An improved Gaussian Mixture Model with post-processing for multiple object detection in surveillance video analytics


  • Fancy Joy Department of Computer Science Sri Ramakrishna College of Arts and Science, Coimbatore, India
  • Dr. V. Vijayakumar Department of Computer Science Sri Ramakrishna College of Arts and Science, Coimbatore, India



multiple object detection, Gaussian Mixture Model, background subtraction, postprocessing


Gaussian Mixture Model (GMM) is an effective method for extracting foreground objects from video sequences. However, GMM fails to detect the object in challenging scenarios like the presence of shadow, occlusion, complex backgrounds, etc. To handle these challenges, intrinsic and extrinsic enhancement is required in traditional GMM. This paper presents a novel framework that combines improved GMM with postprocessing for multiple object detection. In the proposed system, GMM with parameter initialization is considered an intrinsic improvement. Video preprocessing and postprocessing are considered extrinsic improvements. Integration of morphological operation with GMM helps for better segmentation than traditional GMM, and it also helps to increase detection performance by reducing false positives. Video preprocessing is the process of noise removal that prepares input video ready for further processing. In the final step gradient of morphological operations is used for postprocessing. The proposed approach was tested on challenging surveillance video sequences from benchmark datasets such as PETS 2009 and CD 2014(Change Detection). The experimental results are compared using ground truth and performance evaluation metrics. The results show that the proposed approach performs better than GMM, and the method can detect the object effectively even in illumination variation and partial occlusion.






Original Scientific Papers