressing the emergence of 
low-accuracy devices.

•	 Compared to existing methods, the proposed 
method significantly improves the average accu-
racy of the bottom 10% of devices in a non-IID data 
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environment without reducing the overall average 
accuracy. This result demonstrates that the pro-
posed method contributes to model fairness and 
performance enhancement, even under non-IID 
data conditions.

•	 We confirmed that the proposed method can ef-
fectively suppress the impact of low-accuracy de-
vices on complex datasets with more than 10 class-
es. This validates the effectiveness of the proposed 
method across a wide range of datasets.

The structure of this paper is as follows: Section 2 
presents background information on FL. Section 3 re-
views related research. Section 4 describes the details 
of the proposed FL algorithm that utilizes reinforce-
ment learning. Section 5 presents the evaluation re-
sults of the proposed method using real-world datas-
ets. Finally, Section 6 concludes the paper.

2.	 BACKGROUND

FL is a method for training models through iterative 
communication between a central server and multiple 
devices. Each round consists of the following steps, which 
form a continuous flow referred to as a "round." The learn-
ing process progresses by repeating these rounds.

i.	 Initialization: Before starting the first round, the 
central server initializes the weights of the global 
model.

ii.	 Device Selection: At the beginning of each 
round, the central server randomly selects the 
devices according to a specified ratio. Subse-
quently, the current global model weights are 
sent to the selected devices.

iii.	 Update: In this phase, each device trains the 
global model based on its local dataset and 
sends the updated local model weights back to 
the central server.

iv.	 Aggregation: The central server aggregates the 
received updated local model weights to update 
the global model.

v.	 Termination: This process is terminated when the 
global model converges and reaches a specific 
threshold. If convergence is not achieved, the 
process returns to device selection and proceeds 
with local updates and weight aggregation.

FedAVG [14], a fundamental FL framework, conducts 
learning as described in Equation (1):

(1)

where wk
t represents the weights of the local model of 

device k at round t, with wk
t+1 denoting the updated 

weights of the local model at round t+1; ∇Lk (wk
t; Dk) 

indicates the gradient of the loss function with respect 
to the local dataset Dk. In this manner, each device up-
dates the model weights wk

t using its local dataset Dk 
and learning rate η.

Next, the central server updates the global model by 
aggregating the weights wk

t+1 collected from each de-
vice according to Equation (2).

(2)

where wt is the weight of the global model at round t; 
K is the number of devices selected in round t; nk is the 
number of data samples on device k; and n is the total 
number of data samples across all devices.

3.	 RELATED WORK

3.1. Device Selection Techniques for FL

Recent investigations have explored diverse method-
ologies for optimizing device selection within federat-
ed learning frameworks, primarily focusing on enhanc-
ing overall model performance and training efficiency. 
For instance, Tian et al. [15] introduced FedRank, a cli-
ent selection method predicated on ranking that lever-
ages imitation learning to mitigate cold-start issues 
frequently encountered with reinforcement learning-
based techniques. By employing a pairwise ranking 
strategy, FedRank effectively selects clients based on 
system and data heterogeneity, demonstrating signifi-
cant improvements in convergence speed and energy 
efficiency. Furthermore, 

Pan et al. [16] developed a contextual client selection 
framework utilizing a Neural Contextual Combinato-
rial Bandit (NCCB) algorithm. This framework extracts 
client features through locality-sensitive hashing and 
exploits correlations among datasets, resulting in re-
duced training duration and enhanced model accu-
racy, approaching performance levels observed in IID 
scenarios. 

In a related vein, Zhang et al. [17] proposed an ap-
proach integrating spectrum allocation optimization 
with device selection for federated learning in wireless 
networks. Their method aims to minimize training de-
lay and energy consumption by selecting devices ac-
cording to the divergence between local and global 
model weights, thereby facilitating faster convergence 
under non-IID conditions. While these methodologies 
offer considerable advancements in device selection 
strategies and overall system efficiency, it is crucial to 
acknowledge that none of these explicitly address fair-
ness among devices, such as ensuring balanced accu-
racy or equitable participation across heterogeneous 
data distributions.

3.2.	 Federated Reinforcement Learning 
	 (FRL)

FRL is an approach that combines FL with reinforce-
ment learning (RL). FL focuses on collaborative train-
ing of models across multiple devices while preserv-
ing privacy, whereas FRL introduces reinforcement 
learning techniques to enable optimal device selection 
and parameter tuning. In FRL, the elements of RL (en-
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vironment, state, and action) are applied within the FL 
framework to potentially address complex issues [18]. 
Thus, FRL holds promise for overcoming the limitations 
of FL and is expected to have applications in various 
fields. Research on the use of reinforcement learning 
for device and client selection in FL has been active 
[19-22], with selections directly impacting the quality 
and utility of the model, which makes this a highly im-
portant area.

Wang et al. [19] proposed FAVOR, which utilizes the 
double deep-Q-network (DDQN) algorithm for client 
selection. This method allows device and client selec-
tion, which enhances convergence speed of the model 
under non-IID conditions, thereby saving on compu-
tational resources. However, because DDQN model 
training is limited to a single client, the agent may not 
rapidly converge.

Additionally, Bouaziz et al. [22] proposed FL to ad-
dress system and static heterogeneity using reinforce-
ment learning (FLASH-RL), which employs the DDQN 
model to perform client selection, aimed at reducing 
computational and communication costs. By enabling 
multi-action selection and learning, their approach ac-
celerates the learning process. Furthermore, FLASH-RL 
contributes to latency reduction by individually evaluat-
ing each client using a proprietary evaluation function.

Yu et al. [23] introduced DDPG-AdaptConfig, a deep 
reinforcement learning framework based on Deep De-
terministic Policy Gradient (DDPG), which adaptively se-
lects devices and configures local training hyperparam-
eters such as batch size and epoch count. This method 
incorporates a transformer-based actor network to cap-
ture heterogeneous information from model parame-
ters and applies clustering-based aggregation to further 
accommodate system and data diversity.

3.3.	Heterogeneity  and Performance 
	 Fairness

Shi et al. [24] argue that many current FL frameworks 
are designed with a central server-centric perspective, 
prioritizing metrics such as convergence speed and 
overall model accuracy, often at the expense of indi-
vidual client needs. This imbalance can disincentivize 
participation from less capable clients and potentially 
compromise the global model's representativeness. 
Their work proposes a taxonomy of fairness-aware FL 
methodologies, identifying critical stages where fairness 
considerations are paramount, including client selec-
tion, optimization processes, and incentive mechanisms.

Furthermore, Rafi et al. [25] emphasize that fairness 
issues in FL extend beyond client selection to encom-
pass reward allocation strategies. They contend that 
the uniform distribution of global models to all clients, 
irrespective of their individual contributions to the 
training process, can be perceived as unfair, particu-
larly by clients who have invested more resources or 
data. The authors also highlight the potential for demo-

graphic biases, such as those related to gender or eth-
nicity, to compound these fairness challenges within FL 
systems.

Chen et al. [26] investigate the inherent trade-off 
between privacy preservation and fairness in FL. Their 
analysis suggests that privacy-enhancing techniques, 
such as the introduction of noise or limitations on data 
sharing, can disproportionately impact disadvantaged 
groups by causing a greater degradation in their model 
performance compared to others. Conversely, efforts to 
enhance fairness might necessitate increased data trans-
parency, potentially leading to heightened privacy risks.

Huang et al. [27] categorize fairness in FL into two 
primary dimensions: collaboration fairness and perfor-
mance fairness. Collaboration fairness addresses the 
equitable distribution of rewards and the provision 
of adequate incentives for client participation. Perfor-
mance fairness, on the other hand, focuses on ensur-
ing consistent model accuracy across all clients. The 
authors assert that the simultaneous achievement of 
both collaboration and performance fairness is crucial 
for the development of sustainable and robust FL sys-
tems, particularly in real-world applications character-
ized by significant client heterogeneity.

These perspectives collectively demonstrate that 
fairness in FL is a multifaceted issue that intersects with 
client heterogeneity, privacy concerns, and system 
sustainability. Addressing fairness effectively requires 
comprehensive strategies that go beyond mere ac-
curacy optimization. In real-world scenarios, the data 
on devices are often non-IID, which accelerates imbal-
anced learning across devices. Data heterogeneity pos-
es a significant challenge in FL, leading to variations in 
learning outcomes and substantial differences in mod-
el accuracy among devices.

The conventional FedAVG method [14] is known to 
exhibit unstable performance under non-IID condi-
tions, with some devices demonstrating significantly 
higher or lower accuracy than others. In such situa-
tions, not only overall model accuracy enhancement 
but also performance fairness across devices should 
be considered. Performance fairness ensures that the 
model performs uniformly across all participating de-
vices, preventing scenarios in which low-performance 
devices are disproportionately affected, thereby im-
proving overall fairness.

Huang et al. [28] successfully increased the con-
vergence speed of the model while maintaining per-
formance fairness by employing a dual-momentum 
descent method and weighted aggregation that ac-
counts for client accuracy and participation frequency. 
Wentao et al. [29] introduced federated fairness and 
effectiveness (FedFE), which integrates momentum 
gradient descent into the FL process and performs ac-
curacy-based weighted aggregation, thereby achiev-
ing improvements in both fairness and convergence 
speed. Despite these advancements, a sufficient num-
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ber of studies have not been conducted on complex 
datasets with more than 10 classes, leading to a lack 
of validation regarding their adaptability to multiclass 
environments.

These studies presented effective approaches for 
addressing imbalances caused by non-IID data while 
enhancing performance fairness. This study focuses on 
performance fairness, specifically aiming to construct 
models for non-IID data environments.

Performance fairness refers to the uniformity of mod-
el performance across all devices participating in FL. In 
this paper, we define performance fairness as "achiev-
ing as equal accuracy as possible for all devices within 

FL," with the objective of enhancing this fairness while 
suppressing the emergence of low-accuracy devices. 

Li et al. [30] proposed q-fair federated learning (q-
FFL), which improves performance fairness by placing 
greater emphasis on devices with larger losses. Spe-
cifically, q-FFL mitigates performance disparities by 
weighting devices' losses using a parameter q (where q 
≥ 0), which controls the emphasis on high-loss clients. 
A larger q leads to a stronger focus on fairness across 
clients. However, the appropriate value of q must be 
determined empirically, as it depends on the dataset 
characteristics and involves a trade-off between fair-
ness and overall accuracy.

Fig. 1. Overview of the proposed method

Although the aforementioned methods represent 
noteworthy progress in addressing fairness and per-
formance challenges in federated learning, they are  
predominantly constrained by their reliance on pre-de-
fined parameters and their limited adaptability in high-
ly heterogeneous and multiclass scenarios. In contrast, 
our approach introduces a dynamic device selection 
mechanism guided by reinforcement learning, which 
specifically prioritizes devices with lower predictive ac-
curacy and incrementally enhances their performance 
over the course of the federated training process. A 
comprehensive comparative analysis, presented in 
the experimental evaluation section, benchmarks our 
method against the techniques described in [14, 29–
30]. Although we did not directly compare our method 
with [28], we confirmed that it outperforms [29]. As 
[29] has been shown to achieve better performance 
than [28], we considered a comparison with [29] suffi-
cient. The results consistently indicate that our method 
achieves superior performance fairness, particularly in 
environments characterized by pronounced non-IID 
conditions and complex multiclass data distributions.

FedHEAL [31] is a recently developed FL algorithm 
designed to address fairness issues in environments 

characterized by domain bias. It leverages the consis-
tency of parameter updates to mitigate the impact of 
noisy or low-quality updates by masking the updates 
of unimportant parameters. Additionally, FedHEAL 
promotes fair model aggregation by utilizing the Eu-
clidean distance, thereby preventing convergence bias 
often observed in conventional FL approaches. As a ge-
neric method, FedHEAL can be integrated with various 
existing FL algorithms.

3.4.	 Enhancing Privacy for FL

Recent research has increasingly emphasized the 
need to fortify privacy safeguards within FL. While the 
distributed architecture of FL, which retains raw data 
on local devices, provides a baseline of privacy, it re-
mains vulnerable to sophisticated inference and poi-
soning attacks.

Bietti et al. [32] introduced a personalized federated 
learning framework grounded in differential privacy 
[33]. Their study illustrates how personalized models 
can refine the trade-off between privacy and accuracy. 
However, they also acknowledge that tightening pri-
vacy guarantees inevitably results in diminished model 
performance.
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Addressing the challenge of intermittent client par-
ticipation, Jiang et al. [34] proposed Dordis, a distrib-
uted differential privacy framework resilient to client 
dropout. This approach achieves robust privacy pro-
tection without relying on a trusted central server, al-
though the noise required for differential privacy intro-
duces an unavoidable computational overhead.

Naseri et al. [35] explored the complementary use of 
local differential privacy (LDP) [36-37] and central dif-
ferential privacy to mitigate both backdoor and mem-
bership inference attacks in FL. Their findings confirm 
that while these privacy techniques can enhance sys-
tem resilience, they do so at the cost of reduced utility 
in the trained models.

In a related vein, Qi et al. [38] examined the suscep-
tibility of differentially private FL (DPFL) to poisoning 
attacks. To counter this, they developed Robust-DPFL, 
which augments resilience to poisoned gradients. 
While their method successfully improves robustness, 
it introduces added complexity into the FL pipeline.

Collectively, these studies underscore that although 
FL inherently offers a foundational level of privacy, 
augmenting it with advanced privacy-preserving tech-
niques frequently entails a trade-off with model accura-
cy and system complexity. The method proposed in this 
study is compatible with such techniques and can be 
integrated where stronger privacy assurances are neces-
sary. Nonetheless, the empirical validation of this inte-
gration remains an open avenue for future investigation.

4.	 METHODOLOGY

In this section, we describe the proposed method for 
improving the performance of the bottom B% of devic-
es in FL by integrating reinforcement learning. Here, B 
is a tunable parameter that specifies the proportion of 
devices with the lowest individual accuracies, which we 
particularly aim to support. This metric serves as an in-
dicator of fairness, emphasizing performance improve-
ment for underperforming clients. As illustrated in Fig. 
1, the proposed method incorporates device selection 
using DDQN within an FL framework. Unlike existing 
methods, our approach adopts reinforcement learning 
to enhance device selection. Specifically, we employed 
uniform manifold approximation and projection (UMAP) 
for dimensionality reduction, transforming high-dimen-
sional model weights into lower-dimensional represen-
tations while retaining essential information. In addition, 
we designed a reward mechanism based on the dis-
tance from the global model to discourage the selection 
of low-accuracy devices. This strategy enables efficient 
model construction, even in environments with signifi-
cant disparities in data distribution across devices.

The workflow of the proposed method is presented 
in Algorithm 1. In each round, the reinforcement learn-
ing agent selects the optimal devices and transmits the 
global model to these devices. The selected devices 
then perform training on their local datasets. Finally, 

the central server aggregates the models sent by the 
selected devices to update the global model. The agent 
updates its parameters based on the received rewards, 
which are designed to minimize the selection of low-
accuracy devices.

Algorithm 1: FL with DDQN for Device Selection

Initialize:

for each device k do

	 Device k trains local model w0
k for 1 epoch with 

	 local dataset.

	 Send updated weights w0
k to the server.

end for

Server performs dimensionality reduction on {w0
k} us-

ing UMAP to obtain initial state s0.

Initialize DDQN agent with initial state s0.

for each communication round t = 1 to T do

	 DDQN agent selects K devices based on the 
	 Q-values.

	 for each selected device k do

	 Send wt to the device k.

	 Device k trains local model wtk for E epochs 
	 with local dataset.

	 Send updated weights w k
{t+1} to the server.

	 Aggregate global model: w{t+1} =1/Ct ∑{k ∈Ct}w k
{t+1}

    

	 Select all devices to calculate rewards.

	 for each device k do

		  Send w{t+1} to the device k.

		  Device k tests model w{t+1} on local test dataset 
		  and calculates accuracy acct

k.

		  Send accuracy acct
k back to the server.

	 end for

	 Aggregate global model: w{t+1} ←1/|Ct | ∑k∈Ct

	 Select all devices to calculate rewards

	 for each device k do

		  Send w{t+1} to the device k.

		  Device k tests model w{t+1} on local test dataset 
		  and calculates accuracy acct

k.

		  Send accuracy acct
k back to the server.

	 end for

	 Calculate rewards rt using accuracy acct
k equation (6).

	 DDQN Agent Do:

	 Update the DDQN parameters θt by minimizing 
	 the loss Lt (θt).

end for
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Table 1 lists the symbols and descriptions used in this 
study.

Table 1. Notation

Symbol Definition Description
N Total number of devices The total number of devices

K Number of selected devices The number of devices 
selected in each round

Ct
Set of devices selected in 

round t
The set of K devices selected 

in round t

ai Action i The action of selecting 
device i

A Action space The set of possible device 
selections

rt
k Reward The reward for selecting 

device k in round t

γ Discount factor The importance of future 
rewards

θ Parameters of the main 
network

The weights of the neural 
network being trained

θ’ Parameters of the target 
network

The fixed weights of the 
target network

wt
k Weight in round t The weights of device k’s 

model in round t

4.1. DDQN-based Device Selection

To apply reinforcement learning to device selection, 
we formulated the Markov decision process.
•	 State: 

The state at round t, namely s_t, is represented as a 
vector 

st =(wt, wt(1)…,wt
(N) where wt represents the global 

model weights after round t, and wt(1),…,wt
(N) represent 

the local model weights of all N devices. The agent is 
colocated with the FL server and holds a list of weights. 
A specific wt

(k) is updated only in round t if device k is 
selected for training and the resulting Δt(k) is received 
by the FL server. Consequently, the state space can 
become very large, making learning in such a space 
difficult. Therefore, we applied UMAP to compress the 
weights of each model into a 10-dimensional space, 
reducing the size of the state to 10×(N+1) dimensions.
•	 Action:
Actions (a) are represented as vectors of N Boolean 
values, where a value of 1 indicates a selection:

(3)

As described in the subsequent section "Application 
of DDQN," in standard reinforcement learning, a subset 
of size K must be selected at each round t, resulting in 
(N

K) possible combinations. However, in FL, this makes 
the action space enormous, causing computational 
costs to skyrocket, thus making the application infeasi-
ble. Therefore, we utilized the multi-action selection ap-
proach proposed by Bouaziz et al. [22], to allow multiple 
actions to be selected and learned simultaneously. This 
method treats each device selection as an independent 
action, significantly improving computational efficiency.

•	 Reward:
Rewards (r) are represented as a set of length |Ct|:

(4)

where ζt
k measures the contribution of the local model 

of device k in round t relative to the global model:

(5)

(6)

A small value of Equation (5) indicates a large differ-
ence (Euclidean distance) between the weights of the 
device's local model and server's global model. In such 
cases, the device is considered unimportant, resulting 
in smaller ζt

k and reward rt
k. This is because the local 

model weights of the selected device are generated 
through an aggregation process that combines the 
weighted sums. Devices with small differences between 
their local and global model weights are assumed to 
make significant contributions in a round, thereby sub-
stantially affecting the performance of the global model. 
M is a constant; TargetACC represents the target average 
accuracy of the bottom B% of devices within a specified 
number of communication rounds, and BottomACC de-
notes the average accuracy of the bottom B% of devices 
when all devices perform testing using the aggregated 
global model in each round t. This process provides an 
important metric for the agent to learn actions that im-
prove the accuracy of the bottom devices. As the aver-
age accuracy of the bottom B% of devices increases, 
the agent is more likely to receive rewards, encourag-
ing actions that enhance the fairness among devices. 
Calculating the test accuracy for all the devices intro-
duces additional computational costs, with each device 
potentially being selected for up to twice the number 
of rounds. However, because the test accuracy calcula-
tion is not part of the learning process, the load on the 
devices is relatively small. This method allows the agent 
to effectively improve the average accuracy of the bot-
tom B% of devices.

4.2. Application of DDQN

In this study, following multiple existing studies, we 
employed the DDQN algorithm [39], which consisted 
of two neural networks: the main and target networks. 
The main network is used for training, whereas the 
target network evaluates the actions in the next state 
and is updated every P steps. The DDQN agent incorpo-
rates a replay memory mechanism to eliminate corre-
lations between consecutive experiences, specifically 
between(si, ai, si+1, ri, di) and (si+1, ai+1, si+2, ri+1, di+1 ); di is 
Boolean and indicates whether the terminal state has 
been reached.

The RL learning problem can be formulated by mini-
mizing the mean squared error (MSE) loss between the 
target value and the approximated value, expressed by 
the following equation:
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(7)

where Lt
k (θt) represents the loss function for action ak; 

Yt
k is the target value for action ak, and Q(st, ak; θt) is the 

approximated Q-value for action ak in state st. Target 
value Yt

k is defined as follows:

(8)

The action space A is defined as:

(9)

Each element ai indicates selection 1 or non-selection 
0. However, in each round, the following constraints 
must be satisfied:

(10)

where rt
k is the reward associated with the selection 

of device k; θ and θ' represent the parameters of the 
main and target networks, respectively, and γ is the dis-
count factor, with 0≤γ≤1, determining the importance 
of future rewards compared to current rewards. A value 
closer to 1 place more emphasis on future rewards, 
whereas a value closer to 0 prioritizes current rewards.

In traditional reinforcement learning, the goal is to 
select a single optimal action for a given state. How-
ever, in this study, we adopted a multi-action selection 
approach to select multiple devices. Specifically, the se-
lection of each device was treated as an independent 
action, and the loss for each device was calculated us-
ing Equation (7). This approach eliminates the need to 
explore all possible device combinations.

This method allows for efficient identification of op-
timal devices while considering the cooperative rela-
tionships and interactions among the devices. Further-
more, by evaluating the impact of each device selec-
tion on the overall learning outcomes, more effective 
learning is expected.

5.	 Evaluation

5.1. Experimental Setup

The datasets and models used in this study are as fol-
lows.

•	 MNIST:

The dataset consists of 60,000 grayscale images of 
handwritten digits for training and 10,000 images for 
testing. Each image has a resolution of 28 × 28 pixels and 
is classified into one of 10-digit classes (0–9). Due to its 
simplicity, balanced class distribution, and ease of imple-
mentation, MNIST is one of the most used benchmark 
datasets in FL research. In this study, it was adopted to 
enable comparison with existing methods and to vali-
date the effectiveness of the proposed method under 
standard and relatively simple experimental conditions.

For the model, we used a simple multilayer percep-
tron (MLP) consisting of one hidden layer with 100 

units and ReLU activation. The input layer had 784 di-
mensions (28 × 28), and the output layer had 10 units 
corresponding to the number of classes.

•	 CIFAR-10:
The CIFAR-10 dataset is a widely used standard bench-

mark consisting of 60,000 32 × 32 pixel color images classi-
fied into 10 classes. Each class contains 6,000 images. This 
dataset is extensively used in machine learning research, 
including comparative methods, and was thus adopted in 
this study. In addition, to introduce heterogeneity, we per-
formed non-IID partitioning following a Dirichlet distribu-
tion. The parameter values used were Dir(0.1) and Dir(0.5).

The model used for this dataset was a simple convo-
lutional neural network composed of two convolutional 
layers and three fully connected layers. Specifically, the 
first convolutional layer used 16 filters with a kernel size 
of 3×3, followed by a 2×2 max pooling layer. The second 
convolutional layer had 32 filters with a kernel size of 3×3, 
followed by another 2×2 max pooling layer. The fully con-
nected layers had 120, 84, and 10 units respectively.

•	 GTSRB:
The German Traffic Sign Recognition Benchmark 

(GTSRB) is one of the primary datasets for traffic sign rec-
ognition and classification tasks and contains approxi-
mately 50,000 images classified into 43 different traffic 
sign classes. Each image was captured in a real road en-
vironment, encompassing variations in lighting condi-
tions and viewpoints. The GTSRB is commonly used in 
FL research [40-42]. In this study, in using a dataset with 
43 classes, which exceeds the 10 classes of CIFAR-10, we 
aimed to evaluate the model’s classification ability and 
its adaptability to heterogeneity more thoroughly. This 
enabled a multifaceted validation of the versatility and 
performance of the proposed method. Additionally, 
non-IID partitioning was performed following a Dirichlet 
distribution to introduce heterogeneity. The parameter 
values used were Dir(0.1) and Dir(0.5).

For this dataset, we used a simple multilayer percep-
tron consisting of an input layer with 3072 dimensions 
(32 × 32 × 3), a 128-dimensional hidden layer with 
ReLU activation, and an output layer with 43 units cor-
responding to the number of traffic sign classes. This 
model design follows the experimental settings of Li et 
al. [30] and Jialuo et al. [43].

•	 Synthetic: 
The synthetic dataset is generated using the method 

inspired by Li et al. [30] and Shamir et al. [44], denoted 
as SYNTHETIC(α, β).

Specifically, the data samples (Xk, Yk) for device k 
(with sample size nk) were generated as follows: The 
model is defined by the following equation:

(11)

where x∈R60, Wk∈R10×60, and bk∈R10. The weight matrix 
Wk and bias vector bk were sampled from a normal dis-
tribution with mean uk and variance 1:
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(12)

The mean vector uk was sampled from a normal dis-
tribution with mean 0 and variance α:

(13)

Each element of the input data xk, denoted by (xk )j, 
was sampled from a normal distribution with mean vk 
and variance j-1.2:

(14)

where vk is sampled from a normal distribution with 
mean μk and variance 1, and μk followed a normal dis-
tribution with mean 0 and variance β:

(15)

This method allows controlling the heterogeneity of 
models and data across devices by adjusting param-
eters α and β. SYNTHETIC(0,0) and SYNTHETIC(1,1) 
were used in the experiments. Both had 10 classes 
and a data size of approximately 50,000. In this study, 
synthetic data were generated and used to control for 
heterogeneity and evaluate the changes in the perfor-
mance of the proposed method by varying the degrees 
of heterogeneity. For this dataset, we used a logistic re-
gression model following the experimental settings of 
Li et al. [30] and Jialuo et al. [43]. The model consisted 
of a single fully connected (linear) layer that takes a 
100-dimensional input vector and outputs scores for 
10 classes.

5.2.	 Comparison Methods

We selected the following methods as baselines:

•	 FedAVG [14]: This is adopted as the basic method 
to evaluate the baseline performance against Non-
IID data.

•	 FedFE [29]: This is a method that uses momentum 
gradient descent to improve convergence speed 
while considering fairness. The parameter settings 
used (α, β)=(0.5,0.5), were based on the optimal 
values in the experiments of Wentao et al. [29].

•	 q-FFL [30]: This is adopted to reduce performance 
disparities among devices, using 𝑞 = 1 for the syn-
thetic dataset and 𝑞 = 0.1 for other datasets. These 
settings were determined based on the optimal 
values in the experiments of Li et al. [30].

•	 FedHEAL [31]: We adopted this method, a state-
of-the-art FL method aimed at improving fairness. 
Following the experimental settings reported by 
Chen et al. [31], we set the parameters to (β, τ) = 
(0.4, 0.1), which demonstrated the best perfor-
mance in their experiments.

The proposed method was trained using the hyper-
parameters listed in Table 2. These values were chosen 
based on common practices in the federated learning 
literature [29-31]. In particular, the number of local ep-

ochs was selected within the typical range of 1 to 10, 
which is widely adopted in prior studies [29-31]. The 
value of B was determined based on the experimental 
results reported by Wentao et al. [29]. 

Table 2. Hyperparameters of Experiments

Hyperparameters MNIST CIFAR10/GTSRB SYNTHETIC

N (number of devices) 100 100 100

K (size of selected devices) 10 10 10

E (local epochs) 5 10 5

B (batch size) 16 32 32

Learning rate 0.01 0.01 0.1

Momentum 0.9 0.9 0.9

RL batch size 50 50 50

P (number of steps) 10 10 10

RL learning rate 10e-5 10e-5 10e-5

γ (discount factor) 0.99 0.99 0.99

M 1.01 1.01 1.01

For each dataset, the target accuracy (TargetACC) 
was set based on existing FedFE [29] and q-FFL [30] 
methods. Specifically, experiments were conducted 
using these methods, and the average accuracy of the 
bottom B% of devices (BottomACC) was measured. 
Based on these results, TargetACC was set to a value 
that exceeded the BottomACC achieved by q-FFL and 
FedFE by a few percent.

•	 MNIST (0.1):	 85%

•	 MNIST (0.5):	 90%

•	 CIFAR-10(0.1):	 37%

•	 CIFAR-10(0.5):	 47%

•	 GTSRB (0.1):	 77%

•	 GTSRB (0.5):	 8%

•	 SYNTHETIC (0,0):	15%

•	 SYNTHETIC (1,1):	10%

5.3.	 Results & Discussion

Fig. 2 and Table 3 present the progression and final out-
comes of the accuracy of each method across the datas-
ets used in this study. The evaluation metrics employed 
included the average accuracy of each device's local test 
data, variance and average accuracy of the bottom 10% of 
the devices, as well as top 10% of the devices.

The proposed method successfully enhanced the ac-
curacy of the bottom 10% of the devices across all da-
tasets, without compromising the overall average ac-
curacy. In some datasets, variance of the accuracy was 
reduced compared with those of existing methods (Ta-
ble 3). Notably, on CIFAR-10 with a Dirichlet parameter 
of 0.1 CIFAR-10(0.1), which represents a highly non-IID 
environment, the improvement in the accuracy of the 
bottom 10% of the devices was particularly significant.
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D
at

as
et

Method Variance Worst 
10% Accuracy Best  

10%
M

N
IS

T(
0.

1)

FedAVG 36.1 ±18.9 79.5±3.3 90.7 ±2.6 99.1+.8

q-FFL 30.5 ±16.9 81.4±4.8 93.1+.8 99.4±.4

FedFE 17.7+3.5 85.2±1.8 93.5 ±.3 99.4±.4

FedHEAL 14.7 ±2.2 86.1 ±.7 93.7±.3 99.3±.3

Ours 15.1±3.9 86.2 ±1.0 93.9 ±.4 99.4±.1

M
N

IS
T(

0.
5)

FedAVG 5.8+1.8 91.1+1.3 96.1 ±.4 99.3±.1

q-FFL 4.0 ±.8 92.4 ±.6 96.4 ±.2 99.2±.1

FedFE 4.1 ±.5 92.3 ±.4 96.2±.2 99.1+.1

FedHEAL 5.6+1.5 91.2±1.0 95.9±.2 99.0±.2

Ours 4.2 ±.6 92.3±.5 96.3 ±.3 99.2±.2

CI
FA

R1
0(

0.
1)

FedAVG 152.7+32.5 30.4±3.2 51.3+1.0 72.0±2.0

q-FFL 191.9+14.5 30.6 ±1.2 52.8 ±1.5 78.7±2.3

FedFE 123.4+3.7 34.7 ±1.3 53.5+1.7 73.0±1.2

FedHEAL 145.3+35.3 29.4 ±3.9 48.8±2.8 71.0±2.9

Ours 130.8+11.3 38.7 ±1.0* 54.7+.9 78.4±1.7

CI
FA

R1
0(

0.
5)

FedAVG 63.3+2.4 42.5 ±.7 56.9 ±.5 70.7 ±.6

q-FFL 56.9+3.7 43.0±1.0 57.0+1.0 69.8 ±.9

FedFE 51.5+5.6 43.8±.8 56.6±1.0 69.1 + 1.3

FedHEAL 52.6+8.8 41.7±1.2 54.5+.8 66.8±1.8

Ours 51.4+3.8 44.8 ±.9 57.6 ±1.0 69.7+1.5

G
TS

RB
(0

.1
)

FedAVG 82.1+24.8 68.0±5.0 86.9+1.5 97.7 ±.4

q-FFL 70.6+20.1 69.4 ±4.0 88.0±.5 97.9+.4

FedFE 59.6+13.5 70.3 ±2.2 86.9+1.6 96.5±1.6

FedHEAL 78.4+23.4 66.0 ±4.6 84.9±2.5 95.9+1.4

Ours 44.7 ±6.5 75.5 ±1.4 89.9+.4 98.1 ±.4

G
TS

RB
(0

.5
)

FedAVG 38.5+20.1 70.4+11.1 81.2±8.5 90.7+5.4

q-FFL 9.0 ±1.1 87.7±.9 93.5+ .5 97.9 ±.7

FedFE 17.9+2.7 81.6+2.7 89.6±1.5 96.1 + 1.1

FedHEAL 16.4±1.4 82.5 ±1.2 90.4+1.0 96.2±.6

Ours 9.2+1.2 87.9+.8 93.6 ±.4 98.3±.4

SY
N

TH
ET

IC
(0

,0
)

FedAVG 1429.7±35.3 o.o±.o 34.3+1.8 99.9±.1

q-FFL 849.6 +42.0 11.0+1.0 69.2±1.0 100.0 ±.0

FedFE 893.1+26.1 12.1±1.1 71.4+.7 100.0 ±.0

FedHEAL 1075.8±70.8 0.1+.2 48.3±2.1 99.5±.7

Ours 824.6 + 55.4 15.1 ±.7 73.5+2.1 100.0 ±.0

SY
N

TH
ET

IC
(1

.1
)

FedAVG 1405.5 ±74.1 0.0+.0 34.0 ±1.4 100.0 ±.0

q-FFL 1024.6 ±46.3 7.8 ±2.0 68.4+2.1 100.0 ±.0

FedFE 1044.5 ±46.3 6.7+1.1 70.4±2.4 100.0 ±.0

FedHEAL 1423.1 ±36.3 o.o±.o 48.0+3.7 100.0 ±.0

Ours 926.5 ±71.8 10.5+0.5 73.8±2.0 100.0 ±.0

*Indicates statistically significant differences (p<0.05) between the 
proposed method and other methods for the corresponding metric

(a)

(b)

(c)

(d)

(e)

(f )
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(g)

(h)
Fig. 2. Accuracy progression charts of average 

accuracy for each of the six datasets. (a) MNIST (0.1), 
(b) MNIST (0.5), (c) CIFAR-10(0.1), (d) CIFAR-10(0.5), 
(e) GTSRB (0.1), (f) GTSRB (0.5), (g) SYNTHETIC (0,0), 

(h) SYNTHETIC (1,1)

A partial distribution of the accuracy is shown in Fig. 
3. This figure was derived from datasets with stron-
ger non-IID characteristics, displaying the most pro-
nounced improvements. Visually, the number of low-
performing devices has clearly decreased compared 
with respect to the baseline methods.

(a) (b)

(c) (d)

Fig. 3. Accuracy distribution map
(a) MNIST(0.1), (b) CIFAR-10(0.1), (c) GTSRB(0.1),  

(d)SYNTHETIC(1,1)

In this study, we used UMAP for dimensionality re-
duction of the model weights of each device to better 
capture the underlying distribution among devices. 

To evaluate its effectiveness, we used the MNIST data-
set and introduced varying degrees of label imbalance 
among devices by controlling a parameter Z, which de-
notes the proportion of a single dominant label in each 
device's data. For instance, Z=80 indicates that 80% of 
the data within a device belong to one specific label, 
while the remaining 20% are uniformly distributed 
among the other labels. A setting of Z=100 represents 
extreme label concentration (single-label scenario), 
whereas Z =10 corresponds to a fully IID scenario, with 
all ten MNIST labels evenly represented.

We visualized the model weights after one epoch of 
local training and reduced them to two dimensions us-
ing both PCA and UMAP. While PCA was able to reveal 
some cluster structure under highly imbalanced set-
tings (Fig. 4 (a)), it struggled to clearly separate clus-
ters when the distribution became more subtle (Fig. 
4 (b)). In contrast, UMAP consistently provided clearer 
and more distinct cluster formations, even in moder-
ately complex distributions (Fig. 4 (c)). This suggests 
that UMAP captured the latent structures in the model 
weights more effectively than PCA.

By reducing the weights to 10 dimensions and using 
them as state representations for reinforcement learn-
ing, our method allowed the agent to more accurately 
distinguish between devices with different underlying 
data characteristics. This contributed to more effective 
device selection and, ultimately, better performance 
under heterogeneous data distributions.

(a)

(b) (c)

Fig. 4. Dimensionality Reduction of Local Model 
Weights. (a)with PCA (Z = 80), (b) with PCA (Z=20), 

(c) with UMAP (Z=20)
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Additionally, Fig. 5 shows the number of selections 
for each device in CIFAR-10(0.1). As observed, the re-
inforcement learning agent intentionally selected de-
vices that would increase accuracy. When the devices 
are randomly selected, the number of selections X for 
a single device follows X∼Binomial(n=250, p=0.1) with 
expected mean μ= np = 25 and σ=√(np(1-p) )≈4.74 as 
standard deviation. Typically, assuming a normal dis-
tribution, approximately 99.7% of the data would lie 
within the range [10.78,39.22]. However, in Fig. 5, ap-
proximately ten devices fall outside this range, suggest-
ing that the reinforcement learning agent intentionally 
increased the selection frequency of these devices. In 
addition, upon examining the data distribution of the 
most frequently selected devices in Fig. 5, these de-
vices were observed to have the largest amounts of 
data among those possessing more than five classes. 
As illustrated, because the number of devices selected 
per round is limited to K, devices with more diverse and 
abundant data were chosen more frequently.

Fig. 5. Average number of device selections in 
CIFAR-10 (0.1)

6.	 CONCLUSION

This study introduces a novel approach designed to 
suppress the occurrence of low-accuracy devices in FL. 
The proposed method integrates reinforcement learn-
ing-based device selection using a DDQN and incorpo-
rates a reward mechanism based on the distance from 
the global model. Furthermore, it employs multi-action 
selection to choose multiple devices simultaneously, 
thereby ensuring an efficient selection process. By uti-
lizing UMAP for the state representation, this method 
achieves both dimensionality reduction and enhanced 
representational capabilities.

The results indicate that the proposed approach ef-
fectively improves the average accuracy of the bottom 
10% of the devices by up to approximately 4% without 
diminishing the overall average accuracy compared 
to existing methods. In addition, beyond the 10-class 
CIFAR-10 dataset, the method successfully suppressed 
low-accuracy devices in the GTSRB dataset, contain-
ing a greater number of classes. This demonstrates the 
versatility and effectiveness of the proposed method 
across diverse datasets.

In future research, we plan to extend the application 
of reinforcement learning beyond device selection to 
include weighted aggregation, with particular atten-
tion paid to the potential of multi-agent reinforcement 

learning. Moreover, addressing real-world challenges 
such as data heterogeneity, communication costs, and 
privacy concerns remains essential. Developing new al-
gorithms that specifically aim to suppress low-accuracy 
devices in non-IID environments, while considering 
these practical constraints, is critical for ongoing and 
future investigations.
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Integrating Squeeze-and-Excitation Network 
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Disease Detection
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Abstract – The increasing global population and the challenges posed by climate change have intensified the demand for 
sustainable food production. Traditional agricultural practices are often insufficient, leading to significant crop losses due to diseases 
and pests, despite the widespread use of pesticides and other chemical interventions. This paper introduces a new approach that 
integrates deep learning techniques, specifically Convolutional Neural Networks (CNNs) with Squeeze and Excitation (SE) networks, 
to enhance the accuracy of disease detection in fig leaves. By leveraging three pre-trained CNN models—MobileNetV2, InceptionV3, 
and Xception—this framework addresses data scarcity issues and improves feature representation while minimizing the risk of 
overfitting. Data augmentation techniques were employed to counteract data imbalance, and visualization tools like Grad-CAM and 
t-SNE were utilized for model interpretability. The proposed CNN-SE model was trained and evaluated on a fig leaf dataset comprising 
1,196 images of healthy and diseased fig leaves, achieving an accuracy of 92.90% with MobileNet-SE, 91.48% with Inception-SE, and 
89.62% with Xception-SE. Our model demonstrates superior performance in detecting fig leaf diseases, presenting a robust solution 
for sustainable agriculture by providing accurate, efficient, and scalable disease management in crops. The code of the proposed 
framework is available at https://github.com/lafta/SE-block-with-CNN-Models-for-Plant-Disease-Detection. 
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1.	 	INTRODUCTION

One of the greatest challenges to increasing agricul-
tural productivity is the spread of pests and diseases in 
crops, which are considered the primary cause of more 
than a third of annual agricultural production losses 
[1]. To protect plants from these threats, numerous 
pesticides and costly techniques are employed. How-
ever, the large-scale use of these chemical methods 

has adverse effects on species diversity, human health, 
and crop yields, while also increasing production costs 
[2]. Recently, researchers have reported remarkable 
progress in applying Artificial Intelligence (AI) tech-
nology, particularly deep learning (DL) techniques, to 
the detection and classification of diseases on plants. 
These techniques have played a key role in transform-
ing conventional farming practices into more sustain-
able ones by providing accurate, efficient, and scalable 
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solutions, even aiding in the early diagnosis of diseases 
[3]. DL algorithms can classify image data based on their 
feature content and extract relevant information [4]. 
Convolutional Neural Networks (CNNs) are a specialized 
type of DL models primarily designed to process image 
data, automatically learning features and patterns be-
fore making decisions [5]. The extracted features are fed 
into the classifier without human intervention, unlike in 
traditional machine learning, where feature extraction 
and classification are separate steps. Essentially, CNNs 
are composed of two steps; feature extraction and clas-
sification, the first step are employed three operations 
which are convolution operation that achieved by con-
volutional layer, activation function, and    pooling op-
eration. Various filters are applied to analyze and detect 
the important features in the image starting from small 
features such as edges, lines, and corners till reach the 
very important features ( faces, leaves, etc.) [6]. From 
the perspective of feature re-calibration, a Squeeze and 
Excitation (SE) network has been introduced to capture 
the interdependencies between convolutional feature 
channels [7]. The SE block consists of two main pro-
cesses: squeezing and excitation. The squeeze operation 
creates a channel descriptor by summarizing feature 
maps across their spatial dimensions to embed global 
information. The excitation process generates channel-
specific weights. Through feature re-calibration, the SE 
block can selectively highlight important features while 
diminishing less relevant ones. This block can be incor-
porated into conventional DL models, such as CNNs [8]. 
Despite all the capabilities CNNs offer, they still face sev-
eral challenges, the most significant being the need for 
large amounts of training data [9]. This has prompted 
researchers in the field of AI to explore the use of trans-
fer learning (TL), a technique that improves model per-
formance by transferring knowledge from an already 
trained model instead of training the model from scratch 
[10]. In addition to TL, data augmentation is a technique 
used to handle the lack of data by increasing the size of 
the training dataset through various transformations of 
existing images, such as translation, rotation, shearing, 
flipping, zooming, etc. This generates new data that is 
added to the original dataset, enhancing the model's 
generalization and robustness [11]. Since DL as a black 
box, it is difficult to understand what occurs within the 
hidden layers and how these networks make decisions 
or predictions [12]. To address this challenge, transpar-
ency is necessary to identify the regions the model fo-
cuses on. This can be achieved using explainable learn-
ing techniques. Specifically, Grad-CAM and t-SNE visu-
alization techniques are employed to bridge this gap, 
providing deeper insight and a clearer understanding of 
how the model reaches its conclusions. This study aims 
to address the aforementioned challenges by develop-
ing an accurate plant disease detection model through 
feature extraction from leaf images using multiple CNN 
architectures, and by integrating a squeeze-and-excita-
tion (SE) block to enhance classification accuracy. The 
main contributions of this paper include:

•	 A new CNN-SE framework integrating CNNs with 
SE network has been proposed. This approach en-
hances feature learning by focusing on informative 
channels and dynamically recalibrating weights, 
improving fig leaf disease detection accuracy.

•	 Three pre-trained CNN models from ImageNet 
were employed to mitigate data scarcity, improve 
feature extraction, and reduce overfitting risks.

•	 Data augmentation techniques were applied to 
address class imbalance and limited training data, 
enhancing model generalization.

•	 Interpretability tools, Grad-CAM and t-SNE, were 
used to analyze model decisions, visualize feature 
importance, and detect potential biases.

2.	 LITERATURE REVIEW 

This section presents the most recently studies in 
the field of detecting the plant leaf disease using the 
DL techniques. Saikat Datta and Nitin Gupta [13] de-
veloped a deep CNN-based architecture to classify tea 
leaf diseases into six categories: Gray Blight, Algal Spot, 
Brown Blight, Heliopolis, Healthy Leaves, and Red Spot. 
They introduced a novel real-world dataset containing 
5,867 images, covering five disease types and healthy 
leaves. F. Khan et al. [14] proposed a DL framework for 
detecting blight, leaf spot and sugarcane mosaic virus 
in maize crops. they evaluated five YOLO variants (YO-
LOv3-tiny, YOLOv4, YOLOv5s, YOLOv7s and YOLOv8n) 
and selected YOLOv8n for its compact architecture and 
superior inference speed. this model was subsequently 
deployed in a mobile application to real-time disease 
management in agricultural settings. MKA Mazumder 
et al. [15] proposed LeafDoc-Net,  lightweight TL ar-
chitecture that integrates two pretrained CNN models, 
DenseNet-121 and MobileNetV2, for multi-species leaf 
disease detection. The model employs an attention-
based transition mechanism for enhancing feature fu-
sion, followed by global average pooling to reduce spa-
tial dimensionality. Additionally, it incorporate dense 
layers with swish activation and batch normalization to 
deepen the network while maintaining computational 
efficiency. Qinghai Wu et al. [16] proposed  DL model 
contains three components of feature extraction, at-
tention calculation and then lastly the classification, an 
attention module was added to generate feature maps 
at various depths for enhancing the network’s focus on 
discriminative features while reduce background noise. 
The attention module also made use of LeakyReLU as 
an activation function to tackle the problem of neu-
rons failing to learn when their input is negative, The 
extracted features were integrated through a fully con-
nected layer to predict disease category for soybean 
leaf. YA Bezabh et al. [17] proposed a pepper disease 
classification model based on two CNN architectures: 
AlexNet and VGG16. The authors utilized these two 
CNN architectures to extract features, then combined 
the extracted features in single features set. 



623Volume 16, Number 8, 2025

After that the combined feature set was used as in-
put to the fully connected layers for classification with 
a multiclass classifier. Rina Bora et al. [18] developed 
a framework known as the Multivariate Normal Deep 
Learning Neural Network (MNDLNN) to detect diseases 
in the leaves, fruits, roots and stems of tomato plants. 
The methodology comprises of conversion the  image 
color to HSI format, masking of green color to obtain 
the healthy and unhealthy region, identification of 
fruits and roots with the region of interest, segment-
ing the unhealthy region via RKMC clustering and final 
stage includes the extraction of necessary features us-
ing RMSSO. Anuradha Chug et al. [19] proposed a Hy-
brid Deep Learning (HDL) framework that combines 
EfficientNet architectures (B0–B7) as feature extractors 
with five machine learning classifiers. They developed 
the IARI-TomEBD dataset, a real-time image collec-
tion of tomato early blight disease for experimental 
validation. The HDL models demonstrated strong 
performance on this custom dataset and were further 
evaluated on two public plant disease benchmarks.
The EfficientNet-B3-ADB and EfficientNet-B3-SGB con-
figurations achieved state-of-the-art results across all 
datasets. Mahum, Rabbia, et al. [20] proposed an En-
hanced DenseNet model by integrating an additional 
transition layer into DenseNet-201. To address extreme 
class imbalance in the training data, they employed 
a reweighted cross-entropy loss function, enhancing 
model robustness. Ashwathnarayan Nagarjun et al. [21] 
proposed a cotton leaf disease classification method 
combining transfer learning and deep learning tech-
niques. For the deep learning component, they em-
ployed a conventional convolutional neural network 
(CNN), while their transfer learning approach utilized 
architectures such as Inception and ResNet. The study 
relied on a custom-collected cotton disease dataset to 
achieve its objectives. However, the work exhibits sig-
nificant ambiguities and lacks critical implementation 
details, including methodological transparency and 
reproducibility safeguards. Malathi Chilakalapudi and 
Sheela Jayachandran [22] proposed a framework that 
employs transfer learning-based CNN and a Chrono-
logical Flamingo Search Algorithm (CFSA). The authors 
utilized the color PlantVillage dataset and applied an 
augmentation process incorporating operations such 
as contrast adjustment, rotation, rescaling, and others. 
Manjunatha Shettigere Krishna et al.  [23] developed 
a classification system for detecting plant diseases in 
leaves using multiple CNN architectures. Their primary 
contribution involved enhancing data augmentation 
by introducing Gaussian noise. The authors imple-
mented four CNN architectures in parallel and evalu-
ated their performance across two datasets. In their 
baseline approach, they processed input data directly 
through the CNNs without additional modifications, 
yielding preliminary results. Sherihan Aboelenin et al. 
[24] developed a method that employs multiple CNN 
variants and a Vision Transformer (ViT), merging them 
into an ensemble model. Both CNNs and the ViT were 

used to extract features: the CNN variants captured 
global features, while the ViT focused on extracting lo-
cal features. The model was trained using the Apple and 
Corn leaf disease datasets from PlantVillage. The global 
features extracted by the CNN variants were concate-
nated and fed into the ViT, where they were combined 
with the local features. The ViT then performed the final 
classification of leaf diseases. The key contribution of 
this study lies in the novel integration of CNN architec-
tures with a ViT framework. Table 1 presents the meth-
ods, limitations, datasets, and accuracy metrics of the 
respective studies.

3.	 METHODS AND MATERIALS     

3.1. Dataset.Description

The Fig Leaves Dataset [25] was employed in this 
work to train and evaluate the proposed model. It com-
prises 2,321 high-resolution images of fig leaves from 
various regions in Iraq, captured during the peak fruit 
season to ensure the utmost accuracy in identifying in-
fections. These images are divided into two categories: 
infected and healthy leaves. The dataset is both small 
and unbalanced, with 1,350 images of infected leaves 
and 971 images of healthy leaves. To tackle the chal-
lenges of data imbalance and scarcity, a data augmen-
tation method was implemented in two phases. The 
first phase involved randomly selecting and duplicat-
ing healthy leaf images until their number matched 
that of the infected leaf images, ensuring equal rep-
resentation of both classes. In the second phase, stan-
dard data augmentation techniques were applied, 
including rotation, width and height shifts, shear and 
zoom transformations, horizontal flipping, and rescal-
ing. These techniques were used to increase the train-
ing data, enhancing its diversity and robustness. After 
augmentation, the dataset was randomly split into 80% 
of the images per class for training and 20% for testing. 
Fig. 1 displays samples from the fig leaves dataset.

Fig. 1. Samples from the fig leaves dataset. The first 
row depicts healthy leaves, while the second row 

depicts infected leaves

3.2. CNN Architectures

The application of DL algorithms improves the diag-
nosis process of plant diseases. Such algorithms work 
best when analyzing large image databases along with 
access to strong computational availability [26]. These 
models coordinate all modelling procedures which 
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start from data pre-processing and move through archi-
tecture engineering until they reach hyperparameter 
optimization and parameter selection or update [27]. 
The paper investigates leaves infected plant identifica-
tion by utilizing three deep CNN models comprising 
MobileNetV2, InceptionV3 and Xception.  Testing con-
firmed these models function well on the ImageNet da-
taset and extract fine and large features because they 
contain distinctive filter sizes from 1 × 1 to 7 × 7. These 
models adopt batch normalization layers to speed up 
learning processes while offering better efficiency in 
plant disease detection. The mobile-oriented model 

MobileNetV2 functions as a compact yet efficient sys-
tem for embedded devices with its design combining 
19 bottleneck residual layers and ReLU activation [28]. 
The structured framework of InceptionV3 comprises 
three divisions including a stem section along with 
inception blocks along with final layers which enables 
the extraction of features from multiple scales and per-
forms classification through a combination of GAP and 
fully connected layers [29]. Xception uses depthwise 
separable convolutions to process information faster 
while decreasing parameter numbers through depth-
wise and pointwise convolution operations [30].

Table 1. Summary of Related Works: Methods, Datasets, Limitations, and Performance in Leaf Disease 
Classification

[Ref.], 
year Method Limitations Dataset Accuracy

[13], 
2023 Deep CNN The study faces limitations of class imbalance in the dataset and high 

computational requirements during model training
Tea leaf diseases 

dataset 96.56%

[14], 
2023 YOLOv8n

Use test datasets with uneven class distributions, skewing accuracy 
metrics and reducing real-world applicability, also, relies on corn 
leaf images captured with a limited-range camera, introducing 

device-specific biases. Additionaly, remains non-public, hindering 
reproducibility.

Corn leaf dataset 99.04%

[15], 
2023 LeafDoc-Net

small dataset size, with some classes containing only 39 images. This 
constraint hinders model generalization, exacerbating overfitting and 

class imbalance.

corn disease dataset 
and a wheat leaf 
sickness dataset

99%

[16] , 
2023 CNN The model exhibits high computational complexity and ignores data 

balancing in both original and augmented datasets.
Soybean leaf disease 

dataset 85.42%

[17] , 
2023 AlexNet and VGG16

The study relies on conventional CNN architectures, lacks advanced 
techniques such as attention mechanisms, and involves computationally 

intensive implementations due to the large number of parameters.
Pepper leaf disease 95.82%

[18] , 
2023

Multivariate Normal 
Deep Learning 

Neural Network.

The dataset is inaccessible, and the authors omit testing on universal 
benchmarks like PlantVillage private dataset 99.84%

[19] , 
2023

EfficientNet-B3- ADB 
and EfficientNet-

B3-SGB
Persistent class imbalance and Lack of explainability

PlantVil- lage-
TomEBD and 

PlantVillage-BBLS
97.2%

[20] , 
2023 DenseNet-201 Unclear dataset partitioning, Reliance on DenseNet-201 increases 

resource demands, and Overfitting risks. PlantVillage dataset 97.2%

[21], 
2024

CNN, ResNet101, 
Inception v2, and 

DenseNet121

The study lacks critical implementation details and provides an 
insufficiently detailed methodology. Furthermore, it fails to present 

novel contributions, primarily replicating existing frameworks without 
substantive innovation.

Cotton disease 
dataset 99.00%

[22], 
2024

CFSA-TL-based CNN 
with LeNet

The model’s shallow LeNet architecture lacks advanced features like 
batch normalization or dropout, limiting its generalization ability and 

increasing the risk of overfitting and vanishing gradients.

Colored PlantVillage 
dataset 95.7%

[23], 
2025

EfficientNet-
B0,EfficientNet-B3, 

ResNet50, and 
DenseNet201

The study used standalone CNN models without combining their 
outputs, showed weak performance, lacked innovation in feature 
extraction or classification, and relied on unverified, web-scraped 

images collected under inconsistent conditions.

PlantDoc dataset and  
Web-sourced dataset

EfficientNet-B3 
(80.19% )

[24], 
2025

Vgg16, Inception-V3, 
DenseNet201, and 

ViT.

The approach incurs high training costs and faces optimization 
challenges due to gradient instability in ViT. Furthermore, ViTs inherently 

require large-scale datasets for effective training, yet the available 
dataset was limited, compounding the issue as no data augmentation 

techniques were applied.

PlantVillage dataset 
(Corn and Apple leaf 

disease)

Apple (99.24%) 
Corn (98%)

3.3.	 Squeeze and Excitation (SE) 
	 Network

The SE network is an attention mechanism used to 
improve the representational power by modeling the 
interdependencies between the channels of its convo-
lutional features. The SE network begins with a squeeze 
operation, where global average pooling is applied to 

the feature maps output by the preceding convolu-
tional layers. This operation condenses the spatial di-
mensions (height and width) of each feature map into 
a single value, effectively summarizing the global in-
formation of each channel [31] . Following the squeeze 
operation, the SE network implements the excitation 
operation. This involves two fully connected (dense) 
layers with an ReLU activation function in between. The 
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first dense layer reduces the channel dimension to a 
bottleneck, capturing the interdependencies between 
channels. The second dense layer restores the original 
channel dimension, outputting a set of weights for 
each channel. The weights obtained from the excita-
tion phase are used to recalibrate the original feature 
maps. Each feature map channel is scaled by its corre-
sponding weight, allowing the network to emphasize 
or suppress specific features dynamically based on 
their importance to the current task [32]. Fig. 2 shows 
the SE block [7].

3.4.	 Proposed Model

In this section, we introduce our proposed frame-
work, named the CNN-SE model, which consists of 
three modules. The local attention features are ob-
tained with the help of the CNN module, while the SE 
module extracts the global relations from the extracted 
features, potentially enhancing the learning process to 
a greater extent. The classification module then classi-
fies the fig leaves as infected or healthy. The flow of the 
proposed CNN-SE framework is illustrated in Fig. 3. The 
preprocessing stage prepares the dataset for feature 
extraction and classification. This involves three steps:

•	 Class Balancing: Ensuring uniform sample sizes 
across all classes to mitigate bias.

•	 Image Resizing: Adjusting images to the standard 
input size required by the CNN variant used in the 
proposed model.

•	 Data Augmentation: Expanding the dataset size 
through transformations (e.g., rotations, flips) to 
improve classification accuracy and model gener-
alizability.

A.	 CNN Module

The CNN block employs convolution layers to learn 
the characteristics of the input image and extract valu-
able features. These layers apply convolutional filters to 
the input image to extract features such as edges, tex-
tures, and patterns. Each convolutional layer typically 
follows ReLU activation function and is often followed 
by a pooling layer to reduce the spatial dimensions and 
computational load. In this module, we utilized three 
pretrained CNN architectures, MobileNetV2, Incep-
tionV3, and Xception, separately. The architecture of 
these models was modified to improve their ability to 
learn disease-spot features in fig leaf images. The origi-
nal classification layers at the end of the pre-trained 
models were removed, and an SE block was added af-
ter the CNN block. The features extracted by the CNN 
module were then passed into the SE module for fur-
ther enhancement.

B.	 SE Module

SE module uses the SE network to further enhance 
the representational capability of our approach since 
it captures the interdependence between the chan-
nels of the convolutional features of the different lay-

ers of the network. It applies the squeeze operation to 
acquire the channel-wise global context and then ap-
plies the excitation operation to address the issue of 
inter-channel dependencies. In particular, the weights 
coming from the excitation phase are used to update 
the original feature maps. This process helps the net-
work to focus on the features that are informative and 
at the same time reduce other features that are not 
very useful, thus increasing the representational ca-
pability of the model. The squeeze operation sums the 
feature maps along the spatial domain and this is used 
one generate a channel descriptor. This is usually done 
through what is called global average pooling.

(1)

Where xi, j, c is the value at the spatial location (i, j) of 
the c-th channel of the feature map X with spatial di-
mensions H×W.

The excitation operation captures the channel-wise 
dependencies using a simple gating mechanism. This 
involves passing the squeezed features through two 
fully connected (FC) layers with ReLU and sigmoid acti-
vations, respectively.

(2)

Where z is the sqeeze feature factor of size C×1 
(where C is the number of channel), W1 and W2 are 
the weight matrices of the fully connected layers, δ de-
notes the ReLU activation function, and σ denotes the 
sigmoid activation function.

The recalibration of the original feature map X is per-
formed by channel-wise multiplication of the original fea-
tures with the activations from the excitation operation.

(3)

Where Sc is the excitation output for the c-th channel, 
and x'i,j,c is the recalibrated feature map.

In general, the SE block can be represented by the 
following sequence of operations:

(4)

C.	 Classification Module

This module consists of set of layers to train the 
weights obtained from the SE block. These layers are: 

•	 The Flatten layer: transforms feature maps into a 
1D vector.

•	 Fully Connected (Dense) Layers: Following the flat-
tening layer, there are two fully connected layers. 
Each dense layer is depicted with its size and acti-
vation function:

•	 Dense Layer (1024, ReLU): A dense layer with 1024 
neurons and a ReLU (Rectified Linear Unit) activa-
tion function.
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Fig. 2. SE block

Fig. 3. A schematic diagram of the CNN-SE framework

•	 Dropout Layer (30%): A dropout layer with a 30% 
dropout rate, used to prevent overfitting by ran-
domly setting a fraction of input units to 0 during 
training.

•	 Dense Layer (1024, ReLU): Another dense layer 
with 1024 neurons and a ReLU activation function.

•	 SoftMax Layer: Assigns class probabilities for the 
two types of fig leaves: healthy and inflected.

3.4.	 Explainable Tools

DL has often been seen as a complex and opaque 
process, frequently referred to as a "black box" due to 
the challenges in understanding why a model makes 
certain decisions. This lack of transparency can under-
mine trust in the system's final outcomes [12]. To ad-
dress this issue, this paper utilizes Grad-CAM and t-SNE 
visualization techniques to overcome these limitations 
and provide a clearer understanding of how deep 
learning methods reach their conclusions. 

•	 The Grad-CAM (gradient-weighted class activation 
mapping) technique is a visualization method that 
helps in understanding network predictions by cre-
ating visual representations of what the network is 
focusing on. It uses the gradients of the classification 

score with respect to the final convolutional feature 
map to identify the parts of an input image that have 
the most impact on the classification score. Areas 
with large gradients indicate where the final score 
relies the most on the data. This technique translates 
network behavior into interpretable output, which 
can be used to answer questions about the net-
work’s predictions [33]. In this study, Grad-CAM was 
used to identify the regions of interest emphasized 
by individual CNN models to better understand the 
specific traits and features that these models priori-
tize during detection.

•	 t-SNE, or t-Distributed Stochastic Neighbor Em-
bedding, is a non-linear dimensionality reduc-
tion technique that maintains the data's structure 
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across different scales [10]. It excels at visualizing 
high-dimensional datasets by creating a low-di-
mensional representation that can be plotted. This 
allows for the visualization of clusters, patterns, 
and relationships that are challenging to detect in 
high-dimensional space.

4.	 RESULTS AND DISCUSSION

4.1.	 Performance evaluation metrics

Testing the proposed model is essential to evaluating 
its performance. Accuracy, recall, precision, and F1 score 
are the evaluation metrics are used to evaluate our mod-
els. The choice of evaluation metrics is guided by spe-
cific criteria. For balanced datasets, accuracy is the most 
suitable metric. In contrast, for imbalanced data, preci-
sion, recall, and the F1-score are more appropriate. Pre-
cision and recall help identify specific errors (e.g., false 
positives and false negatives, respectively), while the 
F1-score provides a balanced assessment by harmoniz-
ing these two metrics. The accuracy measures the pro-
portion of correctly classified samples out of all samples 
submitted to the model. The recall reflects the model’s 
ability to identify positive samples, indicating how many 
actual positives were correctly detected. The Precision, 
on the other hand, measures the proportion of correctly 
predicted positive samples out of all predicted positives. 
The F1 Score evaluates the balance between recall and 
precision in a classification model. Equations (5), (6), (7), 
and (8) are used to calculate accuracy, recall, precision, 
and F1 score, respectively. In these formulas, true posi-
tive (TP) and true negative (TN) represent correct pre-
dictions, while false positive (FP) and false negative (FN) 
represent incorrect ones [34].

(5)

(6)

(8)

(7)

During the model training process, we used specific 
hyperparameters that were selected through a process 
of trial and error to ensure optimal model performance. 
These included a learning rate (0.001), Adam optimizer, 
batch size (32), 30 epochs, dropout rate (0.3), and a 
dense layer with 1024 neurons.

4.2.	 Experimental Results using CNN 
	 Models

The experimental results using CNN models—Mo-
bileNetV2, InceptionV3, and Xception—are summa-
rized in Table 1 and illustrated in Fig. 4. Each model 
demonstrated varying degrees of performance in clas-
sifying fig leaves as either healthy or infected. 

MobileNetV2 achieved the highest overall perfor-
mance among the three models, with an accuracy of 
90.74%. The high recall rate of 95.18% indicates that 
the model is very effective at identifying true positive 
cases of infected leaves. The precision of 87.41% sug-
gests that there are some false positives, but overall, 
the model balances well between precision and recall, 
leading to a strong F1 score of 91.13%. InceptionV3 
also performs well, with an accuracy of 88.70%. Similar 
to MobileNetV2, it has a high recall rate (95.18%), indi-
cating its strong ability to detect infected leaves. How-
ever, its precision is slightly lower at 84.26%, suggest-
ing more false positives compared to MobileNetV2. The 
F1 score of 89.39% reflects a good balance between 
precision and recall, albeit slightly lower than Mobile-
NetV2. Xception shows the lowest performance among 
the three models, with an accuracy of 85.55%. Despite 
its lower accuracy, Xception has the highest recall rate 
(95.92%), indicating that it is very good at identifying 
infected leaves. However, its precision is the lowest at 
79.44%, meaning it has a higher rate of false positives 
compared to the other models. The F1 score of 86.91% 
is also the lowest, reflecting the trade-off between its 
high recall and lower precision. The confusion matrices 
for each model, as illustrated in Fig. 4, show the dis-
tribution of true positive, true negative, false positive, 
and false negative predictions.

Table 1. Performance Metrics of Original CNN 
Models on Fig Leaf Dataset

CNN model Accuracy Recall Precision F1 Score
MobileNet 90.74% 95.18% 87.41% 91.13%

Inception 88.70% 95.18% 84.26% 89.39%

Xception 85.55% 95.92% 79.44% 86.91%

4.3.	 Experimental Results using 
	 CNN-SE model

The experimental results using the proposed model, 
which integrate CNN architectures with SE blocks, are 
summarized in Table 2 and illustrated in Fig. 5. Three 
CNN models—MobileNet, Inception, and Xception—
were used separately in the feature extraction phase 
of the image data, CNN module. SE blocks are added 
to enhance the representational power based on the 
assumption that the correlations between the chan-
nels of convolutional features require proper model-
ing.  MobileNet-SE model achieved the highest per-
formance among the three proposed models, with an 
accuracy of 92.90%. The recall rate is 94.81%, indicating 
a high ability to correctly identify true positive cases of 
infected leaves. The precision is 91.42%, suggesting a 
balanced handling of false positives. The F1 score of 
93.09% reflects a strong balance between precision 
and recall, making this model the most robust of the 
three. Inception-SE model also performed well, with an 
accuracy of 91.48%. It has a recall rate of 91.48%, show-
ing that it can effectively identify infected leaves. The 
precision is very close, at 91.50%, indicating a minimal 
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rate of false positives. The F1 score of 91.48% demon-
strates a consistent balance between precision and 
recall, underscoring the model's reliability. While Xcep-
tion-SE model has the lowest performance among the 
three proposed models, it still shows substantial im-

provement compared to the base models. It achieved 
an accuracy of 89.62%, with a recall rate of 89.62%, in-
dicating good detection of infected leaves. The preci-
sion is 89.70%, suggesting effective handling of false 
positives.

Fig. 5. (a) Training Accuracy for MobileNet-SE; (b) Loss Curve for MobileNet-SE; (c) Confusion Matrix for 
MobileNet-SE; (d) Training Accuracy for Inception-SE; (e) Loss Curve for Inception-SE; (f) Confusion Matrix 

for Inception-SE; (g) Training Accuracy for Xception-SE; (h) Loss Curve for Xception-SE; (i) Confusion Matrix 
for Xception-SE

The F1 score of 89.62% reflects a well-maintained 
balance between precision and recall. These results il-
lustrate the effectiveness of the SE blocks in enhancing 
the performance of CNN models across various metrics, 
contributing to a more accurate and reliable classifica-
tion of plants leaves.

Table 2. Performance Metrics of the Proposed CNN-
SE Models

CNN model Accuracy Recall Precision F1 Score
MobileNet 92.90% 94.81% 91.42% 93.09%

Inception 91.48% 91.48% 91.50% 91.48%

Xception 89.62% 89.62% 89.70% 89.62%

4.4.	 Discussion

The dataset used in this study is the Fig leaf disease 
dataset. Since this dataset is anonymized and contains 

no sensitive information (e.g., personal identities and 
proprietary farm details), there are no ethical concerns 
regarding data privacy. Furthermore, the training process 
is conducted offline, eliminating risks associated with un-
authorized data sharing or privacy breaches. Regarding 
environmental impact, our method employs many CNN 
architectures one of them is a lightweight method and 
the two others are deep CNN architectures, these meth-
ods are optimized for efficiency, which significantly re-
duces computational demands and energy consumption 
compared to resource-intensive architectures. This design 
choice aligns with sustainable practices in AI develop-
ment. The CNN architectures were selected due to their 
distinct advantages in achieving the task’s objectives:

•	 MobileNetV2: A highly efficient and lightweight 
network, offering faster inference speeds com-
pared to bulkier CNNs like VGG and AlexNet.
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•	 InceptionV3: Excels at multi-scale feature extrac-
tion by employing parallel convolutional kernels 
(1×1, 3×3, 5×5) within the same layer, enabling de-
tection of diverse patterns while maintaining lower 
computational complexity than architectures such 
as VGG.

•	 Xception: Optimizes efficiency further by replacing 
standard convolutions with depthwise separable 
convolutions—a refinement of Inception’s prin-
ciples—to minimize parameter count and compu-
tational overhead.

Integrating these networks with SE block enhances 
channel-wise feature recalibration, strengthening the 
model’s ability to generalize and improve classification 
accuracy. Comparing the performance of the original 
CNN models (MobileNet, Inception, Xception) with 
their enhanced versions that incorporate SE blocks (Mo-
bileNet-SE, Inception-SE, Xception-SE) reveals significant 
improvements across various metrics. The addition of SE 
blocks led to better accuracy, precision, recall, and F1 
scores for all models. MobileNet-SE showed a notable in-
crease in accuracy from 90.74% to 92.90%, with precision 
improving from 87.41% to 91.42% and a higher F1 score 
of 93.09% compared to 91.13%. Inception-SE also ben-
efited from SE blocks, with accuracy rising from 88.70% 
to 91.48% and precision improving from 84.26% to 
91.50%, resulting in a more balanced F1 score of 91.48%. 
Similarly, Xception-SE exhibited an improvement in ac-
curacy from 85.55% to 89.62%, with precision increasing 
from 79.44% to 89.70% and a more balanced F1 score 
of 89.62%. These enhancements highlight the effective-
ness of SE blocks in boosting the representational power 
and overall performance of CNN models for classifying 
plants leaves. Fig.6 presents the feature distribution vi-
sualized using t-SNE for the fig leaves dataset, compar-
ing the original CNN models (left column) and the CNN 
models enhanced with SE blocks (right column). 

The t-SNE plots indicate that the SE blocks have im-
proved the feature separation between healthy and 
infected leaves, showing more distinct clusters with re-
duced overlap between the two classes. This suggests 
better feature representation and classification capa-

Fig. 6. Feature distribution visualized using t-SNE 
for fig leaves dataset

bility. Fig. 7 illustrates how Grad-CAM can be used to 
interpret and visualize which parts of an image contrib-
ute most to the decisions made by the DL models. The 
Grad-CAM highlights regions of the leaf that the model 
considers important for its classification. Brighter areas 
(in warm colors like red and yellow) indicate regions 
that have a higher impact on the model's decision, 
suggesting the presence of disease or other relevant 
features. This study represents the first application on 
the Fig leaves dataset, making it challenging to directly 
compare the performance of the proposed model with 
existing research in the literature.

Original image MobileNet

Inception Xception

MobileNet Inception Xception

MobileNet-SE Inception-SE Xception-SE

Fig. 7. Grad-Cam with heatmap of infected leaves 
using CNN models

We did not limit ourselves to these points; instead, 
we tested our model against multiple other CNN vari-
ants and obtained the results shown in Table 3 below.

Table 3. Performance Comparison of the Proposed 
Model with Other CNN Variants

CNN model Accuracy Recall Precision F1 Score
EfficientNet 90.3% 86% 96.2 90.9%

InceptionResNetV2 87.96% 89.5% 85.9% 87.7%

ResNet 76.48% 75.6% 78.1% 76.62%

As shown in Table 3, our proposed model demon-
strates superior performance compared to the CNN 
variants listed in the same table, achieving better re-
sults across all evaluated metrics. The proposed model’s 
computational efficiency—enabled by its architectures 
(e.g., MobileNet, Inception, and Xception)—allows it to 
deliver accurate results more rapidly than tradition-
al CNN-based approaches. This efficiency facilitates 
seamless integration with portable IoT hardware devic-
es, making it a strong candidate for real-time plant leaf 
disease detection systems. Such integration represents 
a promising direction for future research. To demon-
strate the model’s ability to generalize to unseen data, 
we employed data augmentation techniques to en-
hance dataset diversity and mitigate overfitting. Eval-
uation was conducted on a held-out test set (20% of 
the data), which was not used during training, and the 
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model consistently achieved high performance across 
accuracy, precision, recall, and F1-score metrics. Ad-
ditionally, Grad-CAM visualization confirmed that the 
model effectively focused on relevant disease regions, 
further supporting its robustness and interpretability. 
Despite the significant advantages of our proposed 
system, certain limitations persist. While SE network 
enhances feature representation through channel-
wise attention mechanisms, the additional parameters 
it introduces elevate the risk of overfitting when train-
ing on small datasets. Moreover, integrating SE net-
work with lightweight architectures like MobileNet or 
Inception—though beneficial—results in increased 
computational overhead and inference latency, which 
may offset the efficiency gains of these architectures. 
For future directions, applying Vision Transformers 
(ViT) could enhance the proposed model’s accuracy in 
capturing fine-grained disease patterns, while Genera-
tive Adversarial Networks (GANs) could be leveraged 
to synthetically expand the dataset, addressing limita-
tions in data diversity or scarcity. 

5.	 CONCLUSION 

The study presented a novel approach for detecting 
plant diseases in fig leaves by integrating Squeeze-
and-Excitation (SE) networks with pre-trained Convo-
lutional Neural Network (CNN) models, namely Mo-
bileNetV2, InceptionV3, and Xception. The proposed 
CNN-SE framework demonstrated significant improve-
ments in classification accuracy, achieving 92.90%, 
91.48%, and 89.62% for MobileNet-SE, Inception-SE, 
and Xception-SE, respectively. These results highlight 
the effectiveness of SE blocks in enhancing feature 
representation and model performance by dynami-
cally recalibrating channel-wise feature weights. Key 
contributions of this research include addressing data 
scarcity through transfer learning and data augmenta-
tion, improving model interpretability using Grad-CAM 
and t-SNE visualization tools, and providing a robust 
solution for sustainable agriculture. The framework's 
lightweight design ensures computational efficiency, 
making it suitable for deployment in resource-con-
strained environments. Despite its successes, the study 
acknowledges limitations such as the risk of overfitting 
with small datasets and increased computational over-
head from SE integration. Future work could explore 
advanced architectures like Vision Transformers (ViT) 
and Generative Adversarial Networks (GANs) to further 
enhance accuracy and dataset diversity.
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Case Study 

Abstract – Photovoltaic (PV) systems play a crucial role in renewable energy generation, but their efficiency heavily depends on 
accurate Maximum Power Point (MPP) tracking under varying environmental conditions. This paper applies an adaptive robust 
controller (ARC) to improve MPP tracking performance in PV systems, with a particular focus on enhancing robustness and reducing 
chattering. First, a sliding surface is defined based on the maximum power point. Then, a sliding mode controller is designed to ensure 
robustness against system uncertainties and external disturbances. To mitigate the chattering effect, a fuzzy logic-based controller 
is integrated into the ARC framework. The proposed controller is proven to be stable according to the Lyapunov criterion, providing 
robustness to uncertain parameters and external disturbances and reducing chattering. The proposed controller is validated through 
comparative simulations, demonstrating its superior performance over conventional methods. The results demonstrate that the 
proposed ARC achieves faster convergence, higher tracking accuracy, and improved robustness compared to conventional methods. 
Moreover, the integration of fuzzy logic significantly mitigates chattering, enhancing system efficiency and reliability. Given these 
advantages, the proposed controller is well-suited for real-world PV energy conversion systems, particularly in environments with 
rapidly changing irradiance and temperature conditions.
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1.	 	INTRODUCTION

Renewable energy has become a crucial component 
in electricity generation, with photovoltaic (PV) and 
wind energy being widely utilized for power produc-
tion. Among these, PV systems stand out due to their 
availability and environmental benefits, making them a 
viable clean energy source [1]. PV technology has been 
extensively adopted across various fields, including ag-
riculture, industry, and services [1-3].

PV systems exhibit a maximum power point (MPP) 
that varies with environmental conditions such as tem-
perature and solar irradiance. The primary function of 
the controller is to ensure that the PV system continu-
ously operates at the MPP. An effective controller must 
not only accurately track the MPP but also maintain 
adaptability and robustness under different operat-
ing conditions. Maximum power point tracking (MPPT) 
techniques can be broadly categorized into indirect 

and direct methods. Indirect MPPT algorithms rely on 
pre-established PV characteristics or mathematical 
relationships with environmental parameters. Conse-
quently, their tracking accuracy is limited across vary-
ing temperature and irradiance levels [3]. Addition-
ally, utilizing temperature and irradiance parameters 
as control inputs introduces several constraints [4]. In 
contrast, direct MPPT methods can adapt to all weather 
conditions, making them the preferred approach. The 
perturbation and observation (P&O) and incremental 
conductance (INC) algorithms are the most widely used 
direct MPPT techniques due to their simplicity and ease 
of implementation. However, these methods struggle 
with rapid irradiance fluctuations and often result in 
power oscillations around the MPP when irradiance 
is stable [2, 5, 6]. Advanced MPPT strategies based on 
fuzzy logic (FL) or artificial neural networks (ANN) have 
also been investigated, but their complexity is higher 
compared to conventional MPPT algorithms, which are 
typically simple and cost-effective [7, 8]. 
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MPPT strategies are primarily implemented using a 
two-loop control scheme, where the first loop deter-
mines the reference voltage, and the second loop en-
sures that the PV system follows this reference voltage. 
The tracking performance is heavily dependent on the 
controller in the second loop, which must effectively 
handle system nonlinearities, uncertainties, and exter-
nal disturbances. A common drawback of most MPPT 
methods is the occurrence of power chattering around 
the MPP. An ideal MPPT controller should not only ac-
curately track the MPP under all conditions but also 
mitigate nonlinearities and uncertainties. Sliding mode 
control (SMC) is a nonlinear control technique well-
known for its robustness against system uncertainties 
and external disturbances. It offers a high degree of 
flexibility in control design, making it a strong candi-
date for MPPT applications. In [9], an SMC-based MPPT 
scheme is proposed where the reference voltage is ob-
tained using the P&O algorithm, and a sliding mode 
controller is employed to track this voltage. Similarly, 
an end-to-end SMC approach was introduced in [10], 
where the INC algorithm determines the MPP, and an 
SMC is used for tracking. However, both methods fail to 
eliminate chattering. To address this, an adaptive slid-
ing controller with an automatically adjusted switching 
factor was proposed in [11], effectively reducing chat-
tering. Unfortunately, this approach does not account 
for external disturbances and parameter uncertainties.

An alternative approach is the use of a single-loop 
SMC for MPPT, where the sliding surface is directly 
defined based on the MPP, simplifying the control 
structure and improving efficiency compared to two-
loop methods [12]. In [13], a sliding mode-based MPPT 
controller was developed, however, it did not fully 
eliminate chattering. More advanced solutions have 
explored the integration of sliding mode control with 
fuzzy logic techniques to mitigate chattering; however, 
these approaches often neglect the effects of system 
uncertainties and external disturbances.

Recently, several enhanced MPPT techniques have 
been proposed to improve tracking performance un-
der challenging environmental conditions. In [14], 
Jately et al. conducted an experimental analysis of hill-
climbing MPPT algorithms under low irradiance levels, 
highlighting the limitations of conventional methods 
in maintaining efficiency during partial shading or re-
duced sunlight. Meanwhile, Jately and Arora [15] in-
vestigated the performance of various hill-climbing 
techniques under rapidly changing environmental 
conditions, showing that while these methods offer 
fast response, they may suffer from oscillations around 
the MPP. More recently, Jamshidi et al. [16] proposed an 
improved sliding mode controller that enhances MPPT 
accuracy in dynamic environments. Their method dem-
onstrates strong robustness and tracking precision; 
however, it still faces challenges related to chattering 
suppression and implementation complexity in real-
world systems.

These recent developments indicate that while prog-
ress has been made in enhancing tracking performance 
and robustness, a clear research gap still exists: there is 
a lack of MPPT control strategies that simultaneously 
ensure (i) high robustness against uncertainties, (ii) ef-
fective chattering suppression, and (iii) structural sim-
plicity via a single-loop implementation.  To address 
this, this paper proposes an adaptive robust control-
ler (ARC) for MPP tracking, integrating sliding mode 
control and fuzzy logic in a single-loop structure. The 
SMC component ensures system stability and robust-
ness against parameter variations and external distur-
bances, while the fuzzy controller effectively eliminates 
chattering. This approach is expected to enhance MPPT 
performance, offering a potentially more reliable and 
efficient solution for PV energy conversion systems.

2.	 MATHEMATICAL MODEL OF THE SYSTEM AND 
PROBLEM FORMULATION 

2.1.	 Modeling of PV system

The PV system can be represented based on a PV 
equivalent circuit. Commonly used equivalent circuits 
are single-diode models [17, 18] or double-diode mod-
els [19, 20]. Consider the single diode model shown in 
Fig. 1, where Iph is a current source, Id is a diode repre-
senting the polarization phenomenon, Rs is a resistor 
representing the various contact and connection re-
sistances, and Rp is a resistor representing the various 
leakage currents.

The mathematical model of PV array is given as fol-
lows [21, 22]:

(1)

where Ns is the number of solar panels connected in 
series, Np is the number of solar panels connected in 
parallel, Is is the reverse saturation current, and Iph is the 
photo-current, β=Ns/Np, Ipv is the output current of the 
PV array, Vpv is the output voltage of the PV array, and δ 
is the ideality factor. In practice, Rs often has a minimal 
value, and Rp has a very large value. Therefore, equation 
(1) is rewritten as follows:

(2)
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The PV model used in this paper is based on a single-
diode equivalent circuit, and the following assump-
tions are considered to simplify the mathematical rep-
resentation [21, 22]:

1. The shunt resistance Rp is assumed to be very large 
and thus its effect is neglected.

2. The series resistance Rs is retained but considered 
constant and temperature-independent.

3. The effect of changes in temperature and irradi-
ance is reflected through Iph, Is, and Vpv, which are calcu-
lated at standard test conditions (STC).

4. The diode ideality factor δ, thermal voltage, and 
saturation current Is are assumed constant for a given 
condition.

5. The influence of partial shading and aging of solar 
panels is neglected.

Consider a specific PV system consisting of 5 Sun 
Power SPR-305E-WHT-D panels connected in series per 
string and 66 parallel strings used [11]. The specifications 
of the Sun Power SPR-305E-WHT-D PV panels are as fol-
lows: maximum power is 305.226W, open circuit voltage 
Voc=64.2V, short-circuit current Isc=5.96A, voltage at maxi-
mum power point Vmp=54.7V, current at maximum power 
point Imp=5.58A. This PV system delivers a maximum 
power of 100 kW under irradiance and temperature con-
ditions. The I-V and P-V characteristics of the PV system 
under different irradiance conditions are shown in Fig. 2. 

Fig. 2. I-V and P-V characteristics of PV system

2.2.	 DC/DC boost converter

DC/DC converter is an indispensable part of the PV 
system, and it is connected to adjust the output volt-
age of the PV system. Commonly used DC/DC con-
verters are buck converter, boost converter, and buck-
boost converter. In this paper, a boost converter is 
used. The schematic diagram of the boost converter 
circuit is shown in Fig. 3, in which Vpv is the input volt-
age, Vo is the output voltage, IL is the induced current, R 
is the circuit load, u has a value in the range [0,1] is the 
pulse width of PWM (Pulse Width Modulation) stage. 

The values of inductor components L, input capaci-
tor Cv, and output capacitor Co are selected as follows 
[11]: L=0.005H, Cv=5.10-3 F, Co=5.10-3 F, R=4.9 Ω, PWM 
switching frequency is chosen as 5000Hz.

The circuit operates in two cases: when K is conduct-
ing and when K is in the off state. The state equations 
of IL and Vo are as follows [9, 19]:

(3)

(4)

where ζ represents the uncertain parts of the system 
arising from measurement errors, values of passive 
components, and loads. ζ satisfies the following condi-
tions [9]:

(5)

where bd is a positive constant. Defining φ=[IL, V0]T, we 
get the following dynamic equation:

(6)

The mathematical model of the boost converter is 
developed under the following assumptions [21, 22]:

1.	 All circuit components (inductor L, capacitor C, 
switch, diode) are ideal and lossless.

2.	 The converter operates in continuous conduction 
mode (CCM).

3.	 The switching is instantaneous and perfectly syn-
chronized with the PWM signal.

4.	 Parasitic elements and switching losses are ignored.
5.	 The output load is resistive and constant during 

operation.

2.3.	 Problem formulation

The objective of the problem is to design ARC for sys-
tem (8) with the impact of ζ, ensuring that the system 
always operates at the MPP. The control system struc-
ture diagram is shown in Fig. 4.

Fig. 4. Control system structure diagram
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3.	 ADAPTIVE ROBUST CONTROLLER DESIGN 

This section designs the ARC controller, which in-
cludes a sliding mode controller and a fuzzy controller, 
where the fuzzy controller is used to select the switch-
ing coefficient to reduce the chattering phenomenon.

3.1.	 Sliding mode controller

As observed in Fig. 2, when the system operates at its 
MPP, the slope of the P-V characteristic is zero. There-
fore, we have

(7)

The definition of sliding surface is as follows [12, 23]:

(8)

The sliding mode controller is designed as equation (9), 
consisting of 2 components, uSMC to pull the system state 
to the sliding surface, utd to ensure the state remains on 
the sliding surface and moves towards the origin.

(9)

The control law is designed as follows:

(10)

Choose a Lyapunov function as follows:

(11)

Taking the derivative (11), we get

(12)

We have

(13)

The first component of equation (13) satisfies [13, 23]

(14)

Substituting expression (10) into equation (13), the 
second component of equation (13) becomes

(15)

From equations (13) and (15), note (14) and |κ|≥bζ, we 
have

(16)

Thus, according to the Lyapunov stability criterion, 
we can conclude that the system is stable.

3.2.	 Fuzzy controller

The control law (10) shows that the larger the κ co-
efficient, the faster the states will approach the sliding 
surface and the higher the stability. However, the larger 
this coefficient is, the stronger the chattering phenom-
enon will be. The discontinuous switching nature of 
classical SMC often induces high-frequency oscillations 
(chattering), which can excite unmodeled dynamics 
and degrade system performance. While conventional 
chattering reduction methods exist, they frequently 
trade off robustness or increase control complexity.  
In contrast, fuzzy logic controllers generate smooth 
control signals through continuous membership func-
tions and fuzzy inference mechanisms, thereby replac-
ing the abrupt switching with gradual transitions. This 
smoothness significantly mitigates chattering without 
compromising the robustness and finite-time conver-
gence properties guaranteed by SMC.  Moreover, fuzzy 
logic’s model-free and adaptive characteristics allow 
it to intelligently adjust the switching gain near the 
sliding surface, reducing excessive switching intensity 
that causes chattering while preserving the high-gain 
control action necessary when the system state is far 
from the sliding manifold. This adaptive tuning of the 
switching gain via fuzzy logic complements the inher-
ent robustness of SMC against parameter variations 
and external disturbances. Therefore, integrating fuzzy 
logic with SMC in a single-loop ARC structure not only 
preserves system stability and robustness but also ef-
fectively mitigates chattering by adaptively modulat-
ing the switching gain. This leads to enhanced MPPT 
performance with reduced control complexity.

Fig. 5. Fuzzy controller structure: Number of inputs, 
outputs, composition rules, and defuzzification 

methods

The designed fuzzy controller includes a sliding sur-
face input and an   coefficient output. The structure of 
the fuzzy controller is illustrated in Fig. 5, The structure 
of the fuzzy controller is illustrated in Fig. 5, where the 
input and output membership functions are Gaussian-
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shaped, as shown in Figs. 6 and 7, and the control rules 
are presented in Fig. 8.

Fig. 6. Input membership function

Fig. 7. Output membership function

Fig. 8. Control rules

4.	 	RESULTS 

This section presents simulation results on Matlab 
software. The system operates under irradiance condi-
tions varying in the range of [1000,200,600] W/m2, tem-
perature at 25°C, and the system's uncertainties caused 
by measurement errors are random values within the 
range [0,5]. The PV power, PV voltage, and PV current of 
ARC are shown in Figs. 9, 10, and 11. The output power 
corresponding to the ARC is depicted in Fig. 12. Al-
though the radiation changes rapidly, ARC still ensures 
the quality of control. The system works stably with a 
response time of about 0.02s. The simulation results 
show that ARC provides good control quality and en-
sures working at the maximum power point.

Fig. 9. Result of PV power

Fig. 10. Result of PV voltage

Fig. 11. Result of PV current

Fig. 12. Result of output power

To demonstrate the effectiveness of the RAC method, 
a comparison is conducted with the algorithms pro-
posed in [24] and [25]. Fig. 13 illustrates the MPP track-
ing performance of the proposed ARC compared with 
Algorithm [24] and Algorithm [25]. 

Fig. 13. PV power of the algorithms
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At each irradiance transition point, the ARC closely 
follows the reference MPP curve with negligible devia-
tion. In contrast, Algorithm [24] exhibits slight oscilla-
tions near the new MPP at t = 1.25 s, while Algorithm 
[25] shows more pronounced oscillations, especially 
at t = 2 s, where noticeable overshoot and undershoot 
occur. These observations confirm that ARC achieves 
tracking accuracy comparable to Algorithm [24], while 
significantly improving stability and reducing chatter-
ing compared to both Algorithms [24] and [25]. This 
improvement is attributed to the fuzzy-based adaptive 
gain adjustment, which minimizes unnecessary switch-
ing near the sliding surface.

Fig. 14. Output power of the algorithms

Fig. 15. Output voltage of the algorithms

Fig. 16. Output current of the algorithms

Additionally, Figs. 14, 15, and 16 illustrate the output 
power, output voltage, and output current of the algo-
rithms, respectively. These figures clearly demonstrate 
that the proposed ARC significantly reduces chatter-
ing compared to Algorithms [24] and [25], resulting in 
smoother and more stable system responses. Specifi-
cally, the output voltage of the ARC exhibits a peak-to-
peak oscillation of only about 1 V, whereas Algorithm 
[24] reaches up to 16 V and Algorithm [25] up to 30 V. 
The peak-to-peak amplitude refers to the difference 
between the maximum and minimum values of the os-
cillating signal.

The dynamic efficiency of the simulated algorithms, 
computed using (17) in accordance with the method 
described in [20], is summarized in Table 1. The dynam-
ic efficiency of the simulated algorithms, computed us-
ing (17) in accordance with the method described in 
[24], is summarized in Table 1. In addition, Table 1 also 
presents the response time and the output voltage 
chattering amplitude of the system.

(17)

Table 1. Performance evaluation indices of the 
algorithms

Algorithm Overall 
efficiency Response time  Chattering 

amplitude 

RAC 99.61% 10ms 1V

Algorithm [24] 98.59% 20ms 16V

Algorithm [25] 97.99% 15ms 30V

5.	 CONCLUSIONS

This paper has introduced an adaptive robust con-
troller (ARC) for maximum power point tracking of 
photovoltaic systems. Comparative simulation results 
show that the proposed controller ensures robustness 
and good tracking quality. In addition, the controller 
has a simple structure because it only uses one loop. 
Therefore, one can easily deploy the algorithm on 
embedded devices. However, the current study pres-
ents some limitations. Firstly, the effectiveness of the 
controller has only been validated through simula-
tion. Secondly, the proposed method assumes partial 
knowledge of system parameters and neglects compo-
nent-level uncertainties in the boost converter and PV 
module. Future work will focus on extending the pro-
posed ARC to systems with unknown or time-varying 
parameters. Additionally, experimental validation will 
be conducted to verify the feasibility and performance 
of the proposed method on a physical PV system pro-
totype, thereby bridging the gap between simulation 
and practical implementation.
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