Achieving Information Security by multi-Modal Iris-Retina Biometric Approach Using Improved Mask R-CNN
DOI:
https://doi.org/10.32985/ijeces.14.6.5Keywords:
Biometrics, iris recognition, retina recognition, mask R-CNNAbstract
The need for reliable user recognition (identification/authentication) techniques has grown in response to heightened security concerns and accelerated advances in networking, communication, and mobility. Biometrics, defined as the science of recognizing an individual based on his or her physical or behavioral characteristics, is gaining recognition as a method for determining an individual's identity. Various commercial, civilian, and forensic applications now use biometric systems to establish identity. The purpose of this paper is to design an efficient multimodal biometric system based on iris and retinal features to assure accurate human recognition and improve the accuracy of recognition using deep learning techniques. Deep learning models were tested using retinographies and iris images acquired from the MESSIDOR and CASIA-IrisV1 databases for the same person. The Iris region was segmented from the image using the custom Mask R-CNN method, and the unique blood vessels were segmented from retinal images of the same person using principal curvature. Then, in order to aid precise recognition, they optimally extract significant information from the segmented images of the iris and retina. The suggested model attained 98% accuracy, 98.1% recall, and 98.1% precision. It has been discovered that using a custom Mask R-CNN approach on Iris-Retina images improves efficiency and accuracy in person recognition.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 International Journal of Electrical and Computer Engineering Systems
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.