Fuzzy and Position Particle Swarm Optimized Routing in VANET
DOI:
https://doi.org/10.32985/ijeces.12.4.3Keywords:
VANET, Position Particle Swarm Optimization, Fuzzy Logic, Coordinated metrics, Candidate nodesAbstract
In Intelligent Transport Systems, traffic management and providing stable routing paths between vehicles using vehicular ad hoc networks (VANET's) is critical. Lots of research and several routing techniques providing a long path lifetime have been presented to resolve this issue. However, the routing algorithms suffer excessive overhead or collisions when solving complex optimization problems. In order to improve the routing efficiency and performance in the existing schemes, a Position Particle Swarm Optimization based on Fuzzy Logic (PPSO-FL) method is presented for VANET that provides a high-quality path for communication between nodes. The PPSO-FL has two main steps. The first step is selecting candidate nodes through collectively coordinated metrics using the fuzzy logic technique, improving packet delivery fraction, and minimizing end-to-end delay. The second step is the construction of an optimized routing model. The optimized routing model establishes an optimal route through the candidate nodes using position-based particle swarm optimization. The proposed work is simulated using an NS2 simulator. Simulation results demonstrate that the method outperforms the standard routing algorithms in packet delivery fraction, end-to-end delay and execution time for routing in VANET scenarios.